JPS6278114A - Production of zirconia powder - Google Patents
Production of zirconia powderInfo
- Publication number
- JPS6278114A JPS6278114A JP21792185A JP21792185A JPS6278114A JP S6278114 A JPS6278114 A JP S6278114A JP 21792185 A JP21792185 A JP 21792185A JP 21792185 A JP21792185 A JP 21792185A JP S6278114 A JPS6278114 A JP S6278114A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- zirconia powder
- carbon
- zircon
- zirconia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野)
本発明は、ジルコン粉末から高純度のジルコニア(酸化
ジルコニウム: Zr 02 )粉末を製造する方法に
関し、この明細書で述べる技術内容は、ジルコン粉末と
炭素含有物および/または金属珪素粉末とを混合し、温
度制御を伴う減圧脱珪熱処理を施すことにより、ジルコ
ン粉末中のシリカ成分を気相中に揮散除去して所望の種
々の粒径の高純度の未安定化ジルコニア粉末を製造する
有利な方法について提案するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing high-purity zirconia (zirconium oxide: Zr 02 ) powder from zircon powder. By mixing zircon powder with a carbon-containing material and/or metal silicon powder, and performing a vacuum desiliconization heat treatment with temperature control, the silica component in the zircon powder is removed by volatilization into the gas phase, and various desired particle sizes can be obtained. An advantageous method for producing high purity unstabilized zirconia powder is proposed.
(従来技術)
一般的なジルコニア粉末製造技術として現在知られてい
る主なものには、■炭素脱珪アーク炉溶融法、■アルカ
リ溶融法、等がある。(Prior Art) The main techniques currently known as general zirconia powder manufacturing techniques include (1) carbon-removal arc furnace melting method, (2) alkaline melting method, and the like.
まず上記■の製造法は、ジルコンサンドに]−クスや、
さらには鉄くずを添加してアーク炉中に入れて加熱し、
Si02分を気相中へ揮散させ、あるいは鉄と反応させ
てフェロシリコンとして除去することにより、いわゆる
Zr 02成分と分離し、ジルコニア粉末を得る方法で
ある。この方法は、安価なジルコニア粉末を多量に製造
するのには向いているが、高純度のジルコニア粉末を得
ることができないという問題点があった。さらに、アー
ク炉中で溶融させるために相当の高温を必要として時間
がかかり、また、得られたジルコニアブロックを粉砕す
るためにもエネルギーが必要となり、省エネルギーの観
点からも問題点が残っていた。First of all, the manufacturing method described in (■) above uses zircon sand,
Furthermore, iron scraps are added and heated in an arc furnace.
This is a method of separating Si02 from the so-called Zr02 component and obtaining zirconia powder by volatilizing Si02 into the gas phase or reacting with iron to remove it as ferrosilicon. Although this method is suitable for producing large quantities of inexpensive zirconia powder, it has a problem in that highly pure zirconia powder cannot be obtained. Furthermore, melting in an arc furnace requires a considerable high temperature, which takes time, and energy is also required to crush the obtained zirconia block, which remains a problem from an energy saving perspective.
上記■の製造法は、ジルコンサンドとアルカリを溶融反
応させてジルコン中のSt 02分をアルカリけい酸塩
として洗浄除去し、一方Zr 02成分はジルコン酸ソ
ーダとした後、酸処理などのプロセスを経て、オキシ塩
化ジルコニウム(Zr OCI 2 )にする。そして
このオキシ塩化ジルコニウム(水に可溶)をpH調整し
て水酸化ジルコニウムとし、熱処理してジルコニアを得
る方法である。この方法は上記■の製造法と比べて純度
99%以上の高純度のジルコニアが得られるが、欠点は
製造プロレスが複雑であるために生産性が悪く、コスト
が非常に高くつくことである。In the production method (2) above, zircon sand and an alkali are melted and reacted, and the St 02 component in the zircon is washed and removed as an alkali silicate, while the Zr 02 component is converted into sodium zirconate and then subjected to processes such as acid treatment. Then, it is converted into zirconium oxychloride (Zr OCI 2 ). This zirconium oxychloride (soluble in water) is then pH-adjusted to form zirconium hydroxide, which is then heat-treated to obtain zirconia. This method yields highly purified zirconia with a purity of 99% or more compared to the production method (2) above, but the disadvantage is that the production process is complicated, resulting in poor productivity and very high costs.
その他のジルコニア粉末の製造技術としては、特開昭5
19808号や特開昭58−15021号公報として開
示されたものがある。これらの技術は、ジルコンサンド
と炭素粉末を混合して造粒し、さらに該粒状物の周囲に
炭素粒状物を付着させて非酸化性雰囲気中で加熱するこ
とにより、Si 02分を気相中に出すと同時に炭素粒
状物と反応させてジルコニアとSiCを同時に製造する
という技術に関するものである。しかし、このジルコニ
ア粉末を製造する既知技術も、Zr 02中に3i 0
2成分がかなり残留したり、SiCがZr 02中に混
入したりするおそれがあり、また、反応させるのに高温
度、長時間を必要とし、純度、生産性の面で問題があっ
た。Other manufacturing technologies for zirconia powder include JP-A No. 5
There are those disclosed in No. 19808 and Japanese Patent Application Laid-open No. 15021/1983. These techniques involve mixing zircon sand and carbon powder, granulating the mixture, attaching carbon granules around the granules, and heating them in a non-oxidizing atmosphere. This technology involves producing zirconia and SiC at the same time by reacting them with carbon particles. However, the known technology to produce this zirconia powder also consists of 3i 0 in Zr 02
There is a risk that a considerable amount of the two components may remain or SiC may be mixed into Zr 02, and the reaction requires high temperature and a long time, which poses problems in terms of purity and productivity.
(発明が解決しようとする問題点)
本発明の一般的な目的は、ジルコン粉末からジルコニア
粉末を製造する方法に関しての従来技術のもつ上述のよ
うな問題点、すなわち高純度の未安定化ジルコニア粉末
が安価にかつ効率良く製造できないという問題を解決す
ることにある。(Problems to be Solved by the Invention) The general purpose of the present invention is to solve the above-mentioned problems of the prior art regarding the method of producing zirconia powder from zircon powder, namely, high purity unstabilized zirconia powder. The objective is to solve the problem that it cannot be manufactured cheaply and efficiently.
本発明者らの研究によると、ジルコン粉末からのジルコ
ニア粉末の製造に関する従来の炭素脱珪法について鋭意
検討を行った結果、ジルコン粉末の脱珪時にいかに効率
良くS10蒸気を除去するかが製造上非常に重要である
ことを見出し、そのために本発明者らは先に特願昭59
−65130号あるいは特願昭59−95756号とし
て提案したように、減圧下で炭素脱珪するという新規技
術に想到した。According to the research conducted by the present inventors, as a result of intensive studies on the conventional carbon desiliconization method for producing zirconia powder from zircon powder, it has been found that it is difficult to efficiently remove S10 vapor during desiliconization of zircon powder. The inventors of the present invention first filed a patent application filed in 1983 for this purpose.
As proposed in No. 65130 or Japanese Patent Application No. 59-95756, we came up with a new technique of carbon desiliconization under reduced pressure.
要するに減圧下で炭素脱珪すれば、従来の炭素脱珪法よ
りも低温、短時間の熱処理で効率良く高純度ジルコニア
粉末が製造できるようになる。In short, if carbon desiliconization is performed under reduced pressure, high-purity zirconia powder can be produced more efficiently with heat treatment at a lower temperature and in a shorter time than with conventional carbon desiliconization methods.
また、炭素含有物の代わりに金属珪素粉末を用いても効
率的に脱珪できることを見出した。It has also been found that silicon metal powder can be used in place of the carbon-containing material to efficiently remove silicon.
しかし、−口にジルコニア粉末と言っても、工業的には
比較的粗粒の耐火物グレードのものや溶射材グレードの
ものから、いわゆるサブミクロン単位の超微粉が使用さ
れるファインセラミックスグレードのものまで、各種の
粒径のジルコニア粉末がある。前述の従来のジルコニア
粉末製造技術のうち、■炭素脱珪アーク炉溶融法は、主
として粗粒の耐火物グレード品製造用の技術である。一
方■アルカリ溶融法は、高純度・超微粉という特長を生
かしてファインセラミックスやエレクトロセラミックス
製造用のものを得る技術である。要するに、従来方法で
粗粒から超微粉までのジルコニア粉末を自在に製造する
例はいままでにはなかったのが実情である。However, even though we say zirconia powder, industrially it ranges from relatively coarse refractory grade and thermal spray material grade to fine ceramic grade, which uses so-called submicron ultrafine powder. There are zirconia powders with various particle sizes. Among the conventional zirconia powder manufacturing techniques described above, the carbon-desiliconization arc furnace melting method is primarily a technique for manufacturing coarse-grained refractory grade products. On the other hand, the alkaline fusion method is a technology that takes advantage of the characteristics of high purity and ultra-fine powder to produce products for fine ceramics and electroceramics. In short, the reality is that there has never been an example in which zirconia powder ranging from coarse particles to ultra-fine powder can be freely produced using conventional methods.
このことから本発明の具体的目的は、要するに種々の粒
径のジルコニア粉末を同じ製造プロセスの中で必要に応
じて取出し得る有利な技術について提案することである
。Therefore, a specific object of the present invention is to propose an advantageous technique that allows zirconia powder of various particle sizes to be taken out as needed in the same manufacturing process.
〈問題点を解決するための手段)
そこで本発明者らは、先に提案した上記ジルコニア粉末
製造技術であるジルコンサンドの減圧脱珪法において、
減圧脱珪温度、と得られるジルコニア粉末の粒径との関
係について詳細に検討した結果、減圧脱珪温度を制御す
ることにより、粗粒のジルコニア粉末から超微細なジル
コニア粉末まで、任意の粒径のジルコニア粉末が得られ
ることを見出し本発明を完成した。<Means for Solving the Problems> Therefore, in the vacuum desiliconization method of zircon sand, which is the zirconia powder production technology proposed earlier, the present inventors
As a result of a detailed study on the relationship between the vacuum desiliconization temperature and the particle size of the obtained zirconia powder, we found that by controlling the vacuum desiliconization temperature, it is possible to create any particle size from coarse zirconia powder to ultra-fine zirconia powder. The present invention was completed by discovering that a zirconia powder of 100% can be obtained.
すなわち本発明は上記課題解決の手段として、ジルコン
粉末と炭素含有物および/または金属珪素粉末との混合
物を熱処理することにより脱珪してジルコニア粉末を製
造する際に、回収する目標粒径に応じて上記熱処理時の
加熱温度を選択し、減圧脱珪を行うことを構成の要旨と
するジルコニア粉末の製造を採用する。That is, the present invention, as a means to solve the above-mentioned problem, is based on the target particle size to be recovered when producing zirconia powder by heat-treating a mixture of zircon powder, carbon-containing material, and/or metal silicon powder. A method of producing zirconia powder is employed in which the heating temperature during the heat treatment is selected and the desiliconization is performed under reduced pressure.
(作用) 次に本発明の具体的内容を実験例に従って説明する。(effect) Next, the specific contents of the present invention will be explained according to experimental examples.
まず、原料については次のように調整した。First, the raw materials were adjusted as follows.
Zr○2+3iQ2が99,0wt%の平均粒径1.0
μmのジルコン粉末に、カーボンブラックを、ジルコン
粉末中の3i 02とのモル比
(C/5iO2)が0.4〜2.5の範囲内となるよう
に配合し、充分に混合した後、それらの混合物から金型
成形器を用いて10Ill11φX 20mmHの成形
体を調整した。Zr○2+3iQ2 is 99.0wt%, average particle size 1.0
Carbon black is blended into μm zircon powder so that the molar ratio (C/5iO2) to 3i02 in the zircon powder is within the range of 0.4 to 2.5, and after thorough mixing, A molded body of 10Ill11φX 20mmH was prepared from the mixture using a mold forming machine.
上記成形体く原料)を、1300℃の減圧雰囲気に50
時間保持して脱珪熱処理を施した。圧力は0.2. 0
.1. 0.05気圧とした。さらに、脱珪熱処理俊、
800℃で2時間大気中で酸化処理を行い、得られたジ
ルコニア粉末中の5i02Jiを分析した。第1図に3
i 02残留量分析値に及ぼすジルコン粉末中のSi
02とカーボンブラックの配合比(C/SiO2モル比
)、圧力の影響を示す。The above molded body raw material) was placed in a reduced pressure atmosphere at 1300°C for 50 minutes.
A desiliconization heat treatment was performed by holding the sample for a certain period of time. The pressure is 0.2. 0
.. 1. The pressure was 0.05 atm. In addition, desiliconization heat treatment,
Oxidation treatment was performed in the air at 800° C. for 2 hours, and 5i02Ji in the obtained zirconia powder was analyzed. 3 in Figure 1
Effect of Si in zircon powder on i02 residual amount analysis value
02 and carbon black (C/SiO2 molar ratio) and the influence of pressure.
この第1図から明らかなように、Si 02残留量の少
ない(< 1.0wt%)ジルコニア粉末を得るために
は圧力が0.1気圧以下が好ましい。またC/5i02
(モル比)は0.6〜1.7の範囲内であればより好ま
しい。As is clear from FIG. 1, in order to obtain zirconia powder with a small residual amount of Si 02 (<1.0 wt%), the pressure is preferably 0.1 atmosphere or less. Also C/5i02
(Molar ratio) is more preferably within the range of 0.6 to 1.7.
次に、上記と同じ割合で配合したジルコン粉末とカーボ
ンブラックとの混合物を用い、脱珪熱処理温度の影響を
調査した。すなわち、ジルコン粉末とカーボンブラック
の配合比(C/5i02モル比)は1.2とし、圧力は
0.01気圧とした。脱珪熱処理温度は1050〜18
00℃の範囲内とし、熱処理時間は低温度の熱処理条件
のものほど長時間とした。第2図には、ジルコニア粉末
中の$102残留量に及ぼす熱処理温度の影響を示す。Next, using a mixture of zircon powder and carbon black blended in the same proportions as above, the influence of desiliconization heat treatment temperature was investigated. That is, the blending ratio of zircon powder and carbon black (C/5i02 molar ratio) was 1.2, and the pressure was 0.01 atm. Desiliconization heat treatment temperature is 1050~18
The temperature was within the range of 00°C, and the heat treatment time was longer for lower temperature heat treatment conditions. FIG. 2 shows the effect of heat treatment temperature on the amount of $102 remaining in the zirconia powder.
さらに、酸化処理後のジルコニア粉末を乳鉢を用いて軽
く粉砕を行い、走査電顕写真を用いて調べた。また同じ
く第2図には、ジルコニア粉末の平均粒径に及ぼす熱処
理温度の影響を示す。Furthermore, the oxidized zirconia powder was lightly ground using a mortar and examined using a scanning electron microscope. Similarly, FIG. 2 shows the influence of heat treatment temperature on the average particle size of zirconia powder.
第2図から明らかなように、本発明の場合には、3i
02含有】が1.0wt%以下と少ない高純度ジルコニ
ア粉末を得るためには、1100℃以上の熱処理温度が
必要である。その温度が1100℃よりも低いと脱珪に
長時間を要し、経済的に不利である。As is clear from FIG. 2, in the case of the present invention, 3i
In order to obtain a high-purity zirconia powder containing as little as 1.0 wt% or less, a heat treatment temperature of 1100° C. or higher is required. If the temperature is lower than 1100° C., desiliconization takes a long time, which is economically disadvantageous.
一方、1μm以下の平均粒径である微細ジルコニアを得
るためには、1350℃以下の処理温度が必要であり、
平均粒径10μm以上の粗粒のジルコニア粉末の場合に
は、1700℃以上が必要である。On the other hand, in order to obtain fine zirconia with an average particle size of 1 μm or less, a processing temperature of 1350°C or less is required.
In the case of coarse zirconia powder with an average particle size of 10 μm or more, a temperature of 1700° C. or higher is required.
以上のことから、ジルコン粉末と炭素含有物の混合割合
を、ジルコン粉末中のSi 02と炭素含有物中の炭素
とのモル比(C/Si 02 )を0.6〜1.7とし
、減圧脱珪熱処理を0.1気圧以下1100℃以上の温
度で行うことにより、高純度で任意の粒径を有するジル
コニア粉末が得られることがわかった。From the above, the mixing ratio of the zircon powder and the carbon-containing material is set such that the molar ratio of Si 02 in the zircon powder to carbon in the carbon-containing material (C/Si 02 ) is 0.6 to 1.7, and the pressure is reduced. It has been found that by performing the desiliconization heat treatment at a temperature of 0.1 atm or lower and 1100° C. or higher, a highly pure zirconia powder having an arbitrary particle size can be obtained.
以上のことは炭素含有物の代わりに金属珪素粉末を用い
ても同様の結果を示し、混合比はくSi/Si 02
) アルイハ(C+Si /Si 02 ) ff10
.4〜1.5が好しいことがわかった。The above results show similar results even when metallic silicon powder is used instead of the carbon-containing material, and the mixing ratio Si/Si 02
) Aruiha (C+Si /Si 02) ff10
.. It was found that 4 to 1.5 is preferable.
本発明に用いられるジルコン粉末としては、なるべく微
細で、ZrO2、Si 02以外の成分は少ない高純度
のものが好ましい。また、炭素含有物についても減圧脱
珪後、ジルコニア粉末中に残留するような灰分が極力少
ないものが好ましい。The zircon powder used in the present invention is preferably one that is as fine as possible and has a high purity with few components other than ZrO2 and Si02. Further, as for the carbon-containing material, it is preferable that the ash content remaining in the zirconia powder after vacuum desiliconization is as low as possible.
本発明の実施に際して好適に用いられる炭素含有物とし
ては、特に限定はないが、灰分の少ない石炭コークス、
石油コークス、石炭系あるいは石油系のピッチ、ピッチ
コークス、カーボンブラック、さらに有機樹脂などが挙
げられる。かかる炭素含有物質は、ジルコン粉末と混合
粉末、あるいはその混合粉末からの成形体を減圧脱珪の
ために熱処理するが、とくにジルコン粉末と炭素含有物
の混合については脱珪反応を完全に進行させるために充
分に行う必要がある。Carbon-containing substances suitably used in carrying out the present invention are not particularly limited, but coal coke with a low ash content, coal coke with a low ash content,
Examples include petroleum coke, coal-based or petroleum-based pitch, pitch coke, carbon black, and organic resins. Such carbon-containing substances are produced by heat-treating zircon powder and mixed powder, or compacts made from the mixed powder, for desiliconization under reduced pressure. In particular, when mixing zircon powder and carbon-containing substances, the desiliconization reaction must proceed completely. It is necessary to do enough for this purpose.
第3図、第4図は、それぞれ温度1300℃×50)−
1r 、 1600℃X2)−1r脱珪熱処理後、得ら
れたジルコニア粉末の粒子構造を示す走査電子顕微鏡写
真である。第3図の場合、ジルコニア粉は微細であるの
に対し、第4図に示すものの場合ジルコニア粉は互いに
焼結して粗大化していることが明らかである。Figures 3 and 4 are temperature 1300℃ x 50)-
1r, 1600°C x 2) - 1r is a scanning electron micrograph showing the particle structure of the obtained zirconia powder after the desiliconization heat treatment. In the case of FIG. 3, the zirconia powder is fine, whereas in the case of the one shown in FIG. 4, it is clear that the zirconia powder is sintered with each other and becomes coarse.
なお、本発明方法に従うジルコニア粉末の製造に際し、
連続式減圧加熱炉で実施するような場合には、生成した
ジルコニア粉末の粒径をオンライン分析し、その結果を
フィードバックして加熱条件を制御すれば、一層望まし
い粒径のものに制御することが可能となる。In addition, when producing zirconia powder according to the method of the present invention,
When using a continuous vacuum heating furnace, the particle size of the generated zirconia powder can be analyzed online and the results can be fed back to control the heating conditions to achieve a more desirable particle size. It becomes possible.
また本発明法によって製造したジルコニア粉末は、はと
んどがz「02であるが、ジルコンと炭素の混合割合に
よっては一部zr o、zr cなども生成する。そう
した場合、脱珪のための熱処理後において酸化処理を行
ないzr o、zr cなどを Zr 02にして、
さらに、高純度化が達成される。In addition, the zirconia powder produced by the method of the present invention is mostly z'02, but depending on the mixing ratio of zircon and carbon, some zr o, zr c, etc. may also be produced. After the heat treatment, oxidation treatment is performed to convert Zr o, Zr c, etc. to Zr 02,
Furthermore, high purity is achieved.
(実施例)
Zr 02 トSi 02 (7)合計含有1 カ99
.5% (7) 平均粒径0.97μ■のジルコン粉末
と平均粒径210人のカーボンブラック(固定炭素99
%、配分0.1%)とを、581表に示すようなC/5
iOz(モル比)となるように混合調整し、それぞれ1
011φX 201111Hの成形体とした。これを第
1表に示す熱処理条件で減圧脱珪処理を行い、熱処理後
粉末X線解析で存在結晶相の同定、Zr 02純度の分
析を行った。さらに800℃の大気中で酸化処理し、同
じ<ZrO2純度の分析と共にジルコニア粉末中に残留
する3iQ2ffiも分析した。さらに、解砕侵に走査
電子顕微鏡によりZr 02粉末の平均粒径を調べた。(Example) Zr 02 Si 02 (7) Total content 1 99
.. 5% (7) Zircon powder with an average particle size of 0.97 μ■ and carbon black with an average particle size of 210 people (fixed carbon 99
%, distribution 0.1%) and C/5 as shown in Table 581.
Mix and adjust to iOz (molar ratio), and add 1
A molded body of 011φX 201111H was obtained. This was subjected to vacuum desiliconization treatment under the heat treatment conditions shown in Table 1, and after the heat treatment, the existing crystal phase was identified by powder X-ray analysis and the Zr 02 purity was analyzed. Further, the powder was oxidized in the atmosphere at 800° C., and 3iQ2ffi remaining in the zirconia powder was also analyzed along with the same <ZrO2 purity analysis. Furthermore, the average particle size of the Zr 02 powder was examined using a scanning electron microscope during crushing and erosion.
これらの分析結果を第1表に示す。The results of these analyzes are shown in Table 1.
また、第2表にはジルコン粉末と金属珪素粉末およびカ
ーボンブラックとの混合物を同様の処理をした結果を示
す。Furthermore, Table 2 shows the results of similar treatment of a mixture of zircon powder, metal silicon powder, and carbon black.
この第1表および第2表から明らかなように、脱珪処理
とくに温度を変化させることによって第2図に示した通
りの任意の粒径を有する未安定化ジルコニア粉末が得ら
れる。As is clear from Tables 1 and 2, unstabilized zirconia powder having an arbitrary particle size as shown in FIG. 2 can be obtained by desiliconization treatment, particularly by changing the temperature.
(発明の効果)
以上述べたように本発明によれば、所望の粒径の未安定
化ジルコニア粉末を、単に熱処理温度の制御だけで確実
に効率良く製造できる。(Effects of the Invention) As described above, according to the present invention, unstabilized zirconia powder having a desired particle size can be reliably and efficiently produced simply by controlling the heat treatment temperature.
第1図は、C/Si 02 <モル比)と5io2残留
量との関係を示すグラフ、
第2図は、熱処理条件(温度、時間)とSi 02残留
Mおよび脱珪・解砕侵の平均粒径との関係を示すグラフ
、
第3図は、1300℃(低温)処理時のジルコニア粉末
の粒子構造を示ず電子顕微鏡写真、第4図は、1600
℃(高温)処理時のジルコニア粉末の粒子構造を示す電
子顕微鏡写真である。Figure 1 is a graph showing the relationship between C/Si 02 <molar ratio) and the residual amount of 5io2. Figure 2 is the average of heat treatment conditions (temperature, time), residual M of Si 02, and desiliconization/disintegration erosion. A graph showing the relationship with particle size; Figure 3 is an electron micrograph showing the particle structure of zirconia powder when treated at 1300°C (low temperature); Figure 4 is an electron micrograph showing the relationship between zirconia powder
It is an electron micrograph showing the particle structure of zirconia powder during treatment at a high temperature (°C).
Claims (1)
素粉末とからなる混合物を熱処理することにより脱珪し
てジルコニア粉末を製造する際に、 回収する目標粒径に応じて上記熱処理時の 加熱温度を選択し、減圧雰囲気下で脱珪処理を行うこと
を特徴とするジルコニア粉末の製造方法。[Claims] 1. When producing zirconia powder by heat-treating a mixture consisting of zircon powder, carbon-containing material and/or metal silicon powder, depending on the target particle size to be recovered. A method for producing zirconia powder, characterized in that the heating temperature during the heat treatment is selected and the desiliconization treatment is performed in a reduced pressure atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21792185A JPS6278114A (en) | 1985-10-02 | 1985-10-02 | Production of zirconia powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21792185A JPS6278114A (en) | 1985-10-02 | 1985-10-02 | Production of zirconia powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6278114A true JPS6278114A (en) | 1987-04-10 |
Family
ID=16711816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21792185A Pending JPS6278114A (en) | 1985-10-02 | 1985-10-02 | Production of zirconia powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6278114A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103097095A (en) * | 2010-09-17 | 2013-05-08 | 住友化学株式会社 | Extrusion-molding device and method for producing molded article using same |
CN111204801A (en) * | 2020-01-21 | 2020-05-29 | 绵竹市金坤化工有限公司 | Phosphoric acid method production process of zirconia powder of high-silicon zirconium-containing waste |
-
1985
- 1985-10-02 JP JP21792185A patent/JPS6278114A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103097095A (en) * | 2010-09-17 | 2013-05-08 | 住友化学株式会社 | Extrusion-molding device and method for producing molded article using same |
CN111204801A (en) * | 2020-01-21 | 2020-05-29 | 绵竹市金坤化工有限公司 | Phosphoric acid method production process of zirconia powder of high-silicon zirconium-containing waste |
CN111204801B (en) * | 2020-01-21 | 2022-04-01 | 绵竹市金坤化工有限公司 | Phosphoric acid method production process of zirconia powder of high-silicon zirconium-containing waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1174083A (en) | Process for the preparation of alloy powders which can be sintered and which are based on titanium | |
JPH02500972A (en) | Improvements in and related to vitreous silica | |
EP0451818B1 (en) | Method for producing unsintered cristobalite particles | |
US4224073A (en) | Active silicon carbide powder containing a boron component and process for producing the same | |
JPS6278114A (en) | Production of zirconia powder | |
US3914113A (en) | Titanium carbide preparation | |
JPS6221713A (en) | Production of high-purity zirconia powder | |
JPS6278113A (en) | Production of stabilized zirconia powder | |
JPH01215719A (en) | Production of high-purity zirconia powder | |
JPS6278112A (en) | Production of zirconia fine powder | |
JPS6221714A (en) | Production of high-purity stabilized zirconia powder | |
US2036221A (en) | Method of purifying zirconium silicates | |
JPS61132517A (en) | Production of high-purity zirconia powder | |
JPS6272526A (en) | Production of fine particles of zirconia | |
JPS6350320A (en) | Production of powdery zirconia | |
JP2675819B2 (en) | Manufacturing method of quartz glass | |
JPS63147811A (en) | Production of fine sic powder | |
JPH025688B2 (en) | ||
JPH025689B2 (en) | ||
JPS6278115A (en) | Production of powdery raw material for sintered zirconia | |
JPS6278111A (en) | Productin of stabilized zirconia fine powder | |
JPS61132518A (en) | Production of high-purity stabilized zirconia powder | |
JPH0218310A (en) | Preparation of zirconium-containing ceramic powder | |
JP2584032B2 (en) | Manufacturing method of zinc oxide whiskers | |
CN1413944A (en) | Electric melting production method of silicon micropowder and zirconium compound silicon micropowder |