JPS6276680A - Gaas integrated circuit device - Google Patents

Gaas integrated circuit device

Info

Publication number
JPS6276680A
JPS6276680A JP60216493A JP21649385A JPS6276680A JP S6276680 A JPS6276680 A JP S6276680A JP 60216493 A JP60216493 A JP 60216493A JP 21649385 A JP21649385 A JP 21649385A JP S6276680 A JPS6276680 A JP S6276680A
Authority
JP
Japan
Prior art keywords
type
mesfet
channel
ions
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60216493A
Other languages
Japanese (ja)
Inventor
Mayumi Hirose
広瀬 真由美
Katsue Kawahisa
克江 川久
Yoshiaki Kitaura
北浦 義昭
Kenji Ishida
石田 賢二
Toshiyuki Terada
俊幸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60216493A priority Critical patent/JPS6276680A/en
Publication of JPS6276680A publication Critical patent/JPS6276680A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To implement a complementary type MESFET inverter, whose occupying area is very small, by forming a P-type operating layer and an N-type operating layer on a semi-insulating GaAs substrate so that they are contacted to each other. CONSTITUTION:Si ions are selectively implanted in a semi-insulating GaAs substrate at first, and an N-type operating layer 2 is formed. Then Be ions are selectively implanted, and a P-type operating layer 3 is formed. Then a WN film is formed on the substrate, and a Schottky electrode 4 is formed. With the electrode 4 as a part of a mask, Si ions are implanted selectively, and N<+> type source and drain regions 5 and 6 are formed. Similarly, Be ions are selectively implanted, and P<+> type source and drain regions 7 and 8 are formed. Thereafter, heat treatment is performed and the implanted impurities are activated. Source and drain electrodes 9 and 10 on the side of an N-channel MESFET are formed with AuGe alloy. Source and drain regions 11 and 12 on the side of a P-channel MESFET are formed with AuZn alloy.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相補型MESFETインバータを含むG a
 A S集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a G a
The present invention relates to AS integrated circuit devices.

(発明の技術的背鼾とその問題点) GaAs集積回路は81集積回路に比べて高速動作が可
能なものとして注目されている。
(Technical disadvantages of the invention and its problems) GaAs integrated circuits are attracting attention because they can operate at higher speeds than 81 integrated circuits.

GaAsにおいては電子移動度は高いがホール移動度は
極めて低いことから、従来は専らnチャネルMESFE
Tの回路のみ考えられてきた。
In GaAs, electron mobility is high but hole mobility is extremely low, so conventionally only n-channel MESFE
Only the T circuit has been considered.

しかしながら、Slの相補型MO8回路が低消費電力か
つ高速の集積回路として実現されていることから、Ga
As集積回路においてもpチャネルMESFETを組込
んだ相補型回路の検討が始められている。この場合、相
補型MESFETインバータの具体的なレイアウトに際
しては、SlのMOSFETとは異なる素子構造、即ち
半絶縁性基板を用いること、ショッ1〜キーゲートを用
いること等を十分に考慮することが必要である。
However, since the complementary MO8 circuit of Sl has been realized as a low power consumption and high speed integrated circuit, Ga
Also in As integrated circuits, studies have begun on complementary circuits incorporating p-channel MESFETs. In this case, when designing the specific layout of the complementary MESFET inverter, it is necessary to fully consider the element structure different from that of the Sl MOSFET, i.e., the use of a semi-insulating substrate, the use of Schott 1 to key gates, etc. It is.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に名みなされたもので、最適レイア
ウトをもった相補型MESFETインバータを含むGa
As集積回路装置を提供することを目的とする。
The present invention is based on the above points, and includes a complementary MESFET inverter with an optimal layout.
The present invention aims to provide an As integrated circuit device.

〔発明の概要〕[Summary of the invention]

本発明によるGaAs集積回路は、半絶縁性GaAs基
板にn型動作層とn型動作層とが互いに接して形成され
、pチャネルMESFETのゲート電極とnチャネルM
ESFETのゲート電極とが、前記n型動作層とn型動
作目表面に両動作層の境界を横切って連続するように配
設されて相補型M E S F E Tインバータが構
成されていることを特徴とする。
In the GaAs integrated circuit according to the present invention, an n-type active layer and an n-type active layer are formed in contact with each other on a semi-insulating GaAs substrate, and a gate electrode of a p-channel MESFET and an n-type active layer are formed on a semi-insulating GaAs substrate.
The gate electrode of the ESFET is disposed on the surface of the n-type active layer and the n-type active layer so as to be continuous across the boundary between the two active layers, thereby configuring a complementary MESFET inverter. It is characterized by

〔発明の効果〕〔Effect of the invention〕

本発明による相補型MESFETインバータのレイアウ
トは占有面積が小さいものとなる。その理由は次の通り
である。、Siの〜103集積回路に用いられる通常の
MOSFETは、基板表面の反転層をチャネルとする。
The complementary MESFET inverter layout according to the present invention has a small footprint. The reason is as follows. , a typical MOSFET used in Si ~103 integrated circuits uses an inversion layer on the surface of the substrate as a channel.

このため、相補型MOSインバータにおいて本発明のよ
うなレイアウトを採用すると、nチャネルMO8FET
側にチャネルが形成されるとこれがpチャネル側の基板
領域と導通し、pチャネルMO8FET側でチャネルが
形成されるとこれがnチャネルMO3FET側の基板領
域と導通してしまう。これを避けるために通常は、隣接
するp、n領域に双方のゲート電極が互いに平行になる
ように配設され、これらのゲート電極は素子領域の外側
で連続するようにレイアウトされる。若し相補型MOS
インバータで本発明のようなレイアウトを採用するため
には、双方のチャネル領域を分離する手段を必要とする
Therefore, if the layout of the present invention is adopted in a complementary MOS inverter, n-channel MO8FET
If a channel is formed on the side, it will be electrically connected to the substrate region on the p-channel side, and if a channel is formed on the p-channel MO8FET side, it will be electrically connected to the substrate region on the n-channel MO3FET side. To avoid this, normally both gate electrodes are disposed in adjacent p and n regions so as to be parallel to each other, and these gate electrodes are laid out so as to be continuous outside the element region. Complementary MOS
In order to adopt the layout of the present invention in an inverter, means for separating both channel regions is required.

これに対しGaAsMESFETは、表面反転層を利用
するものではなく、動作層そのものがチャネル領域であ
って、ショットキーゲート電極側から伸びる空乏層によ
りその厚みを制即するものである。このため、上記した
ような不都合はなく、チャネルの分離手段を設けること
なく両者のゲート電極を連続的に配設することができる
。これにより、相補型MESFETインバータの占有面
積を極めて小さいものとすることができるのである。
On the other hand, a GaAs MESFET does not utilize a surface inversion layer, but the active layer itself is a channel region, and its thickness is controlled by a depletion layer extending from the Schottky gate electrode side. Therefore, there is no problem as described above, and both gate electrodes can be disposed continuously without providing channel separation means. This allows the area occupied by the complementary MESFET inverter to be extremely small.

また前述した通常の相補型MOSインバータのレイアウ
トでは、pチャネルMO8FETとnチャネルMO8F
 E Tの各ゲートMhの間に挟まれた領域内でそれぞ
れのドレイン!lIRを共通接続するオーミック?[を
設けなければならない。これは、素子を微細化した場合
にコンタクトホール形成のマスク合せを難しくし、従っ
て相補型回路の占有面積縮小を阻害する。本発明では、
一本の連続するゲート電極の両側に各MESFETのソ
ース、ドレイン領域が形成されるため、オーミック電極
形成が容易であり、この点でも占有面積縮小に有利であ
る。
Furthermore, in the layout of the normal complementary MOS inverter described above, p-channel MO8FET and n-channel MO8FET are
Each drain in the region sandwiched between each gate Mh of ET! Ohmic to commonly connect lIR? [must be established. This makes it difficult to match masks for forming contact holes when the device is miniaturized, and thus hinders reduction in the area occupied by the complementary circuit. In the present invention,
Since the source and drain regions of each MESFET are formed on both sides of one continuous gate electrode, it is easy to form ohmic electrodes, which is also advantageous in reducing the occupied area.

一方、本発明ではn型動作層とn型動作層が接して設け
られるため、両者の間に空乏層が形成され、これにより
実効的にチャネル幅が狭くなる。
On the other hand, in the present invention, since the n-type active layer and the n-type active layer are provided in contact with each other, a depletion layer is formed between the two, thereby effectively narrowing the channel width.

しかし、通常ディジタル用GaAs集積回路としてイオ
ン注入により形成される動作層の不純物濃度は10”/
crn3程度であり、pn接合により形成される空乏層
幅は約0.2μm程度である。
However, the impurity concentration of the active layer normally formed by ion implantation for digital GaAs integrated circuits is 10”/
crn3, and the width of the depletion layer formed by the pn junction is about 0.2 μm.

また一般にMESFETのゲート幅は数10μmで設計
される。従って空乏層のチャネル幅に与える影響は殆ど
無視することができ、回路設計上問題になることはない
Further, the gate width of MESFET is generally designed to be several tens of micrometers. Therefore, the influence of the depletion layer on the channel width can be almost ignored and does not pose a problem in circuit design.

(発明の実施例) 以下本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図は一実施例の相補型MESFETインバータのレ
イアウトであり、第2図第3図及び第4図はそれぞれ第
1図のA−△”、B−B−及びc−c ′断面図である
。抵抗率107〜10”Ω・1程度の半絶縁性GaAs
基板1の表面部にチャネル領域となるn型動作層2とρ
型動作、蒋3が互いに接して形成され、これらの動作層
2,3表面に両動作層の境界を横切って連続するショッ
トキーゲート電極4が一体形成されている。ショットキ
ーゲート電極4は例えば、4000人のWN膜により形
成されたものである。ゲーi−電極4を挟んで両側には
、動作層より高濃度で深いn+型のソース領域5および
ドレイン領域6と、p+型のソース領域7およびドレイ
ン領域8とが形成されている。9,10はそれぞれnチ
ャネルMESFETのソース、トレイン電極であり、1
1.12はそれぞれpチャネルMESFETのソース、
ドレイン電極である。また13はドレイン電極10.1
2間を接続する配線である。
FIG. 1 is a layout of a complementary MESFET inverter according to an embodiment, and FIG. 2, FIG. 3, and FIG. Yes. Semi-insulating GaAs with a resistivity of about 107 to 10"Ω・1
On the surface of the substrate 1, there is an n-type active layer 2 which becomes a channel region and ρ.
The active layers 2 and 3 are formed in contact with each other, and a continuous Schottky gate electrode 4 is integrally formed on the surfaces of these active layers 2 and 3, extending across the boundary between the two active layers. The Schottky gate electrode 4 is formed of, for example, a 4000 WN film. On both sides of the gate i-electrode 4, an n+ type source region 5 and drain region 6, which are higher in concentration and deeper than the active layer, and a p+ type source region 7 and drain region 8 are formed. 9 and 10 are the source and train electrodes of the n-channel MESFET, respectively;
1.12 are the sources of p-channel MESFETs,
This is the drain electrode. 13 is the drain electrode 10.1
This is the wiring that connects the two.

この相補型M E S F E Tインバータの具体的
な製造工程を説明すると、次の通りである。先ず半絶縁
性GaAs基板1に、3tイオンを50keV、2X1
0’ 2/cm2の条件で選択的にイオン注入してn型
動作層2を形成し、次いで3eイオンを30keV、5
x10” /atr2の条件で選択的にイオン注入して
、n型動作層2と接するn型動作層3を形成する。次に
この基板上にWNMIを4000人形成し、公知のフォ
トリソグラフィ技術及びドライエツチング技術を用いて
1.0μm幅のショットキーゲート電極4を形成する。
The specific manufacturing process of this complementary MESFET inverter is as follows. First, 3t ions were applied to a semi-insulating GaAs substrate 1 at 50 keV, 2X1.
The n-type operating layer 2 is formed by selective ion implantation under the conditions of 0'2/cm2, and then 3e ions are implanted at 30keV and 5.
By selectively implanting ions under the condition of x10''/atr2, an n-type active layer 3 in contact with the n-type active layer 2 is formed.Next, 4000 WNMIs are formed on this substrate, and a well-known photolithography technique and A Schottky gate electrode 4 having a width of 1.0 μm is formed using dry etching technology.

次にゲーI−電If14をマスクの一部として用いて3
iイオンを180keV、3X1013/cj12の条
件で選択的にイオン注入してn″″型のソース、ドレイ
ン領域5.6を形成し、同様にBeイオンを100ke
V、7.5X1012、/ ctn 2の条件で選択的
にイオン注入してp+型のソース、ドレイン領域7.8
を形成する。この後、800〜850 ’Cで熱処理し
て注入不純物の活性化を行なう。そしてnチャネルM 
E S F E T側のソース、ドレイン電極9,10
をALJGe合金により、またpチャネルMESFET
側のソース。
Next, using the game I-den If14 as part of the mask, 3
I ions were selectively implanted under the conditions of 180 keV and 3X1013/cj12 to form n'''' type source and drain regions 5.6, and Be ions were similarly implanted at 100 keV.
P+ type source and drain regions were formed by selective ion implantation under the conditions of V, 7.5 x 1012, /ctn 2.
form. Thereafter, the implanted impurities are activated by heat treatment at 800 to 850'C. and n channel M
E S F E T side source and drain electrodes 9 and 10
ALJGe alloy also allows p-channel MESFET
sauce on the side.

ドレイン電極11.12をAuZn合金によりそれぞれ
形成する。最後にAu配線13を形成して、相補型ME
SFETインバータが完成する。
Drain electrodes 11 and 12 are each formed from an AuZn alloy. Finally, Au wiring 13 is formed and complementary ME
The SFET inverter is completed.

こうしてこの実施例によれば、素子弁m領域等の無駄な
スペースを設けることなく、極めて占有面積の小さい相
補型MESFETインバータを実現することができる。
Thus, according to this embodiment, it is possible to realize a complementary MESFET inverter that occupies an extremely small area without providing wasted space such as the element valve m region.

従ってこの実施例によれば、GaAs集積回路の高集積
化を図ることができる。
Therefore, according to this embodiment, high integration of the GaAs integrated circuit can be achieved.

この実施例においては、n型動作層とn型動作層が接触
することによる空乏1は約0.2μmである。またpe
n+接合により形成される空乏層は約0.06μmであ
る。従ってチャネル幅数10μmの素子ではこれらの空
乏層は素子特性に殆ど影響を与えない。
In this example, the depletion 1 due to contact between the n-type active layer and the n-type active layer is approximately 0.2 μm. Also pe
The depletion layer formed by the n+ junction is approximately 0.06 μm. Therefore, in a device with a channel width of several tens of μm, these depletion layers have little effect on the device characteristics.

なお本発明は上記実施例に限られるものではなく、その
趣旨を逸脱しない範囲で種々変形して実施することがで
きる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の相補型MESFETインバ
ータのレイアウトを示す図、第2図は第1図のA−A−
断面図、第3図は同じ<B−B=断面図、第4図は同じ
<C−C−断面図である。 1・・・半絶縁性GaAs基板、2・・・n型動作層、
3・・・n型動作層、4・・・ショットキーゲート電極
、5・・・n++ソース領域、6・・・n+型トドレイ
ン領域7・・・p++ソース領域、8・・・p+型トド
レイン領域9.11・・・ソース電極、10.12・・
・ドレイン電極、13・・・配線。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 is a diagram showing the layout of a complementary MESFET inverter according to an embodiment of the present invention, and FIG.
The sectional views in FIG. 3 are the same <BB= sectional view, and FIG. 4 is the same <CC- sectional view. 1... Semi-insulating GaAs substrate, 2... N-type operating layer,
3...n-type operating layer, 4...Schottky gate electrode, 5...n++ source region, 6...n+-type drain region 7...p++ source region, 8...p+-type drain region 9.11... Source electrode, 10.12...
- Drain electrode, 13... wiring. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 相補型MESFETインバータを含むGaAs集積回路
装置において、半絶縁性GaAs基板にp型動作層とn
型動作層が互いに接して形成され、pチャネルMESF
ETのゲート電極とnチャネルMESFETのゲート電
極とが前記p型動作層及びn型動作層表面に両動作層の
境界を横切って連続的に配設されて相補型MESFET
インバータが構成されていることを特徴とするGaAs
集積回路装置。
In a GaAs integrated circuit device including a complementary MESFET inverter, a p-type active layer and an n
Type operation layers are formed in contact with each other, p-channel MESF
A gate electrode of the ET and a gate electrode of the n-channel MESFET are continuously disposed on the surfaces of the p-type operating layer and the n-type operating layer across the boundary between the two operating layers, thereby forming a complementary MESFET.
GaAs characterized by comprising an inverter
Integrated circuit device.
JP60216493A 1985-09-30 1985-09-30 Gaas integrated circuit device Pending JPS6276680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216493A JPS6276680A (en) 1985-09-30 1985-09-30 Gaas integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216493A JPS6276680A (en) 1985-09-30 1985-09-30 Gaas integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6276680A true JPS6276680A (en) 1987-04-08

Family

ID=16689293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216493A Pending JPS6276680A (en) 1985-09-30 1985-09-30 Gaas integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6276680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951114A (en) * 1988-12-05 1990-08-21 Raytheon Company Complementary metal electrode semiconductor device
US5002897A (en) * 1988-12-05 1991-03-26 Raytheon Company Method of making a complementary metal electrode semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951114A (en) * 1988-12-05 1990-08-21 Raytheon Company Complementary metal electrode semiconductor device
US5002897A (en) * 1988-12-05 1991-03-26 Raytheon Company Method of making a complementary metal electrode semiconductor device

Similar Documents

Publication Publication Date Title
JPS63304657A (en) Manufacture of semiconductor device
JPS608628B2 (en) Semiconductor integrated circuit device
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JPH0846058A (en) Manufacture of mos semiconductor device
JPS63311768A (en) Manufacture of complementary semiconductor device
JPS6276680A (en) Gaas integrated circuit device
JP3294001B2 (en) Method for manufacturing insulated gate semiconductor device
JPH06151738A (en) Semiconductor device and manufacture thereof
JPH0435069A (en) Field effect semiconductor device
JPS58218158A (en) Complementary type metal oxide semiconductor device
JPH0964352A (en) Semiconductor device and its manufacture
JPS6228586B2 (en)
JPS61296754A (en) Semiconductor device and its manufacture
JP2988047B2 (en) Semiconductor device
JP2718076B2 (en) Method for manufacturing group III-V compound semiconductor device
JPS61156830A (en) Semiconductor device and manufacture thereof
JPH0456164A (en) Semiconductor integrated circuit device and its manufacture
JPS58223361A (en) Semiconductor integrated circuit device
JPH0691264B2 (en) Method for manufacturing semiconductor device
JP2968640B2 (en) Semiconductor device
JPS62165339A (en) Complementary gate-array integrated circuit
JPS6149478A (en) Semiconductor device
JPH04196440A (en) Semiconductor device
JPH0922915A (en) Junction field effect transistor and manufacture thereof
JPS58218159A (en) Complementary type metal oxide semiconductor device