JPS627641B2 - - Google Patents

Info

Publication number
JPS627641B2
JPS627641B2 JP56215896A JP21589681A JPS627641B2 JP S627641 B2 JPS627641 B2 JP S627641B2 JP 56215896 A JP56215896 A JP 56215896A JP 21589681 A JP21589681 A JP 21589681A JP S627641 B2 JPS627641 B2 JP S627641B2
Authority
JP
Japan
Prior art keywords
resin
copper
silver
present
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56215896A
Other languages
Japanese (ja)
Other versions
JPS58117605A (en
Inventor
Tadashi Kitamura
Sumio Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP21589681A priority Critical patent/JPS58117605A/en
Publication of JPS58117605A publication Critical patent/JPS58117605A/en
Publication of JPS627641B2 publication Critical patent/JPS627641B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は初期導電性にすぐれ䞔぀高湿床䞋で十
分な導電耐久性を有する導電甚の組成物に関す
る。 銀粉ず暹脂を䞻成分ずする導電甚の組成物はゞ
ダンパヌ回路、スルヌホヌルの充填、コンデンサ
ヌの電極等に導䜓圢成が容易に出来るために実甚
化されおいる。しかし銀粉を甚いた導電甚の組成
物や導䜓は䞻に経枈的理由及びシルバヌマむグレ
ヌシペンを起しやすいため、銅やニツケル等の卑
金属の金属粉を甚いたり、又銀粉ず銅粉のブレン
ドや、又は銀メツキ銅粉、銀メツキニツケル粉、
銀メツキガラスビヌズ、曎に銀ず、銅又はニツケ
ルの合金や機械的に匷制接合した耇合粉を甚いる
こずによ぀お銀含有量をできるだけ少なくする方
策が怜蚎されおきた。しかし初期導電性が良奜で
か぀高湿床䞋でもその導電性の倉化の小さい導電
甚組成物の開発は未だ䞍充分である。 本発明者は(a)金属銅粉、(b)銅化合物、(c)銅化合
物䞭の銅を還元するこずにより金属銅を生成させ
うる還元剀及び(d)暹脂を含有する組成物が導電性
の良奜な硬化暹脂を䞎えうるこずを芋出した。し
かしこの堎合、還元剀ずしお䟋えば亜リン酞のモ
ノ又はゞ゚ステルのような有機又は無機の亜リン
酞系化合物を甚いた堎合初期の導電性が優れた硬
化暹脂を埗るこずができるが、この硬化暹脂を高
枩䞔぀高湿床䞋に長期間攟眮するず緑青様の物質
が硬化暹脂の衚面に生成し、䞔぀経時的に次第に
導電性が枛少しおいくこずが刀明した。䞀方ゞヒ
ドロキシベンれン環を有する還元剀を甚いる方法
も芋出したが特願昭55−109737号、曎に高床
な長期信頌性を芁求する甚途にはなお問題なしず
しなか぀た。䞀般に電気関係の甚途では、高枩、
高湿床䞋に攟眮しおも抵抗倀がほずんど倉化しな
いような導電性硬化暹脂が匷く望たれおいる。 このため本発明者は初期の導電性が良奜で䞔぀
高枩、高湿床䞋に攟眮しおも緑青様の物質が生成
せず、䞔぀導電性の倉化が極めお小さい導電性の
硬化暹脂を䞎える組成物を探究した結果、この目
暙を達成し本発明を完成した。 即ち本発明は(a)銅銀耇合粉、(b)銅化合物、(c)
・又は・−ゞヒドロキシベンれン環以
䞋、単にゞヒドロキシベンれン環ず略す。を有
する還元剀及び(d)暹脂を含有するか又は曎にこれ
らず(e)キレヌト圢成物質を含有するこずを特城ず
する導電甚の組成物である。 本発明においお(e)キレヌト圢成物質を含たない
組成物の堎合には、機構は䞍明であるが、組成物
ずしおの貯蔵性がやや劣぀おおり、貯蔵時間の経
過にしたが぀お空気ず接觊しおいる組成物衚面が
硬化しお品質が損なわれ、やがお䜿甚䞍胜ずなる
珟象以埌、皮ばり珟象ず略蚘する。を起す傟
向がある。 この皮ばり珟象があるず、本発明の組成物を長
い貯蔵性を必芁ずする甚途に実甚しようずする堎
合、調合埌すみやかに䜿甚する必芁があり䞍䟿で
あるので、この解決を鋭意怜蚎した結果、(e)キレ
ヌト圢成物質を加えるこずによ぀お、これも機構
は䞍明であるが、他に䜕ら問題を招かずに実質䞊
皮ばり珟象を防ぎ埗るこずを芋出した。 本発明で甚いる銅銀耇合粉ずは金属粒子が銅ず
銀から構成されおいる金属粉であり、䟋えば銅粒
子の衚面を銀でメツキした金属粉や銅ず銀ずの合
金粉等がある。この堎合の合金ずは銅ず銀金属を
添加融解しお䜜られた原子的に溶け蟌んだ固溶䜓
状のものや、単なる銅ず銀の混合状態である共晶
䜓状態のものや曎に銅ず銀金属間の金属間化合物
を圢成した状態のものがある。又銅ず銀金属粉末
を混合し、振動ミル、ボヌルミル、スタンプミル
等により機械的に匷制接合させた金属粉も含たれ
る。又銅ず銀以倖の䟋えば、癜金、氎銀、パラゞ
りム、金等の貎金属やニツケル、亜鉛、スズ、
鉛、鉄、アルミニりム、マンガン、タングステ
ン、チタン、ケむ玠、マグネシりム、クロム、カ
ドミりム、コバルト、モリブデン、アンチモン、
バナゞりム等の金属を含有しおいおもよい。 本発明で甚いる銅銀耇合粉䞭の銅の含有量は性
胜䞊及び経枈的理由から50〜99.8が奜たしく、
70〜99.5が特に奜たしい。 本発明で甚いる銅銀耇合粉はその圢状に特に限
定はなく、䟋えばフレヌク状、暹枝状、球状、䞍
定圢などのようなものがある。又その粒子埄は通
åžž100ミクロン以䞋が奜たしいが甚途によ぀おは
100Ό〜mmのものも䜿甚出来る。もちろん銅銀
耇合粉の圢状や粒子埄の異なるものを混合䜿甚し
おもよい。 なお本発明の銅銀耇合粉は衚面に酞化物が皮膜
ずしお存圚するものや䟋えば酞化防止凊理をほど
こしおあるもの、曎に凝集防止等のために䟋えば
ステアリン酞等で凊理しおある通垞の垂販の銅耇
合粉でもよい。 本発明の組成物は(a)の他に(b)、(c)及び(d)又は曎
にこれに(e)を含むこずが必芁であるが、(a)、(b)、
(c)、(d)、(e)に察応する別個の皮類又は皮類の
物質を甚いるこずは必らずしも必芁でなく、䟋え
ば(a)ず(b)を兌ねた衚面に酞化銅の皮膜が存圚する
垂販の銅銀耇合粉を甚いたり又は(c)ず(d)を兌ねた
ゞヒドロキシベンれン環郚をも぀暹脂を甚いるな
ど(a)、(b)、(c)、(d)、(e)のいく぀かを兌ねた物質を
甚いるこずにより、皮類、皮類或いは皮類
の物質を混合するだけで目的を達するこずも可胜
である。以䞋、本発明に甚いる各皮の物質に぀い
お䟋を挙げお説明する。 (1) 銅化合物で(b)ずしおの性質のみを有する物質 塩化第䞀銅、酞化第䞀銅、酞化第二銅、酢酞
銅、サリチル酞銅、ステアリン酞銅。 (2) ゞヒドロキシベンれン環郚を持぀(c)ずしおの
性質のみを有する物質 ハむドロキノン、カテコヌル、−メチル−
ハむドロキノン、ビニルハむドロキノン、タヌ
シダリブチルハむドロキノン、クロルハむドロ
キノン、プニルハむドロキノンその他、次の
ような構造の物質。
The present invention relates to a conductive composition having excellent initial conductivity and sufficient conductivity durability under high humidity. Conductive compositions containing silver powder and resin as main components have been put into practical use because they can easily form conductors in jumper circuits, through-hole filling, capacitor electrodes, and the like. However, conductive compositions and conductors using silver powder are mainly used for economic reasons and because silver migration tends to occur, so base metal powders such as copper and nickel are used, or blends of silver powder and copper powder are used. Or silver-plated copper powder, silver-plated copper powder,
Measures have been considered to reduce the silver content as much as possible by using silver-plated glass beads, alloys of silver and copper or nickel, and composite powders mechanically bonded together. However, it is still insufficient to develop a conductive composition that has good initial conductivity and shows little change in conductivity even under high humidity. The present inventor has discovered that a composition containing (a) metallic copper powder, (b) a copper compound, (c) a reducing agent capable of producing metallic copper by reducing copper in the copper compound, and (d) a resin is conductive. It has been found that a cured resin with good properties can be obtained. However, in this case, if an organic or inorganic phosphorous acid compound such as mono- or diester of phosphorous acid is used as a reducing agent, a cured resin with excellent initial conductivity can be obtained; It has been found that when resin is left at high temperature and high humidity for a long period of time, a verdigris-like substance is formed on the surface of the cured resin, and the conductivity gradually decreases over time. On the other hand, a method using a reducing agent having a dihydroxybenzene ring was also discovered (Japanese Patent Application No. 109737/1982), but this method was still not satisfactory for applications requiring even higher long-term reliability. Generally, in electrical applications, high temperatures,
There is a strong desire for a conductive cured resin whose resistance value hardly changes even when left under high humidity. For this reason, the present inventor has developed a composition that provides a conductive cured resin that has good initial conductivity, does not generate a verdigris-like substance even when left under high temperature and high humidity, and has extremely small change in conductivity. As a result of research, we have achieved this goal and completed the present invention. That is, the present invention comprises (a) copper-silver composite powder, (b) copper compound, (c)
Contains a reducing agent having a 1,4 or 1,2-dihydroxybenzene ring (hereinafter simply referred to as dihydroxybenzene ring) and (d) a resin, or further contains these and (e) a chelate-forming substance. This is a characteristic conductive composition. In the case of a composition that does not contain (e) a chelate-forming substance in the present invention, although the mechanism is unknown, the storage stability of the composition is somewhat poor, and as the storage time elapses, it comes into contact with air. There is a tendency for the surface of the composition to harden, impairing its quality, and eventually rendering it unusable (hereinafter abbreviated as scalding phenomenon). If the composition of the present invention is to be put to practical use in applications that require long shelf life, this scalding phenomenon is inconvenient as it must be used immediately after preparation. (e) It has been found that by adding a chelate-forming substance, the parenchymal epithelial burr phenomenon can be prevented without causing any other problems, although the mechanism is also unclear. The copper-silver composite powder used in the present invention is a metal powder whose metal particles are composed of copper and silver, and includes, for example, a metal powder in which the surface of copper particles is plated with silver, an alloy powder of copper and silver, and the like. In this case, the alloy may be an atomically dissolved solid solution made by adding and melting copper and silver metals, a eutectic state that is simply a mixture of copper and silver, or an alloy between copper and silver metals. There is a state in which an intermetallic compound is formed. It also includes metal powders obtained by mixing copper and silver metal powders and mechanically forcibly joining them using a vibration mill, ball mill, stamp mill, etc. Also, other than copper and silver, for example, precious metals such as platinum, mercury, palladium, gold, nickel, zinc, tin, etc.
Lead, iron, aluminum, manganese, tungsten, titanium, silicon, magnesium, chromium, cadmium, cobalt, molybdenum, antimony,
It may also contain metals such as vanadium. The content of copper in the copper-silver composite powder used in the present invention is preferably 50 to 99.8% for performance and economic reasons.
Particularly preferred is 70-99.5%. The shape of the copper-silver composite powder used in the present invention is not particularly limited, and may be, for example, flaky, dendritic, spherical, or irregularly shaped. The particle size is usually preferably 100 microns or less, but depending on the application,
100Ό to 1mm can also be used. Of course, copper-silver composite powders having different shapes and particle sizes may be mixed and used. The copper-silver composite powder of the present invention may have an oxide film on its surface or be treated with anti-oxidation treatment, or it may be a commercially available powder that has been treated with stearic acid or the like to prevent agglomeration. Copper composite powder may also be used. The composition of the present invention needs to contain (b), (c) and (d) in addition to (a), or (e) in addition to (a), (b),
It is not necessarily necessary to use four or five separate substances corresponding to (c), (d), and (e); (a), (b), (c), (d) by using a commercially available copper-silver composite powder that has a copper film, or by using a resin with a dihydroxybenzene ring that also serves as (c) and (d). ) and (e), it is also possible to achieve the objective simply by mixing four, three, or two types of substances. Hereinafter, various substances used in the present invention will be explained by giving examples. (1) Copper compounds having only the properties specified in (b) Cuprous chloride, cuprous oxide, cupric oxide, copper acetate, copper salicylate, copper stearate. (2) Substances having only the properties of (c) with a dihydroxybenzene ring: Hydroquinone, catechol, 2-methyl-
Hydroquinone, vinylhydroquinone, tertiarybutylhydroquinone, chlorohydroquinone, phenylhydroquinone, and other substances with the following structures.

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 曎に加熱や又は他の物質を加えたりするこず
によ぀お前蚘したようなゞヒドロキシベンれン
環郚を有する還元剀を生じる物質䟋えばカテコ
ヌル、ハむドロキノン等ずプニルむ゜シアナ
ヌトずのアダクト、−メチルハむドロキノン
モルずモルのトリレンゞむ゜シアナヌトず
のアダクト等のような物質。 (3) 暹脂即ち(d)ずしおの性質のみを有する物質 本発明における暹脂ずは最終的に硬化する以
前に既に高分子ずな぀おいるもの、又は硬化時
の反応によ぀お高分子物質ずなるものであ぀
お、䞔぀本発明の組成物を硬化した際、導電性
の硬化物を埗るような物質を意味する。具䜓的
にはナリア・ホルムアルデヒド暹脂、メラミン
−ホルムアルデヒド暹脂、プノヌルホルムア
ルデヒド暹脂、䞍飜和ポリ゚ステル暹脂、熱硬
化性飜和ポリ゚ステル暹脂、ポリカヌボネヌト
暹脂、ポリプニレンオキサむド暹脂、ポリフ
゚ニレンサルフアむド暹脂、脂肪酞系アルキツ
ド暹脂、ポリアミド暹脂、ポリむミド暹脂、゚
ポキシアクリレヌト暹脂、アリヌル暹脂ゞア
リルフタレヌト暹脂など、゚ポキシ暹脂、り
レタン暹脂、ポリオキシメチレン暹脂、スピロ
アセタヌル暹脂、シリコヌン暹脂、キシレン暹
脂、ケトン暹脂、ポリサルフアむドゎム、アク
リル暹脂、スチレン暹脂、オレフむン暹脂、ビ
ニルアルカノ゚ヌト暹脂、ブタゞ゚ン系ゎム、
む゜ブチレン系ゎム、゚チレン−プロピレン系
ゎム、クロロプレンゎム、゚ピクロルヒドリン
ゎム、セルロヌス系暹脂、ロゞン系暹脂、フツ
玠系暹脂、ホスホニトリルクロラむド系暹脂、
゚チルシリケヌトポリマヌ。 (4) ゞヒドロキシベンれン環を有する銅化合物、
即ち(b)ず(c)を兌ねる物質 前蚘(2)項の物質の銅塩、 の銅塩。 (5) 暹脂状の銅化合物即ち(b)ず(d)を兌ねる物質 飜和又は䞍飜和ポリ゚ステル暹脂の銅塩、ビ
ニルクロラむド−ビニルアセテヌト−マレむン
酞コポリマ−の銅塩、スルポチルメタアクリ
レヌト−゚チルアクリレヌトの銅塩、ロゞン系
暹脂の銅塩。 (6) ゞヒドロキシベンれン環を有する暹脂、即ち
(c)ず(d)を兌ねる物質 ビニルハむドロキノンのポリマヌやコポリマ
ヌ系暹脂、ハむドロキノン−ホルムアルデヒド
系プノヌル暹脂、ハむドロキノン−プノヌ
ル−ホルムアルデヒド系プノヌル暹脂、カテ
コヌル−ホルムアルデヒド系プノヌル暹脂、
・−ゞヒドロキシナフタレン−ホルムアル
デヒド暹脂。 曎に前蚘(2)の堎合ず同様に加熱又は他の物質
ずの反応等によ぀おゞヒドロキシベンれン環を
生じるような暹脂䟋えばビニルハむドロキノン
ポリマヌずプニルむ゜シアナヌトずのアダク
ト䜓や、J.Polymer Sci.、part −、、
1275〜12781969にN.NAKABAYASHIらに
よ぀お発衚されたハむドロキノン−・−ビ
ス゚チル−2′−カルボン酞のビスラクトン
ずゞアミンの混合物。 (7) ゞヒドロキシベンれン環を有する暹脂状銅化
合物即ち(b)、(c)及び(d)を兌ねる物質 ビニルハむドロキノン−メタアクリル酞コポ
リマヌの銅塩、前蚘(6)項の暹脂の銅塩。 前蚘した本発明の(c)及び(c)を兌ねる物質のな
かで(c)ず(d)を兌ねる物質や(b)ず(c)及び(d)を兌ね
る物質が奜たしく、(c)のみの物質や(b)ず(c)ã‚’å…Œ
ねる物質を甚いるず硬化した導電性暹脂をハン
ダ济の浞挬した際に導電性の倉化が少し倧きか
぀たり、又初期の導電性がやや劣るずい぀たよ
うな性胜の䜎䞋をきたす堎合がある。 (8) キレヌト圢成物質、即ち(e)ずしおの性質を瀺
す物質 本発明に適するキレヌト圢成物質ずしおは、
䟡の銅むオンに぀いおの安定床定数Kmaの
察数倀が、25℃、むオン匷床0.1に斌お以
䞊、奜たしくは以䞊のものを甚いる。これら
の物質ずしおは以䞋のようなものがある。 − 脂肪族アミン及びその誘導䜓 ゚チレンゞアミン、−−ヒドロキシ
゚チル゚チレンゞアミン、トリメチレンゞ
アミン、・−ゞアミノシクロヘキサン、
トリ゚チレンテトラミン、−アミノメチル
ピリゞン。 − 芳銙族ポリアミン プリン、アデニン、−アミノメチルピリ
ゞン、ヒスタミン。 − β−ゞケトン アセチルアセトン、トリフルオルアセチル
アセトン、・・−トリフルオル−−
プニル−・−ブタンゞオン、ヘキサフ
ルオルアセチルアセトン、ベンゟむルアセト
ン、ゞベンゟむルメタン、・−ゞメチル
−・−シクロヘキサンゞオン。 − プノヌル酞化合物 オキシン、−メチルオキシン、オキシン
−−スルホン酞、ゞメチルグリオキシム、
−ニトロ゜−−ナフトヌル、−ニトロ
゜−−ナフトヌル、サリチルアルデヒド。 − その他 ・2′−ゞピリゞン、・10−プナント
ロリン。 尚、(e)ずしおの性質ず他の(b)、(c)、(d)などの
性質を兌ねた物質も勿論䜿甚できる。 本発明における銅化合物の䜿甚割合は銅銀耇合
粉に察する銅化合物の銅分ずしお0.1〜30重量
、奜たしくは0.2〜10重量ずなるようにす
る。 本発明におけるゞヒドロキシベンれン環を有す
る還元剀の䜿甚割合は、銅化合物䞭の銅をすべお
還元するに足る量を基準ずしお、80圓量以䞊が
奜たしく、特に95圓量以䞊が奜たしい。 本発明における暹脂の䜿甚割合は、本発明に甚
いる組成物の党䞍揮発分に察する割合で〜60重
量、奜たしくは〜45重量である。 本発明に斌お甚いる暹脂は、それ自䜓は固䜓で
あ぀おもよいが硬化の際、それ自身で又は有機溶
剀や氎或いは可塑剀等の存圚で実質或いはみかけ
䞊液状になるものであればよい。暹脂の䜿甚圢態
ずしおは、有機溶剀に溶かした溶剀型タむプ、氎
溶性タむプ、氎乳化タむプ、溶剀乳化タむプ、
100液状暹脂タむプ、100固䜓暹脂で硬化の際
の枩床で液状ずなるタむプの劂きいずれでもよ
く、特に制限はない。これら各暹脂を硬化させる
には以䞋に瀺す方法を甚いるずよい。 即ち、これらが、垞枩也燥型暹脂ラツカヌタ
むプの劂き也燥により揮発性物質を蒞発させな
がら硬化させるずか、又、これらが(a)熱硬化性を
有する堎合は、その皮類に応じ、適宜、(1)熱で硬
化させるか、(2)䞍飜和ポリ゚ステル暹脂、アクリ
レヌト暹脂の劂き、ビニル重合で硬化する暹脂の
堎合は、アゟビスむ゜ブチロニトリル、ゞ−−
ブチルパヌオキサむド、ベンゟむルパヌオキサむ
ドなどの劂き、公知の重合開始剀や電子線によ
り、゚ポキシ暹脂の堎合はトリ゚チレンテトラミ
ン、ポリアミドポリアミン、ゞアミノゞシクロヘ
キシルメタン、ゞアミノゞプニルメタン、アゞ
ピン酞ゞヒドラゞド、むミダゟヌル誘導䜓、ゞシ
アンゞアミド、䞉北化硌玠・゚チルアミン錯䜓、
ポリメルカプト化合物、倚䟡カルボン酞やその無
氎物などの知き、公知の硬化剀を甚いお、プノ
ヌル暹脂の堎合にはヘキサメチレンテトラミン、
パラホルムアルデヒド、−トル゚ンスルホン酞
などの劂き硬化剀又は硬化促進剀により、又、酞
化硬化型の暹旚の堎合にはナフテン酞塩、オクチ
ル酞コバルトなどの劂き公知のドラむダヌなどを
甚いるこずにより、又、(b)熱可塑性の堎合には、
加熱埌冷华するこずにより、それぞれ公知の手段
で硬化させればよい。芁は、暹脂の皮類性質に応
じ、それらを硬化させる公知の手段により硬化さ
せればよい。 なお、本発明における還元䜜甚は前蚘暹脂が硬
化する段階で発揮されるのがよく、この還元反応
が前蚘硬化に比し、早すぎたり、或いは遅すぎた
りするず、本発明の方法で埗られる目的物の導電
性の耐久性に圱響するので、この硬化条件や実甚
の堎合の䜜業性等から、特に還元の枩床は通垞
250℃以䞋、奜たしくは垞枩から200℃、特に奜た
しくは50℃から180℃である。埓぀お、このよう
な条件を満足するようにゞヒドロキシベンれン環
を有する還元剀、銅銀耇合粉、銅化合物、暹脂、
キレヌト圢成物質などの遞定を行なえばよい。 又、本発明の組成物を硬化させる際の雰囲気
は、窒玠、炭酞ガスの劂き䞍掻性ガス、或いは空
気䞭の劂く、いずれの雰囲気䞋に斌おもよく、特
に雰囲気の制限はない。 本発明の方法においお暹脂を硬化させる際に、
あらかじめ以䞋の劂き公知の各皮添加剀を配合さ
せおもよい。 䟋えば、メルカプトプロピオン酞、四臭化炭玠
の劂き分子量調節剀、−ベンゟキノン、プノ
チアゞンの劂き安定剀、ブチルグリシゞル゚ヌテ
ル、プニルグリシゞル゚ヌテルの劂き反応性垌
釈剀、ゞブチルフタレヌト、トリクレシルホスフ
゚ヌトの劂き可塑剀、金、銀、パラゞりムの劂き
呚期埋衚族及び族に属する貎金属及びこれ
らの化合物、氎酞化リチりム、氎酞化カリりムの
劂き無機塩基、ゞメチルベンゞルアミン、゚タノ
ヌルアミン、トリス・−ゞメチルアミノメ
チルプノヌル、・−ゞメチルアニリンな
どの劂きアミノ化合物、酢酞、蓚酞、安息銙酞の
劂き酞類、正リン酞゜ヌダ、硌砂、酢酞カリの劂
きPH調節剀、ポリビニルアルコヌル、ポリビニル
ピロリドンの劂き粘床調節剀、オレむン酞カリ、
ドデシルベンれンスルホン酞゜ヌダ、ポリオキシ
゚チレンラりリル゚ヌテル、オクタデシルピリゞ
ニりムクロラむドの劂き界面掻性剀、氎、トル゚
ン、メチル゚チルケトン、゚チレングリコヌルモ
ノ゚チル゚ヌテルの劂き溶剀やその他、パラフむ
ンワツクス、カヌボンブラツク、メチル゚チルケ
トオキシム、滑剀、難燃剀、着色剀、発泡剀、揺
倉剀などがある。 本発明の組成物を硬化するに際しおは、各皮基
材䟋えば、ポリスルホン暹脂のシヌト、プノヌ
ル暹脂積局板、゚ポキシ暹脂積局板、ポリむミド
フむルム、䞍織垃の劂き有機物、ガラス、アルミ
ナ等の無機物、塗装鉄板、塗垃アルミ板等に塗垃
或いは印刷しお硬化させおもよく、又、型の䞭に
入れお圢成しおもよい。 本発明の組成物を硬化させお埗た導電性硬化物
に぀いおは甚途、䜿甚環境、信頌性高揚などに留
意した堎合、以䞋の劂き公知の各皮保護凊理をし
おもよい。 即ち、このような凊理ずしおは、ニツケル、銅
などによる電気又は化孊メツキ凊理、゚ポキシ暹
脂、プノヌル暹脂、ロゞン系物質、ポリ゚チレ
ンフむルム等による被芆、むミダゟヌル系凊理
剀、シリコヌン系凊理剀などによる衚面凊理など
がある。 本発明の組成物の䜿甚方法には、塗料、接着
剀、印刷むンキ、成圢品などがあり、電気・電子
の各工業分野では導電回路、クロスオヌバヌ回
路、高呚波防護回路、攟熱回路、スルヌホヌル郚
分の充填、郚品の接着などの劂き甚途、自動車工
業分野では、窓に斌ける露結防止回路、䜏宅の分
野ではヒヌタヌ等実甚䞊広い応甚分野を有し、工
業的に非垞に有甚である。 以䞋に実斜䟋を蚘茉するが、以䞋に蚘茉する郚
及びはそれぞれ重量郚及び重量を意味し、た
た䟋䞭に蚘茉する濃床は、党成分䞭の該成分の割
合を重量で衚わす。 以䞋に蚘茉する実斜䟋䞭の「スクリヌン印刷法
による印刷䜓」は䞋蚘の劂き方法で圢成したもの
である。被印刷物面に、党長200mm、幅0.5mmの線
の間隔が0.5mmで字圢の線状の印刷䜓を次の方
法で圢成した。即ち180メツシナのテトロン補ス
クリヌンの䞊に写真的補版法を甚いおスクリヌン
党䜓の膜厚が145Όずなる様に盎接法により版膜
を䜜り、䞔぀必芁な画線以倖の目を塞いだ構造に
したスクリヌン印刷甚スクリヌンを䜜成しお、そ
れぞれの実隓で甚いる導電甚の組成物をゎム硬床
No.70のりレタンゎムを甚いたスクむゞヌで、被印
刷物面䞊に手岳岳りで印刷た埌、それぞれの実隓
の硬化条件で硬化させお印刷䜓を圢成した。 たた導電性の目安ずしお蚘茉した抵抗倀、比抵
抗倀はそれぞれテスタヌ暪河電機瀟補、Type
−3201ホむトストンブリツゞ暪河電機瀟補、
Type−2755を甚いお印刷䜓の硬化物の䞡端に
接觊させお抵抗倀を枬定し、䞊蚘硬化物の厚み、
長さ及び幅を枬定しお比抵抗倀を算出した。 以䞋に蚘茉する実斜䟋䞭の耐久詊隓は、恒枩恒
湿詊隓噚ETAC瀟補卓䞊型枩湿床詊隓噚JLH−
400−40型を甚いお50℃、RH95、1000時間の条
件䞋で促進詊隓を行ない、各時間ごずに印刷䜓を
取り出し、宀枩䞋に時間攟眮した埌、抵抗倀及
び倖芳の倉化を枬定した。 実斜䟋  片偎衚面を酢酞゚チルで枅浄にした枚のそれ
ぞれのガラス板厚み1.7mmの面䞊に、䞋蚘実
隓番号〜で埗た各液状組成物を䞊蚘「スクリ
ヌン印刷法による印刷䜓」の圢成方法により、厚
さ玄60Όずなるように印刷し、この様にしお埗た
それぞれの印刷䜓を空気雰囲気䞋の恒枩装眮䞭に
お100℃で20分間予備也燥した埌、165℃で90分加
熱硬化しお埗た硬化塗膜を、宀枩䞋に攟眮冷华
埌、それぞれの抵抗倀、比抵抗倀を枬定し、ひき
続いお同詊隓䜓を耐久詊隓に䟛した。又䞋蚘実隓
番号〜で埗た各液状組成物100を100mlポリ
゚チレン補容噚に入れ密栓をし宀枩に攟眮しなが
ら衚面の皮匵り珟象を芳察した。それらの結果を
衚に瀺した。 実隓番号比范䟋 (ã‚€)工業甚銅粉䞍定圢、平均粒埄15Ό、酞化銅
玄含有110郚、(ロ)゚チレングリコヌルモノ
ブチル゚ヌテルに溶解した暹脂分80のハむドロ
キノン倉性レゟヌル型プノヌル暹脂ハむドロ
キノンモルずプノヌル0.5モルずホルムアル
デヒドモルを含有するホルマリンをアンモニア
觊媒の存圚䞋で反応させお埗た。を42郚、(ハ)ト
リス・N′−ゞメチルアミノメチルプノ
ヌル0.2郚、(ニ)アセト酢酞゚チル10郚を混合しお
なる液状組成物。 実隓番号本発明の䟋 䞊蚘実隓番号の(ã‚€)ずしお銅−銀合金銅含有
量60、フレヌク状、平均粒埄13Ό110郚、及
び酞化第銅0.5郚を甚いる以倖は実隓番号ず
同じ組成からなる液状組成物。 実隓番号本発明の䟋 䞊蚘実隓番号においお(ニ)ずしお・・−
トリフルオル−−プニル−・−ブタンゞ
オン10郚を甚いる以倖は同じ組成からなる液状組
成物。 実隓番号本発明の䟋 実隓番号においお(ã‚€)ずしお銅−銀耇合粉85
の電解銅粉ず15の銀粉を振動ミルによ぀お機
械的に接合しお䜜られた粉末、平均粒埄15Ό、酞
化銅0.58、フレヌク状110郚を甚いる以倖は
同じ組成からなる液状組成物。 実隓番号本発明の䟋 実隓番号においお(ニ)ずしお・2′−ゞピリゞ
ル郚、(ホ)ゞ゚チレングリコヌルモノメチル゚ヌ
テル郚を甚いる以倖は同じ組成からなる液状組
成物。 実隓番号本発明の䟋 実隓番号においお(ロ)ずしおゞ゚チレングリコ
ヌルモノ゚チル゚ヌテルに溶解した暹脂分80の
倉性レゟヌル型プノヌル暹脂メチルハむドロ
キノン1.2モル、カテコヌル0.3モル、タヌシダリ
ヌブチルプノヌル0.5モル及びホルムアルデヒ
ドモルを含有したホルマリン氎溶液をアンモニ
ア觊媒の存圚䞋で反応させお埗た。を45郚を甚
いる以倖は同じ組成からなる液状組成物。 実隓番号本発明の䟋 実隓番号においお(ロ)ずしお実隓番号におい
お甚いた倉性レゟヌル型プノヌル暹脂45郚を甚
いる以倖は同じ組成からなる液状組成物。 実斜䟋  厚さ1.7mmのガラス−゚ポキシ暹脂積局板の面
䞊に実斜䟋における実隓番号、及び䞋蚘実
隓番号で埗た各液状組成物を実斜䟋ず同じよ
うにしおスクリヌン印刷及び加熱硬化しお導電性
の硬化塗膜を埗た。次に硬化塗膜の抵抗倀を枬定
したのち、260℃のハンダ济の䞭に䞀定時間浞挬
し、宀枩に迄冷华したのち抵抗倀を枬定しハンダ
耐熱性の評䟡を行぀た。埗られた結果を衚にた
ずめた。 実隓番号 (ã‚€)実隓番号においお甚いた銅−銀合金110
郚、(ロ)ゞ゚チレングリコヌルモノ゚チル゚ヌテル
に溶解した固型分80のレゟヌル型プノヌル暹
脂プノヌル1.5モル、タヌシダリヌブチルフ
゚ノヌル0.5モル及びホルムアルデヒドモルを
含有したホルマリン氎溶液をアンモニア觊媒の存
圚䞋で反応させお埗た。を20郚、(ハ)カテコヌル
郚、(ニ)メチルハむドロキノン18郚、(ホ)ゞ゚チレ
ングリコヌルモノメチル゚ヌテル郚、(ヘ)トリス
・N′−ゞメチルアミノメチルプノヌル0.2
郚、(ト)アセト酢酞゚チル10郚からなる液状組成
物。
[Formula] A substance that produces a reducing agent having a dihydroxybenzene ring as described above by further heating or adding other substances, such as an adduct of catechol, hydroquinone, etc. and phenyl isocyanate, 2-methyl Substances such as adducts of 2 moles of hydroquinone and 1 mole of tolylene diisocyanate. (3) Resin, that is, a substance that has only the properties as (d) The resin in the present invention is one that has already become a polymer before it is finally cured, or one that becomes a polymer substance through a reaction during curing. It refers to a substance that is a substance that is conductive and that produces an electrically conductive cured product when the composition of the present invention is cured. Specifically, urea formaldehyde resin, melamine formaldehyde resin, phenol formaldehyde resin, unsaturated polyester resin, thermosetting saturated polyester resin, polycarbonate resin, polyphenylene oxide resin, polyphenylene sulfide resin, fatty acid alkyd resin. , polyamide resin, polyimide resin, epoxy acrylate resin, aryl resin (diallyl phthalate resin, etc.), epoxy resin, urethane resin, polyoxymethylene resin, spiroacetal resin, silicone resin, xylene resin, ketone resin, polysulfide rubber, acrylic Resin, styrene resin, olefin resin, vinyl alkanoate resin, butadiene rubber,
Isobutylene rubber, ethylene-propylene rubber, chloroprene rubber, epichlorohydrin rubber, cellulose resin, rosin resin, fluorine resin, phosphonitrile chloride resin,
Ethyl silicate polymer. (4) a copper compound having a dihydroxybenzene ring,
That is, a substance that serves both (b) and (c); a copper salt of the substance in item (2) above; copper salt. (5) Resin-like copper compounds, i.e. substances that serve as both (b) and (d) Copper salts of saturated or unsaturated polyester resins, copper salts of vinyl chloride-vinyl acetate-maleic acid copolymers, sulfoethyl methacrylate-ethyl acrylate copper salts, copper salts of rosin resins. (6) Resin having dihydroxybenzene ring, i.e.
Substances that serve both (c) and (d) Vinyl hydroquinone polymers and copolymer resins, hydroquinone-formaldehyde phenolic resins, hydroquinone-phenol-formaldehyde phenolic resins, catechol-formaldehyde phenolic resins,
1,4-dihydroxynaphthalene-formaldehyde resin. Furthermore, as in the case of (2) above, resins that generate dihydroxybenzene rings by heating or reaction with other substances, such as adducts of vinyl hydroquinone polymer and phenyl isocyanate, and J. Polymer Sci. , part A-1, 7 ,
A mixture of bislactone and diamine of hydroquinone-2,5-bis(ethyl-2'-carboxylic acid) published by N.NAKABAYASHI et al. in 1275-1278 (1969). (7) A resinous copper compound having a dihydroxybenzene ring, that is, a substance that also serves as (b), (c), and (d): a copper salt of a vinylhydroquinone-methacrylic acid copolymer, a copper salt of the resin described in item (6) above. Among the substances that serve as (c) and (c) of the present invention described above, substances that serve as (c) and (d), and substances that serve as (b), (c), and (d) are preferable, and only (c) When using a substance that functions as (b) and (c), the change in conductivity may be a little large when the cured conductive resin is immersed in a solder bath, or the initial conductivity may be slightly inferior. This may result in performance deterioration. (8) Chelate-forming substances, that is, substances exhibiting properties as (e) Chelate-forming substances suitable for the present invention include:
The logarithm value of the stability constant Kma for divalent copper ions at 25° C. and ionic strength of 0.1 is 3 or more, preferably 5 or more. These substances include the following: 8-1 Aliphatic amines and their derivatives Ethylenediamine, N-(2-hydroxyethyl)ethylenediamine, trimethylenediamine, 1,2-diaminocyclohexane,
Triethylenetetramine, 2-aminomethylpyridine. 8-2 Aromatic polyamine Purine, adenine, 2-aminomethylpyridine, histamine. 8-3 β-diketone acetylacetone, trifluoroacetylacetone, 4,4,4-trifluoro-1-
Phenyl-1,3-butanedione, hexafluoroacetylacetone, benzoylacetone, dibenzoylmethane, 5,5-dimethyl-1,3-cyclohexanedione. 8-4 Phenolic acid compound oxine, 2-methyloxine, oxine-5-sulfonic acid, dimethylglyoxime,
1-Nitroso-2-naphthol, 2-nitroso-1-naphthol, salicylaldehyde. 8-5 Others 2,2'-dipyridine, 1,10-phenanthroline. Of course, it is also possible to use substances that have the property (e) and other properties such as (b), (c), and (d). The proportion of the copper compound used in the present invention is such that the copper content of the copper compound relative to the copper-silver composite powder is 0.1 to 30% by weight, preferably 0.2 to 10% by weight. The proportion of the reducing agent having a dihydroxybenzene ring used in the present invention is preferably 80 equivalent % or more, particularly preferably 95 equivalent % or more, based on the amount sufficient to reduce all the copper in the copper compound. The proportion of the resin used in the present invention is 5 to 60% by weight, preferably 8 to 45% by weight based on the total nonvolatile content of the composition used in the present invention. The resin used in the present invention may be solid per se, but it may be one that becomes substantially or apparently liquid upon curing by itself or in the presence of an organic solvent, water, plasticizer, etc. . Usage forms of resin include solvent type dissolved in organic solvent, water soluble type, water emulsion type, solvent emulsion type,
It may be either a 100% liquid resin type or a 100% solid resin type that becomes liquid at the temperature during curing, and is not particularly limited. The following methods may be used to cure each of these resins. That is, if these are cured while evaporating volatile substances by drying, such as room temperature drying type resins (Latzker type), or if they have (a) thermosetting properties, depending on the type, ( 1) cured by heat or (2) for resins cured by vinyl polymerization, such as unsaturated polyester resins and acrylate resins, azobisisobutyronitrile, di-t-
In the case of epoxy resins, triethylenetetramine, polyamide polyamine, diaminodicyclohexylmethane, diaminodiphenylmethane, adipic acid dihydrazide, imidazole derivatives, dicyandiamide, etc. , boron trifluoride/ethylamine complex,
Using known curing agents such as polymercapto compounds, polyhydric carboxylic acids and their anhydrides, and in the case of phenolic resins, hexamethylenetetramine,
By using a curing agent or curing accelerator such as paraformaldehyde, P-toluenesulfonic acid, etc., or by using a known dryer such as naphthenate, cobalt octylate, etc. in the case of oxidative curing type resin. (b) In the case of thermoplastic,
What is necessary is just to harden by a well-known means, respectively, by cooling after heating. In short, the resin may be cured by any known means depending on the type and nature of the resin. Note that the reducing action in the present invention is preferably exerted at the stage of curing the resin, and if this reduction reaction is too rapid or slow compared to the curing, the purpose obtained by the method of the present invention may be impaired. Since it affects the durability of the conductivity of the material, the reduction temperature is usually not high enough due to the curing conditions and workability in practical use.
The temperature is 250°C or less, preferably room temperature to 200°C, particularly preferably 50°C to 180°C. Therefore, in order to satisfy such conditions, a reducing agent having a dihydroxybenzene ring, a copper-silver composite powder, a copper compound, a resin,
What is necessary is to select a chelate-forming substance or the like. Further, the atmosphere for curing the composition of the present invention may be any atmosphere such as nitrogen, an inert gas such as carbon dioxide gas, or air, and there is no particular restriction on the atmosphere. When curing the resin in the method of the present invention,
Various known additives such as those listed below may be added in advance. For example, molecular weight regulators such as mercaptopropionic acid, carbon tetrabromide, stabilizers such as p-benzoquinone, phenothiazine, reactive diluents such as butyl glycidyl ether, phenyl glycidyl ether, dibutyl phthalate, tricresyl phosphate, etc. Noble metals belonging to group B and groups of the periodic table such as gold, silver, and palladium, and their compounds; inorganic bases such as lithium hydroxide and potassium hydroxide; dimethylbenzylamine, ethanolamine, and tris(N.N. - amino compounds such as (dimethylaminomethyl)phenol, N/N-dimethylaniline, acids such as acetic acid, oxalic acid, benzoic acid, PH regulators such as sodium orthophosphate, borax, potassium acetate, polyvinyl alcohol, polyvinylpyrrolidone. Viscosity modifiers such as potassium oleate,
Surfactants such as sodium dodecylbenzenesulfonate, polyoxyethylene lauryl ether, octadecylpyridinium chloride, solvents such as water, toluene, methyl ethyl ketone, ethylene glycol monoethyl ether, paraffin wax, carbon black, methyl ethyl ketoxime, lubricants, These include flame retardants, colorants, blowing agents, and thixotropic agents. When curing the composition of the present invention, various substrates such as polysulfone resin sheets, phenolic resin laminates, epoxy resin laminates, polyimide films, organic materials such as non-woven fabrics, glass, inorganic materials such as alumina, painted iron plates, coatings, etc. It may be applied or printed on an aluminum plate or the like and cured, or it may be formed by placing it in a mold. The conductive cured product obtained by curing the composition of the present invention may be subjected to various known protective treatments as described below, taking into consideration the intended use, environment of use, enhancement of reliability, etc. That is, such treatments include electrical or chemical plating with nickel, copper, etc., coating with epoxy resin, phenolic resin, rosin-based substances, polyethylene film, etc., surface treatment with imidazole-based processing agents, silicone-based processing agents, etc. There is. The composition of the present invention can be used in paints, adhesives, printing inks, molded products, etc., and is used in conductive circuits, crossover circuits, high frequency protection circuits, heat dissipation circuits, through-hole parts, etc. in the electrical and electronic industrial fields. It has a wide range of practical applications, such as filling, adhesion of parts, etc. in the automobile industry, dew condensation prevention circuits on windows, and heaters in the housing field, and is extremely useful industrially. Examples will be described below. Parts and % hereinafter mean parts by weight and % by weight, respectively, and concentrations described in the examples represent the proportion of the component in all components in % by weight. The "printed material by screen printing method" in the examples described below was formed by the following method. An S-shaped linear printed material having a total length of 200 mm and a width of 0.5 mm with a line interval of 0.5 mm was formed on the surface of the printing material by the following method. In other words, a film was made directly on a 180-mesh Tetron screen using a photographic engraving method so that the film thickness of the entire screen was 145 ÎŒm, and the structure was such that the screen was closed except for the necessary image lines. Create a screen for screen printing and apply the conductive composition used in each experiment to the rubber hardness.
A squeegee using No. 70 urethane rubber was used to print on the surface of the printing material, and then the material was cured under the curing conditions of each experiment to form a printed material. In addition, the resistance value and specific resistance value listed as a guide for conductivity are measured using a tester (manufactured by Yokogawa Electric Corporation, Type
−3201) Wheatstone Bridge (manufactured by Yokogawa Electric Corporation,
Type-2755) was used to measure the resistance value by contacting both ends of the cured product of the printed material, and the thickness of the cured product,
The length and width were measured and the specific resistance value was calculated. The durability tests in the examples described below were carried out using a constant temperature and humidity tester (ETAC's tabletop temperature and humidity tester JLH-
An accelerated test was conducted using a 400-40 type under the conditions of 50℃, RH95%, and 1000 hours.The printed material was taken out at each time, and after being left at room temperature for 1 hour, changes in resistance and appearance were measured. did. Example 1 Each of the liquid compositions obtained in Experiment Nos. 1 to 7 below was printed by the above-mentioned "screen printing method" on the surface of each of six glass plates (thickness 1.7 mm) whose one surface had been cleaned with ethyl acetate. Each printed body obtained in this way was pre-dried at 100°C for 20 minutes in a thermostat in an air atmosphere, and then dried at 165°C. The cured coating film obtained by heating and curing for 90 minutes was left to cool at room temperature, and the resistance and specific resistance values of each were measured, and the test specimens were subsequently subjected to a durability test. Further, 100 g of each of the liquid compositions obtained in Experiment Nos. 1 to 7 below was placed in a 100 ml polyethylene container, the container was tightly stoppered, and the container was left at room temperature to observe the skinning phenomenon on the surface. The results are shown in Table 1. Experiment No. 1 (Comparative Example) (a) 110 parts of industrial copper powder (amorphous, average particle size 15ÎŒ, containing about 2% copper oxide), (b) hydroquinone modification with 80% resin dissolved in ethylene glycol monobutyl ether 42 parts of resol type phenolic resin (obtained by reacting formalin containing 2 moles of hydroquinone, 0.5 moles of phenol, and 6 moles of formaldehyde in the presence of an ammonia catalyst), A liquid composition prepared by mixing 0.2 parts of methyl)phenol and 10 parts of ethyl (d)acetoacetate. Experiment No. 2 (Example of the present invention) Other than using 110 parts of copper-silver alloy (copper content 60%, flaky shape, average particle size 13ÎŒ) and 0.5 part cupric oxide as (a) in Experiment No. 1 above. is a liquid composition having the same composition as Experiment No. 1. Experiment number 3 (example of the present invention) In the above experiment number 2, as (d) 4.4.4-
A liquid composition having the same composition except that 10 parts of trifluoro-1-phenyl-1,3-butanedione is used. Experiment No. 4 (Example of the present invention) In Experiment No. 1, copper-silver composite powder (85
Powder made by mechanically joining % electrolytic copper powder and 15% silver powder using a vibrating mill, average particle size 15 Ό, copper oxide 0.58%, flake form) The composition is the same except that 110 parts are used. Liquid composition. Experiment No. 5 (Example of the Present Invention) A liquid composition having the same composition as Experiment No. 4 except that 5 parts of 2,2'-dipyridyl and (v) 5 parts of diethylene glycol monomethyl ether were used as (d). Experiment No. 6 (Example of the present invention) In Experiment No. 2, modified resol type phenolic resin with a resin content of 80% (1.2 mol of methylhydroquinone, 0.3 mol of catechol, 0.5 mol of tert-butylphenol) dissolved in diethylene glycol monoethyl ether as (b) (obtained by reacting an aqueous formalin solution containing 4 moles of formaldehyde in the presence of an ammonia catalyst). Experiment No. 7 (Example of the Present Invention) A liquid composition having the same composition as (b) in Experiment No. 3 except that 45 parts of the modified resol type phenolic resin used in Experiment No. 6 was used. Example 2 Each liquid composition obtained in Experiment Nos. 6 and 7 in Example 1 and Experiment No. 8 below was screen printed on the surface of a glass-epoxy resin laminate having a thickness of 1.7 mm in the same manner as in Example 1. Then, the mixture was cured by heating to obtain a conductive cured coating film. Next, after measuring the resistance value of the cured coating film, it was immersed in a 260°C solder bath for a certain period of time, and after cooling to room temperature, the resistance value was measured to evaluate the solder heat resistance. The results obtained are summarized in Table 2. Experiment number 8 (a) Copper-silver alloy 110 used in experiment number 2
(b) A formalin aqueous solution containing a resol type phenolic resin (1.5 mol of phenol, 0.5 mol of tert-butylphenol, and 4 mol of formaldehyde) with a solid content of 80% dissolved in diethylene glycol monoethyl ether is reacted in the presence of an ammonia catalyst. ), (c) 7 parts of catechol, (d) 18 parts of methylhydroquinone, (v) 6 parts of diethylene glycol monomethyl ether, (h) tris(N・N'-dimethylaminomethyl)phenol 0.2
10 parts of ethyl (tri)acetoacetate.

【衚】【table】

【衚】 比范䟋  メタノヌル分10のアルコヌル可溶垞枩硬化性
レゟヌル型プノヌル暹脂の硬化暹脂分72の液
70郚、工業甚銅粉フレヌク状、325メツシナ
の衚面の酞化物を溶去した金属銅粉50郚、銅含有
量10のナフテン酞銅郚および゚タノヌルト
ル゚ン混合溶剀混合容量比1/120mlを十分に
撹拌した混合物に亜リン酞郚を添加混合し導電
甚組成物を埗た。 この導電甚組成物を甚いお本発明の実斜䟋及
びの方法で印刷及び硬化したのち、耐久性詊隓
及びハンダ耐熱性の評䟡を行぀た。50℃、95
RH、1000時間の耐湿性詊隓では初期抵抗倀400Ω
比抵抗倀×10-3Ω・cmが50KΩ玄100倍
に䞊昇した。又耐湿性詊隓埌の硬化物には緑青ず
思われる青錆が党面に発生しおいた。䞀方260℃
のハンダ济に20秒間浞挬するず、初期抵抗倀400
Ωが4KΩ10倍に䞊昇した。
[Table] Comparative Example 2 Alcohol-soluble room temperature curing resol type phenolic resin with methanol content of 10% and cured resin content of 72% liquid
70 parts, industrial copper powder (flake form, 325 mesh)
Add phosphorus to a well-stirred mixture of 50 parts of metallic copper powder from which oxides on the surface of 4 parts of acid were added and mixed to obtain a conductive composition. After printing and curing using the conductive composition according to the methods of Examples 1 and 2 of the present invention, a durability test and an evaluation of solder heat resistance were conducted. 50℃, 95%
RH, initial resistance value 400Ω in 1000 hours moisture resistance test
(specific resistance value 5×10 -3 Ω・cm) is 50KΩ (approximately 100 times)
rose to Furthermore, after the moisture resistance test, the cured product had a patina that appeared to be greenish blue on the entire surface. Meanwhile 260℃
When immersed in a solder bath for 20 seconds, the initial resistance value is 400.
Ω increased to 4KΩ (10 times).

Claims (1)

【特蚱請求の範囲】  (a)銅銀耇合粉、(b)銅化合物、(c)・又は
・−ゞドロキシベンれン環を有する還元剀、
(d)暹脂を含有するこずを特城ずする導電甚の組成
物。  (a)銅銀耇合粉、(b)銅化合物、(c)・又は
・−ゞヒドロキシベンれン環を有する還元
剀、(d)暹脂、(e)キレヌト圢成物質を含有するこず
を特城ずする導電甚の組成物。
[Claims] 1 (a) copper-silver composite powder, (b) copper compound, (c) reducing agent having a 1,4- or 1,2-didroxybenzene ring,
(d) A conductive composition characterized by containing a resin. 2 Contains (a) copper-silver composite powder, (b) copper compound, (c) reducing agent having 1,4 or 1,2-dihydroxybenzene ring, (d) resin, and (e) chelate-forming substance. Characteristic conductive compositions.
JP21589681A 1981-12-29 1981-12-29 Conductive composition Granted JPS58117605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21589681A JPS58117605A (en) 1981-12-29 1981-12-29 Conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21589681A JPS58117605A (en) 1981-12-29 1981-12-29 Conductive composition

Publications (2)

Publication Number Publication Date
JPS58117605A JPS58117605A (en) 1983-07-13
JPS627641B2 true JPS627641B2 (en) 1987-02-18

Family

ID=16680044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21589681A Granted JPS58117605A (en) 1981-12-29 1981-12-29 Conductive composition

Country Status (1)

Country Link
JP (1) JPS58117605A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161545A (en) * 1974-11-27 1976-05-28 Mitsui Toatsu Chemicals
JPS5193394A (en) * 1975-02-13 1976-08-16 DODENYO SOSEIBUTSU

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161545A (en) * 1974-11-27 1976-05-28 Mitsui Toatsu Chemicals
JPS5193394A (en) * 1975-02-13 1976-08-16 DODENYO SOSEIBUTSU

Also Published As

Publication number Publication date
JPS58117605A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
US4387115A (en) Composition for conductive cured product
US4122143A (en) Process for producing cured products
JP2972338B2 (en) Conductive composition, method for producing and using the same
JPS60149671A (en) Formation of electroconductive coating
EP1594928A2 (en) High conductivity inks with improved adhesion
EP0455019B1 (en) Conductive paste composition
JPH09157613A (en) Conductive adhesive and circuit using the adhesive
US3910852A (en) Conductive resin composition
JPH0371726B2 (en)
JP3532749B2 (en) Conductive composition, conductive adhesive using the same
JPS627642B2 (en)
JPS6028160B2 (en) Method of forming a conductive circuit
JPH0135444B2 (en)
JP6777548B2 (en) Conductive paste
JPH0644819A (en) Conductive paste and conductive paint film
JPS627641B2 (en)
JP6340174B2 (en) Conductive paste
JP6623174B2 (en) Conductive paste
JPH07226110A (en) Copper powder for conductive paste and conductive copper paste using it
JPH05217422A (en) Conductive paste and conductive coating
JPH107884A (en) Electroconductive paste and production of electric circuit-forming board
JPH05230400A (en) Electrically conductive paste and electrically conductive coating film
JP3079396B2 (en) Hybrid IC
JP3243655B2 (en) Hybrid IC
JPH06162820A (en) Conductive paste and conductive paint-film