JPS627604A - Method for recovering decomposed gas from methanol - Google Patents

Method for recovering decomposed gas from methanol

Info

Publication number
JPS627604A
JPS627604A JP14580985A JP14580985A JPS627604A JP S627604 A JPS627604 A JP S627604A JP 14580985 A JP14580985 A JP 14580985A JP 14580985 A JP14580985 A JP 14580985A JP S627604 A JPS627604 A JP S627604A
Authority
JP
Japan
Prior art keywords
methanol
gas
impurities
alkali
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14580985A
Other languages
Japanese (ja)
Inventor
Hideyuki Matsumoto
英之 松本
Tsutomu Tanaka
勉 田中
Yoshinori Masuko
芳範 増子
Tetsuya Yamada
哲也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP14580985A priority Critical patent/JPS627604A/en
Publication of JPS627604A publication Critical patent/JPS627604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To recover purified gaseous mixture consisting of H2 and CO by washing decomposed gas from methanol with aq. alkali, and passing, if necessary, through an adsorption tower contg. active carbon after washing with water to remove contained impurities. CONSTITUTION:Methanol 1 as feed is fed to a cracking reactor 2 packed with catalyst such as CuO, Cr2O3, MnO2, etc. being heated in a circulating line 3 of heat medium. Thus, the methanol is decomposed to H2 and CO. Since, in this stage, impurities such as CO2, unreacted methanol, dimethyl ether, etc., are contained in the mixture of H2 and CO, CO2 among the impurities is first removed by absorbing in aq. alkali by passing the gas through a washing tower 5 contg. aq. alkali such as NaOH. Then the gas is washed, if necessary, in a water washing tower 7 to remove unreacted methanol. Finally, dimethyl ether is removed by adsorption to active carbon packed in an active carbon adsorption tower 11. Thus, gaseous mixture 12 of H2 and CO contg. small amt. of impurities is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はメタノール分解ガスの精製法に関し、詳しくは
メタノールの分解反応によって得られるメタノール分解
ガスをアルカリ洗浄し、次いで所望により水洗浄し、さ
らに活性炭吸着することにより、メタノール分解ガスか
ら水素および一酸化炭素を高収率で回収すると共に、簡
便な手段で不純物の含有量を所望レベルまで減少させる
メタノール分解ガスの精製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying methanol decomposition gas, and more specifically, methanol decomposition gas obtained by a methanol decomposition reaction is washed with an alkali, and then optionally washed with water. The present invention relates to a method for purifying methanol cracked gas, which recovers hydrogen and carbon monoxide from methanol cracked gas in high yield by adsorption on activated carbon, and reduces the content of impurities to a desired level by a simple means.

[従来の技術] 従来、メタノール原料から水素および一酸化炭素を製造
する方法としてメタノールの分解法が知られている。メ
タノールの分解法は次に示す分解反応によって行なわれ
る方法であり、この方法によって得られるメタノール分
解ガスは、例えば水素と一酸化炭素の含有比率を適宜調
整したり、分11 L/ tc I k:・1taal
i#′s−s°’ GL I 9 /  )Lt @ 
IJt    、。
[Prior Art] Conventionally, a methanol decomposition method has been known as a method for producing hydrogen and carbon monoxide from a methanol raw material. The decomposition method of methanol is a method carried out by the decomposition reaction shown below, and the methanol decomposition gas obtained by this method can be prepared by, for example, adjusting the content ratio of hydrogen and carbon monoxide as appropriate, or by adjusting the content ratio of hydrogen and carbon monoxide as necessary.・1taal
i #'s-s°' GL I 9 / )Lt @
IJt,.

用の原料等として用いられている。It is used as a raw material, etc.

l・ CH30H→  2H2+co           
  1.。
l・CH30H→ 2H2+co
1. .

−22kcal/メタノール(1wol)メタノール分
解ガスには、通常水素および一酸化炭素以外に二酸化炭
素、ジメチルエーテル等の反応副生物、および未反応メ
タノール等の不純物が混入する。これら不純物はメタノ
ール分解ガスを前述の酢酸合成プロセスに用いる時には
好ましくない挙動を示したり、メタノール分解ガスをさ
らに深冷分離装置によって水素と一酸化炭素に分離する
時には、熱交換器等の目詰まりの原因となるため有害で
あり何等かの方法で除去する必要がある。このような問
題を防止するためには二酸化炭素を5vol、ppm以
下、未反応メタノールを3vo1.ppm以下、ジメチ
ルエーテルを3vo1.ppm以下に減少させることが
必要である。
-22 kcal/methanol (1 wol) In addition to hydrogen and carbon monoxide, methanol decomposition gas usually contains reaction by-products such as carbon dioxide and dimethyl ether, and impurities such as unreacted methanol. These impurities exhibit undesirable behavior when methanol decomposition gas is used in the acetic acid synthesis process mentioned above, and can clog heat exchangers when methanol decomposition gas is further separated into hydrogen and carbon monoxide using a cryogenic separator. It is harmful and must be removed by some method. In order to prevent such problems, carbon dioxide should be 5 vol, ppm or less, and unreacted methanol should be 3 vol. ppm or less, dimethyl ether at 3vol. It is necessary to reduce the amount to below ppm.

[発明が解決しようとする問題点] このような不純物を分離除去する方法としてはPSA法
(Pressure 5Win(l  Adsorpt
ion法)が知られている。PSA法は、ゼオライト等
の吸着剤を充填した吸着塔にメタノール分解ガスを導入
し圧力を変化させて吸着脱着を繰り返しながら連続的に
精製する方法である。PSA法によれば、二酸化炭素、
未反応メタノール、ジメチルエーテル等は共にppmの
オーダーまで除去することが可能である。
[Problems to be solved by the invention] A method for separating and removing such impurities is the PSA method (Pressure 5Win).
ion method) is known. The PSA method is a method in which methanol decomposition gas is introduced into an adsorption tower filled with an adsorbent such as zeolite, and the pressure is varied to continuously purify the methanol while repeating adsorption and desorption. According to the PSA law, carbon dioxide,
Unreacted methanol, dimethyl ether, etc. can both be removed to the order of ppm.

しかしながら、PSA法では一酸化炭素の回収率が低く
なるという欠点があり高くとも70%以下通常50〜6
0%である。ざらにPSAシステムの後段に深冷分離装
置を設けて水素と一酸化炭素を分離すると、通常の深冷
分離装置の一酸化炭素回収率は90%を下層るため、−
酸化炭素の回収率は更に低下してしまう。
However, the PSA method has the disadvantage that the recovery rate of carbon monoxide is low, at most 70% or less, usually 50 to 6%.
It is 0%. If a cryogenic separator is installed after the PSA system to separate hydrogen and carbon monoxide, the carbon monoxide recovery rate of a normal cryogenic separator will be below 90%, so -
The recovery rate of carbon oxide will further decrease.

このような事情から、メタノール分解ガス中の水素およ
び一酸化炭素を高収率で回収すると共に、二酸化炭素等
の不純物を除去できるメタノール分解ガスの精製法が望
まれている。
Under these circumstances, there is a need for a method for purifying methanol cracked gas that can recover hydrogen and carbon monoxide in methanol cracked gas with a high yield and also remove impurities such as carbon dioxide.

本発明は、上述の問題点を解決するためになされたもの
で、メタノールの分解法によって得られるメタノール分
解ガスから、水素および一酸化炭素を高収率で回収する
と共に、簡便な手段で不純物の含有鑓を所望レベルまで
減少させることのできる、メタノール分解ガスの精製法
を提供することを目的とし、特に本発明によって精製さ
れたメタノール分解ガスは酢酸合成用あるいはエタノー
ル合成用の原料ガスとして好適に用いられる。
The present invention was made to solve the above-mentioned problems, and it recovers hydrogen and carbon monoxide in high yield from methanol decomposition gas obtained by a methanol decomposition method, and also removes impurities by a simple means. The purpose of the present invention is to provide a method for purifying methanol cracked gas that can reduce the content of slag to a desired level, and in particular, the methanol cracked gas purified by the present invention is suitable as a raw material gas for acetic acid synthesis or ethanol synthesis. used.

[問題点を解決する手段および作用] 本発明は、メタノール分解ガスをアルカリ洗浄し、次い
で所望により水洗浄し、さらに活性炭吸着することを特
徴とするメタノール分解ガスの精製法である。
[Means for Solving the Problems and Effects] The present invention is a method for purifying methanol cracked gas, which is characterized by washing the methanol cracked gas with an alkali, then washing with water if desired, and then adsorbing the gas with activated carbon.

以下、図面に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on the drawings.

第1図は、本発明の好ましい一実施例を示すプロセスシ
ートである。
FIG. 1 is a process sheet showing a preferred embodiment of the present invention.

同図において、原料メタノールは原料供給ライン1を通
って分解反応器2に供給され、この分解反応器2におい
て前述のメタノールの分解反応が行なわれる。分解反応
器2は熱媒体循環ライン3によって所定の温度となるよ
うにされている。分解触媒としては、銅、クロム、マン
ガン酸化物触媒(CuO、Cr 20 s 、M n 
O2触媒)等が好適に用いられる。これらの触媒は、ク
ロム酸塩、重クロム酸塩またはクロム塩の溶液、マンガ
ン塩の溶液および銅塩の溶液をこれらのアンモニア水ま
たは苛性ソーダ溶液を加え、または加えないで、混合し
て生ずる沈澱を水洗乾燥した後に350℃付近に加熱し
、次いで得られた銅、クロム、マンガン酸化物に対し当
量または当量以下のクロム酸を反応させて得られるクロ
ム酸銅を結合剤として調製して得られる。
In the figure, raw methanol is supplied to a decomposition reactor 2 through a raw material supply line 1, and the above-mentioned methanol decomposition reaction is carried out in this decomposition reactor 2. The decomposition reactor 2 is kept at a predetermined temperature by a heat medium circulation line 3. As a decomposition catalyst, copper, chromium, manganese oxide catalyst (CuO, Cr20s, Mn
O2 catalyst) etc. are preferably used. These catalysts remove the precipitate formed by mixing chromate, dichromate or chromium salt solutions, manganese salt solutions and copper salt solutions with or without the addition of aqueous ammonia or caustic soda solution. It is obtained by washing and drying with water, heating it to around 350°C, and then reacting the obtained copper, chromium, and manganese oxides with an equivalent or less than the equivalent amount of chromic acid to prepare copper chromate as a binder.

分解反応によって得られたメタノール分解ガスは分解反
応器出口ガスライン4を通ってアルカリ洗浄塔5に導入
され、ここで二酸化炭素のみがアルカリに吸着され除去
される。ここで用いられるアルカリとしてはNa OH
溶液等が好適に用いられる。二酸化炭素が除去されたメ
タノール分解ガスは水洗塔導入ライン6を通って水洗塔
7に導入される。水洗塔7においては、未反応メタノー
ルが水に吸収され除去される。なおアルカリ洗浄塔5お
よび水洗塔7にはそれぞれポンプ8a、 8bを介して
洗浄液循環ライン9a、9bが設けられ、それぞれアル
カリまたは水を循環させている。なお、本発明において
、メタノール分解ガス中の残留メタノールが少量の場合
は水洗塔7を設けず、水洗浄を行なわなくてもよい。
The methanol decomposition gas obtained by the decomposition reaction is introduced into the alkali cleaning tower 5 through the decomposition reactor outlet gas line 4, where only carbon dioxide is adsorbed by the alkali and removed. The alkali used here is NaOH
A solution or the like is preferably used. The methanol cracked gas from which carbon dioxide has been removed is introduced into the water washing tower 7 through the water washing tower introduction line 6. In the water washing tower 7, unreacted methanol is absorbed by water and removed. The alkali washing tower 5 and the water washing tower 7 are provided with washing liquid circulation lines 9a and 9b via pumps 8a and 8b, respectively, to circulate alkali or water, respectively. In the present invention, if residual methanol in the methanol decomposition gas is small, the water washing tower 7 may not be provided and water washing may not be performed.

二酸化炭素および未反応メタノールが除去されたメタノ
ール分解ガスは、活性炭吸着塔導入ライン10を通って
活性炭吸着塔11に導入される。活性炭吸着塔11にお
いては、ジメチルエーテル等の二酸化炭素以外の反応副
生物が吸着除去される。
The methanol cracked gas from which carbon dioxide and unreacted methanol have been removed is introduced into the activated carbon adsorption tower 11 through the activated carbon adsorption tower introduction line 10 . In the activated carbon adsorption tower 11, reaction by-products other than carbon dioxide, such as dimethyl ether, are adsorbed and removed.

このようにして反応副生物や未反応メタノールが除去さ
れたメタノール分解ガスは、精製ガスライン12を通っ
て後段のプロセスに供される。この場合、所望に応じて
精製ガスライン12上に深冷分離装置を設は水素と一酸
化炭素に分離するか、あるいはガス膜分離装置を設は酢
酸合成用等の原料ガスとするために一酸化炭素/水素の
比率を調整する。なお、本発明においては、深冷分離装
置を設けた場合には、不純物の含有面が低い水準にある
のでこれに付帯するモレキュラーシーブ吸着塔を簡素化
することができる。
The methanol cracked gas from which reaction by-products and unreacted methanol have been removed in this way passes through the purified gas line 12 and is supplied to the subsequent process. In this case, if desired, a cryogenic separator may be installed on the purified gas line 12 to separate hydrogen and carbon monoxide, or a gas membrane separator may be installed to separate the gas into raw material gas for acetic acid synthesis, etc. Adjust the carbon oxide/hydrogen ratio. In addition, in the present invention, when a cryogenic separator is provided, since the content of impurities is at a low level, the accompanying molecular sieve adsorption tower can be simplified.

[実施例] 以下、本発明を実施例に基づいて具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained based on Examples.

実  施  例 第1図に示すプロセスと略同−のプロセスを用いてメタ
ノールの分解反応およびメタノール分解ガスの精製を行
なった。
EXAMPLE Using substantially the same process as shown in FIG. 1, methanol decomposition reaction and methanol decomposition gas were purified.

メタノール分解反応器には銅系分解触媒を80kg充填
したものを使用し、熱媒体としてはホットオイルを用い
た。この分解反応器に、メタノール0.3Kmol /
hrを供給し、反応条件を、反応温度330℃、反応圧
カフ、5kO/iGとして分解反応を行なった。このよ
うにして得られたメタノール分解ガスのガス組成を第1
表に示す。
A methanol decomposition reactor filled with 80 kg of copper-based decomposition catalyst was used, and hot oil was used as a heat medium. Into this decomposition reactor, methanol 0.3Kmol/
hr was supplied, and the decomposition reaction was carried out under the reaction conditions of a reaction temperature of 330° C., a reaction pressure cuff, and 5 kO/iG. The gas composition of the methanol decomposition gas obtained in this way was
Shown in the table.

このメタノール分解ガスを第1図に従って、水洗塔/ア
ルカリ洗浄塔でアルカリ洗浄、水洗浄を行ない。次いで
活性炭吸着塔にて活性炭吸着を行ない、メタノール分解
ガスを精製した。この活性炭吸着塔出口ガスの組成を第
1表に示す。
This methanol decomposition gas is subjected to alkali washing and water washing in a water washing tower/alkali washing tower according to FIG. Next, activated carbon adsorption was performed in an activated carbon adsorption tower to purify the methanol decomposition gas. Table 1 shows the composition of the activated carbon adsorption column outlet gas.

第1表 この結果、第1表に示されるごとく、活性炭吸着塔出口
ガスにおいては、反応副生物および未反応メタノールは
それらが検出できないレベルまでに除去できた。なお、
このガス流量は19.4N TIi/hrであった。
Table 1 As a result, as shown in Table 1, reaction by-products and unreacted methanol could be removed to an undetectable level in the activated carbon adsorption column outlet gas. In addition,
This gas flow rate was 19.4N TIi/hr.

また、分解反応器の出口ガス中の水素と一酸化炭素の流
量と、精製された活性炭吸着塔出口ガス中のそれらの流
量とを比較すると、両者の収率はそれぞれ99.0%で
あることが判った。
Furthermore, when comparing the flow rates of hydrogen and carbon monoxide in the outlet gas of the decomposition reactor with those in the purified activated carbon adsorption tower outlet gas, the yields of both are 99.0%, respectively. It turns out.

[発明の効果] 以上説明したように、メタノール分解ガスをアルカリ洗
浄し、次いで所望により水洗浄し、さらに活性炭吸着す
る本発明のメタノール分解ガスの精製法によれば、水素
および一酸化炭素を高収率で回収すると共に、簡便な手
段で、二酸化炭素、未反応メタノール、ジメチルエーテ
ル等の不純物の含有間を所望レベルまで減少させること
ができる。
[Effects of the Invention] As explained above, according to the method for purifying methanol cracked gas of the present invention, in which methanol cracked gas is washed with alkali, then washed with water if desired, and further adsorbed with activated carbon, hydrogen and carbon monoxide can be highly purified. In addition to recovering high yields, the content of impurities such as carbon dioxide, unreacted methanol, and dimethyl ether can be reduced to a desired level using simple means.

また、これら不純物の残留率を極めて低くすることがで
きるので、深冷分離装置を用いてメタノール分解ガスを
水素と一酸化炭素に分離する場合に、深冷分離装置に必
要なモレキュラーシーブ吸着塔を簡素化することができ
コストを低減できる。
In addition, since the residual rate of these impurities can be extremely low, when using a cryogenic separation device to separate methanol decomposition gas into hydrogen and carbon monoxide, the molecular sieve adsorption tower required for the cryogenic separation device can be used. It can be simplified and costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すプロセスシートである
。 1・・・原料供給ライン、2・・・分解反応器、3・・
・熱媒体循環ライン、5・・・アルカリ洗浄塔、1・・
・水洗塔、8a、8b・・・ポンプ、9a、9b・・・
洗浄液循環ライン、11・・・活性炭吸着塔。 □ FFtlliA  B  Fi mK*?k    。 代理人 弁理士 伊東辰雄    1 □
FIG. 1 is a process sheet showing one embodiment of the present invention. 1... Raw material supply line, 2... Decomposition reactor, 3...
・Heating medium circulation line, 5...Alkali cleaning tower, 1...
・Washing tower, 8a, 8b...Pump, 9a, 9b...
Cleaning liquid circulation line, 11...activated carbon adsorption tower. □ FFtlliA B Fi mK*? k. Agent Patent attorney Tatsuo Ito 1 □

Claims (1)

【特許請求の範囲】 1、メタノール分解ガスをアルカリ洗浄し、次いで活性
炭吸着することを特徴とするメタノール分解ガスの精製
法。 2、前記活性炭吸着の前に水洗浄する前記特許請求の範
囲第1項記載のメタノール分解ガスの精製法。
[Claims] 1. A method for purifying methanol cracked gas, which comprises washing the methanol cracked gas with an alkali and then adsorbing it on activated carbon. 2. The method for purifying methanol cracked gas according to claim 1, wherein water washing is performed before the activated carbon adsorption.
JP14580985A 1985-07-04 1985-07-04 Method for recovering decomposed gas from methanol Pending JPS627604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14580985A JPS627604A (en) 1985-07-04 1985-07-04 Method for recovering decomposed gas from methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14580985A JPS627604A (en) 1985-07-04 1985-07-04 Method for recovering decomposed gas from methanol

Publications (1)

Publication Number Publication Date
JPS627604A true JPS627604A (en) 1987-01-14

Family

ID=15393638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14580985A Pending JPS627604A (en) 1985-07-04 1985-07-04 Method for recovering decomposed gas from methanol

Country Status (1)

Country Link
JP (1) JPS627604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106503A (en) * 1999-10-07 2001-04-17 Toyota Motor Corp Hydrogen enriching device and fuel cell device
KR101576885B1 (en) * 2009-12-22 2015-12-11 한온시스템 주식회사 Front End Module for Automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340195A (en) * 1976-09-24 1978-04-12 Sekisui Chem Co Ltd Irradiating method of radioactive ray
JPS5411274A (en) * 1977-06-27 1979-01-27 Kinjirushi Wasabi Kk Production of food material based on fish and animal bones

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340195A (en) * 1976-09-24 1978-04-12 Sekisui Chem Co Ltd Irradiating method of radioactive ray
JPS5411274A (en) * 1977-06-27 1979-01-27 Kinjirushi Wasabi Kk Production of food material based on fish and animal bones

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106503A (en) * 1999-10-07 2001-04-17 Toyota Motor Corp Hydrogen enriching device and fuel cell device
KR101576885B1 (en) * 2009-12-22 2015-12-11 한온시스템 주식회사 Front End Module for Automobile

Similar Documents

Publication Publication Date Title
JP3779351B2 (en) Method for producing methanol
EP0650950B1 (en) Process for the production of methanol
US5711926A (en) Pressure swing adsorption system for ammonia synthesis
US3535074A (en) Method and apparatus for purifying crude inert gases
US5093102A (en) Process for the production of high purity hydrogen by catalytic reforming of methanol
CN1003170B (en) Improved ammonia synthesis gas purification process
KR100363179B1 (en) Process for the production of hydrocarbon partial oxidaton products
CN111253229B (en) Formaldehyde pyridine hydrogen peroxide coproduction method
JPS627604A (en) Method for recovering decomposed gas from methanol
US6667409B2 (en) Process and apparatus for integrating an alkene derivative process with an ethylene process
JPS63233001A (en) Manufacture of synthetic gas or hydrogen by catalytic conversion of liquid-phase methanol
JPH0761843B2 (en) Pressure swing type gas separator for methanol cracker
JPH06211502A (en) Production of carbon monoxide and hydrogen
CN212128029U (en) Formaldehyde pyridine hydrogen peroxide coproduction device
JPH0731877A (en) Refining of inert gas and device therefor
CN106391064A (en) Technological method for activating catalyst by adopting nitrite and performing purification treatment on CO
PL177080B1 (en) Method of obtaining products of partial oxidation of hydrocarbons
CN104709907A (en) Process and system for selectively removing small amount of H2 from high-concentrations CO gas
CN220642594U (en) Novel methanol hydrogen production device
EP0139423A2 (en) A process for the preparation of high-purity hydrogen
JP2507296B2 (en) Method for producing hydrogen reforming methanol
JP2000219508A (en) Production of co from off-gas in hydrogen pressure swing adsorption (psa)
CN113277924B (en) Heat exchange system for propylene preparation
CN113428861B (en) Methane and hydrogen sulfide reforming hydrogen production process
CN114644348B (en) Preparation system and method for directly producing electronic grade ammonia water from ammonia gas