JPS6275084A - Automatic flow control valve for compressor - Google Patents

Automatic flow control valve for compressor

Info

Publication number
JPS6275084A
JPS6275084A JP21495285A JP21495285A JPS6275084A JP S6275084 A JPS6275084 A JP S6275084A JP 21495285 A JP21495285 A JP 21495285A JP 21495285 A JP21495285 A JP 21495285A JP S6275084 A JPS6275084 A JP S6275084A
Authority
JP
Japan
Prior art keywords
control valve
temperature
flow control
compressor
automatic flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21495285A
Other languages
Japanese (ja)
Inventor
Hitoshi Hattori
仁司 服部
Shigemi Nagatomo
長友 繁美
Kanji Sakata
坂田 寛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21495285A priority Critical patent/JPS6275084A/en
Publication of JPS6275084A publication Critical patent/JPS6275084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To sufficiently cool an electric motor part and to prevent seizure in a bearing part, by mounting a shape memory alloy-made automatic flow control valve, connected with a bypass pipe communicating with the delivery side of a condenser, to a subbearing while providing said valve to be brought into contact with lubricating oil stored in a compressor case. CONSTITUTION:An automatic flow control valve 36, using a shaped memory alloy, is connected with a bypass pipe 35 communicating with the delivery side of a condenser, and the valve 36, being mounted to a subbearing 9, is provided so as to come into contact with stored lubricating oil 4 in the bottom part of a vessel 1. Said valve 36, if the temperature of a driving spring increases to a fixed value or more, injects a liquid refrigerant, condensed in the condenser, from the bypass pipe 35 to a compression chamber 6, and a compressor is cooled by cooling refrigerant gas. And the injection is ceased of the temperature of the driving spring decreases to the fixed value or less. And the temperature of the driving spring is controlled almost by the temperature of the lubricating oil 4 of large heat capacity. In this way, the automatic flow control valve 36 is controlled by the temperature of the lubricating oil 4 serving as the reference, and the compressor, being cooled,enables an electric motor part to be sufficiently cooled while seizure in a bearing part to be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、自動流量制御弁を用いて液体冷媒を圧縮室内
に注入する圧縮器に関する。 〔発明の技術的背景と千の問題点〕 冷凍サイクルでは、圧縮機の過熱による効率の低下、軸
受部の焼付き、ステータの絶縁材の劣化等の諸障害を防
止するため、凝縮器内で凝縮した液体冷媒を圧縮機構部
の圧縮室内に直接注入して圧縮機の冷却をはかっていた
。 そして、形状記憶合金を使った自動流量制御弁を用いて
、凝縮器内で凝縮した液体冷媒を、圧縮機構部の圧縮室
内に直接注入する冷凍サイクルでは、自動流量制御弁は
第3図に示すような構造となり1第2図に示すように取
付けられていた。 シリンダを形成する円筒ケース101の側面には液体冷
媒の流入口102と流出口103とが設けられている。 この流入口はパイプ104を介して図示しない凝縮器の
流出側に接続されており、オた流出口は圧縮機構部の圧
縮室105に連通している。この円筒ケース101の内
部には、円筒形でその周面に周方向に延びる連通溝10
6を形成してなる流路M閉部材107が、この円筒ケー
ス101の中心軸方向に摺動自在に装着されている。こ
の流路開閉部材107は、2つのばねすなわちバイアス
バネ108と形状記憶合金性の駆動バネ109を介して
その両端が円筒ケース101の両端に支持されている。 このような構成であれば、圧縮機の温度が低いときには
駆動バネ109が収縮状態にあって流路開閉部材107
の外周面で流入口102と流出口103とが適所され、
圧縮機の温度が所定温度以上になると、駆動バネ109
が伸長して流入口102および流出口103と流路開閉
部材107の連通溝106とが連通
TECHNICAL FIELD OF THE INVENTION The present invention relates to a compressor that uses an automatic flow control valve to inject liquid refrigerant into a compression chamber. [Technical Background of the Invention and Thousand Problems] In the refrigeration cycle, in order to prevent various problems such as a decrease in efficiency due to overheating of the compressor, seizure of the bearing, and deterioration of the insulation material of the stator, The compressor was cooled by directly injecting condensed liquid refrigerant into the compression chamber of the compression mechanism. In a refrigeration cycle in which the liquid refrigerant condensed in the condenser is directly injected into the compression chamber of the compression mechanism using an automatic flow control valve using a shape memory alloy, the automatic flow control valve is shown in Figure 3. It was constructed as shown in Figure 1 and installed as shown in Figure 2. An inlet 102 and an outlet 103 for liquid refrigerant are provided on the side surface of a cylindrical case 101 forming a cylinder. This inlet is connected to the outlet side of a condenser (not shown) via a pipe 104, and the outlet is connected to a compression chamber 105 of the compression mechanism section. Inside this cylindrical case 101, there is a communication groove 10 which is cylindrical and extends in the circumferential direction on its circumferential surface.
A flow path M closing member 107 formed with a cylindrical case 101 is slidably attached to the cylindrical case 101 in the direction of its central axis. This channel opening/closing member 107 is supported at both ends of the cylindrical case 101 via two springs, namely a bias spring 108 and a drive spring 109 made of shape memory alloy. With such a configuration, when the temperature of the compressor is low, the drive spring 109 is in a contracted state and the flow path opening/closing member 107 is closed.
The inflow port 102 and the outflow port 103 are placed at appropriate locations on the outer peripheral surface of the
When the temperature of the compressor exceeds a predetermined temperature, the drive spring 109
expands, and the inlet 102 and outlet 103 communicate with the communication groove 106 of the channel opening/closing member 107.

【7て、凝縮器内で
凝縮した液体冷媒を圧縮機構部の圧縮室内に直接注入し
て圧縮募の冷却を行な器 っていた。 そこで自動流量制御弁の動作を詳細に考えると運転開始
後円筒ケース101が熱せられ駆動バネ107が熱せら
れ伸長して、設定温度に達すると液体冷媒が圧縮室内に
流入する。このとき液体冷媒は冷媒ガスを冷却すると同
時に圧縮室を形成し、自動流量制御弁が組み込まれてい
るシリンダも冷却する。そのため、圧縮機全体が十分に
冷却される前にシリンダが冷却され、円筒ケース101
が冷却され駆動バネ107が収縮して液体冷媒が圧縮室
内に流入するのをやめてしまうという問題点を有してい
た。又、最も冷却を必要とする電動機部の温度と、自動
流量制御弁が取りつけられているシリンダ110の温度
に相関関係がなく、特にインバータ等を用いた回転数制
御を行なった時電動機部の温度変動が大きくなるため、
電動機部の冷却が本尚に必要なとき冷却できないという
問題点を有していた。 〔発明の目的〕 本発明は、自動流量制御弁の制御を正確にすることによ
り圧縮機の冷却を十分にすることを目的とする。 〔発明の概要〕 本発明は凝縮器の流出側と圧縮機構部の圧縮室との間に
設けた自動流量制御弁を副軸受に取り付けたことを特徴
としている。 〔発明の実施例〕 以下、図面を参照しながら本発明の一実施例について説
明する。第1図は本発明の一実施例を示す圧縮機の垂直
断面図である。1は上部が開口[。 ている円筒形の容器で、この容器1の上部開口を上部容
器2で閉塞することにより密閉空間3を形成する。容器
1と上部容器2とは、溶接等により一体的に固定される
。容器1の下部には、潤滑油4が貯蔵されてbる。 次に圧縮機構部罠ついて述べる。潤滑油4に半分ぐらい
浸漬したシリンダ5が、容器1の下方部に圧入固定され
ている。このシリンダ5の中央部には、圧縮室6を形成
する円形の貫通ロアと貫通溝8が設けられている。シリ
ンダ5の下面には貫通ロアをおおう副軸受9が、図示し
ていないボルトにより固定されている。この副軸受9に
は主軸10の副軸部12が固定自在に挿入されている。 上記主軸10のクランク部11の外周には、ローラ13
が挿入されている。前記貫通溝8には、ローラ13と同
高のブレード14が摺動自在に収納され、一端がローラ
13の周壁に接触し、他端と容器1の間の貫通溝8内の
空間にバネ15を収納して、バネ15の弾性力によりロ
ーラ13の周壁に接触している。シリンダ5の上面には
主軸10を挿通し、貫通ロアをおおうように設けられる
主軸受16が、図示していないボルトにより固定されて
いる。主軸受16の主軸10と接する面には給油のため
のらせん状の溝が切っである。主軸受16には吐出口1
7が設けられ、この口を覆うように吐出弁18が設けら
れている。この吐出口17および吐出弁18にはこれら
を覆うように主軸受16に固定され吐出ガスを収納する
空間を形成する吐出マフラ19が設けられている。この
吐出マフラ19には前記主軸10を中心にして吐出弁1
8が設けられた反対側の壁面に開口側が設けられ、この
開口側よシ密閉空間3にガスが吐出し7てゆく。 主軸]0はその内部が中空となっており下方には潤滑油
4すい上げ用の羽根ポンプnが装着されている。主軸1
0には電動部の一部を形成するロータムが圧入固定され
て、主軸lOと一体的に構成されそのロータあの外側に
は容器1に圧入されたステータスが設けられている。ス
テータあにはステータコイル!が巻かれている。またそ
の上方には遠心室による油分離機能を持たせたオイルデ
ィスク25が主軸10に固定されている。上部カバー2
には吐出バイブ32が固着されている。 このような構造のロータリコンプレッサにおいて、本発
明によれば、凝縮器の吐出側と連通したバイパス管あと
接続【7た流1制御弁間を副軸受9に取り付けられてい
る。 次に上記構成に基づく作用を説明する。ロータリコンブ
レッサの図示していない電源端子より電動部に商用電圧
おより商用周波数の電源を印加すると、ロータるが回転
を始め、一体となっている主軸】0も回転する。主軸1
0の回転によりローラ13はシリンダ5内で偏心回転を
行なう。この偏心回転によりに通ロアとローラ13によ
って形成される圧縮室6は容積が可変し圧縮作用を行な
う。この圧縮作用により図示しない吸入口から吸入lま
た冷媒ガスを圧縮室6で圧縮し、吐出口17および吐出
弁18からマフラー19の空間内に吐出され、マフラー
19の開口加より密閉空間3に出る。そして冷媒ガスは
11−夕乙とステータ冴、およびステータ冴と容器1と
で形成されるすき間を通って上方に行き、吐出パイプ3
2より吐出される。冷媒ガスはオイルディスク乙の遠心
力で、ディスク25の周辺に飛ばされる。その時潤滑油
4はステータ冴のステータコイル或いは密閉容器1の内
壁に衝突し捕獲され潤滑油を冷媒ガスから分離する。そ
してステータzつ上面よりパイプあをつたわって容器1
下部の尚滑油4にもどる。自動流量制御弁は、駆動バネ
の温度が一定温度以上になると、凝縮器で凝縮した液体
冷媒をバイブあより、圧縮室6に注入する。それによシ
冷媒ガスを冷却し、圧縮機を冷却する。そして駆動バネ
の温度が一定温度以下になると、注入を止める。駆動バ
ネの温度は熱容器の大きい潤滑油の温度によってほぼコ
ントロールされる。そして潤滑油の温度は最も高温とな
り冷却を必要とする電動機部を通過後圧縮室下部にもど
るため電動機部の温度変化に比例I7て変化する。 とのことから、潤滑油の温度を基準として、自め、電動
機部の巻線の保護、過熱による効率の低下の防止、軸受
部の焼付きの防止をすることができる。 〔発明の効果〕 以上より、自動流量制御弁を潤滑油に接して設けること
により、電動機部を十分冷却することができ、電動機部
の巻線の保護、過熱による効率の低下の防止、軸受部の
焼付きの防止をすることができる。
[7] The liquid refrigerant condensed in the condenser was directly injected into the compression chamber of the compression mechanism to cool the compressed air. Considering the operation of the automatic flow rate control valve in detail, after the start of operation, the cylindrical case 101 is heated, the drive spring 107 is heated and expanded, and when the set temperature is reached, the liquid refrigerant flows into the compression chamber. At this time, the liquid refrigerant cools the refrigerant gas and at the same time forms a compression chamber and also cools the cylinder in which the automatic flow control valve is installed. Therefore, the cylinder is cooled before the entire compressor is sufficiently cooled, and the cylindrical case 101
When the refrigerant is cooled, the drive spring 107 contracts and the liquid refrigerant stops flowing into the compression chamber. Furthermore, there is no correlation between the temperature of the electric motor section that requires the most cooling and the temperature of the cylinder 110 to which the automatic flow rate control valve is attached, and the temperature of the electric motor section is particularly low when controlling the rotation speed using an inverter or the like. Due to the large fluctuations,
There was a problem in that the motor section could not be cooled when it was really necessary. [Object of the Invention] An object of the present invention is to provide sufficient cooling of a compressor by accurately controlling an automatic flow control valve. [Summary of the Invention] The present invention is characterized in that an automatic flow control valve provided between the outflow side of the condenser and the compression chamber of the compression mechanism is attached to a sub-bearing. [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a vertical sectional view of a compressor showing an embodiment of the present invention. 1 has an opening at the top [. A closed space 3 is formed by closing the upper opening of the container 1 with an upper container 2. The container 1 and the upper container 2 are integrally fixed by welding or the like. Lubricating oil 4 is stored in the lower part of the container 1. Next, let's talk about the compression mechanism trap. A cylinder 5 half immersed in lubricating oil 4 is press-fitted into the lower part of the container 1. A circular through lower portion forming a compression chamber 6 and a through groove 8 are provided in the center of the cylinder 5 . An auxiliary bearing 9 that covers the lower through-hole is fixed to the lower surface of the cylinder 5 by bolts (not shown). A countershaft portion 12 of a main shaft 10 is fixedly inserted into the counterbearing 9. A roller 13 is provided on the outer periphery of the crank portion 11 of the main shaft 10.
is inserted. A blade 14 having the same height as the roller 13 is slidably housed in the through groove 8 , one end of which contacts the peripheral wall of the roller 13 , and a spring 15 in the space within the through groove 8 between the other end and the container 1 . is accommodated and is in contact with the peripheral wall of the roller 13 by the elastic force of the spring 15. A main shaft 10 is inserted into the upper surface of the cylinder 5, and a main bearing 16, which is provided so as to cover the through lower part, is fixed by a bolt (not shown). A spiral groove for oil supply is cut in the surface of the main bearing 16 that contacts the main shaft 10. The main bearing 16 has a discharge port 1
7 is provided, and a discharge valve 18 is provided to cover this port. A discharge muffler 19 is provided over the discharge port 17 and the discharge valve 18 and is fixed to the main bearing 16 so as to cover them and forms a space for storing discharged gas. This discharge muffler 19 has a discharge valve 1 centered around the main shaft 10.
An opening side is provided on the wall surface opposite to where 8 is provided, and gas is discharged 7 into the closed space 3 through this opening side. The main shaft] 0 is hollow inside, and a vane pump n for scooping up lubricating oil 4 is installed below. Main shaft 1
A rotor which forms a part of the motorized part is press-fitted into the rotor 0 and is integrally formed with the main shaft lO, and a status press-fitted into the container 1 is provided on the outside of the rotor. Stator Ani Stator Coil! is wrapped. Further, above this, an oil disk 25 having an oil separation function using a centrifugal chamber is fixed to the main shaft 10. Upper cover 2
A discharge vibrator 32 is fixed to the holder. In the rotary compressor having such a structure, according to the present invention, the bypass pipe connected to the discharge side of the condenser is attached to the sub-bearing 9 between the flow 1 control valves and the bypass pipe connected to the discharge side of the condenser. Next, the operation based on the above configuration will be explained. When a commercial voltage or commercial frequency power is applied to the electric part from a power terminal (not shown) of the rotary compressor, the rotor begins to rotate, and the integrated main shaft also rotates. Main shaft 1
0 rotation causes the roller 13 to perform eccentric rotation within the cylinder 5. Due to this eccentric rotation, the volume of the compression chamber 6 formed by the lower passage and the roller 13 is varied and a compression action is performed. Due to this compression action, the refrigerant gas sucked in from the suction port (not shown) is compressed in the compression chamber 6, is discharged from the discharge port 17 and the discharge valve 18 into the space of the muffler 19, and exits from the closed space 3 through the opening of the muffler 19. . Then, the refrigerant gas passes upward through the gap formed by the stator part 11 and the stator part, and the stator part and the container 1, and passes through the discharge pipe 3.
It is discharged from 2. The refrigerant gas is blown around the disk 25 by the centrifugal force of the oil disk O. At that time, the lubricating oil 4 collides with the stator coil of the stator or the inner wall of the closed container 1 and is captured, separating the lubricating oil from the refrigerant gas. Then, from the upper surface of the stator, pipes are connected to container 1.
Return to Shoyu 4 at the bottom. The automatic flow control valve injects the liquid refrigerant condensed in the condenser into the compression chamber 6 through the vibrator when the temperature of the drive spring exceeds a certain temperature. Thereby, the refrigerant gas is cooled and the compressor is cooled. When the temperature of the drive spring drops below a certain temperature, injection is stopped. The temperature of the drive spring is approximately controlled by the temperature of the large lubricating oil in the thermal vessel. The temperature of the lubricating oil is the highest and returns to the lower part of the compression chamber after passing through the motor section which requires cooling, so it changes in proportion to the temperature change in the motor section I7. Therefore, based on the temperature of the lubricating oil, it is possible to protect the windings of the motor, prevent efficiency from decreasing due to overheating, and prevent seizure of the bearing. [Effects of the Invention] As described above, by providing the automatic flow control valve in contact with lubricating oil, the electric motor section can be sufficiently cooled, the windings of the electric motor section can be protected, efficiency can be prevented from decreasing due to overheating, and the bearing section can be cooled sufficiently. It is possible to prevent burn-in.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す圧縮機の断面図、第2
図は従来の圧縮機の圧縮機構部の断面図、第3図は本発
明および従来例に用いられている自動流量制御弁の一例
である。 4・・・潤滑油、 35・・・バイパス管、 あ・・・自動流量制御弁。 代理人 弁理士  則 近 憲 佑 (ほか1名) ¥?  1 6 圧陥1(の−tt+M面図 化上 ′4 3  区 え量制巷rでて折面図 Iin
Fig. 1 is a sectional view of a compressor showing one embodiment of the present invention;
The figure is a sectional view of the compression mechanism section of a conventional compressor, and FIG. 3 is an example of an automatic flow control valve used in the present invention and the conventional example. 4...Lubricating oil, 35...Bypass pipe, Ah...Automatic flow control valve. Agent Patent attorney Kensuke Chika (and 1 other person) ¥? 1 6 Indentation 1 (-tt+M plane drawing top'4 3 Sectional drawing Iin

Claims (1)

【特許請求の範囲】[Claims] 形状記憶合金を用いた自動流量制御弁を用いて凝縮器内
で凝縮した液体冷媒をバイパス管を介して圧縮機構部の
圧縮室内に直接注入する冷凍サイクルにおいて、前記自
動流量制御弁を圧縮機ケース内にためられている潤滑油
に接するよう設けたことを特徴とする圧縮機の自動流量
制御弁。
In a refrigeration cycle in which liquid refrigerant condensed in a condenser is directly injected into a compression chamber of a compression mechanism section through a bypass pipe using an automatic flow control valve using a shape memory alloy, the automatic flow control valve is connected to a compressor case. An automatic flow control valve for a compressor, characterized in that it is provided so as to be in contact with lubricating oil stored therein.
JP21495285A 1985-09-30 1985-09-30 Automatic flow control valve for compressor Pending JPS6275084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21495285A JPS6275084A (en) 1985-09-30 1985-09-30 Automatic flow control valve for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21495285A JPS6275084A (en) 1985-09-30 1985-09-30 Automatic flow control valve for compressor

Publications (1)

Publication Number Publication Date
JPS6275084A true JPS6275084A (en) 1987-04-06

Family

ID=16664277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21495285A Pending JPS6275084A (en) 1985-09-30 1985-09-30 Automatic flow control valve for compressor

Country Status (1)

Country Link
JP (1) JPS6275084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115502A2 (en) * 2008-03-18 2009-09-24 Shell Internationale Research Maatschappij B.V. Lubricating composition
US9890868B2 (en) 2013-09-20 2018-02-13 General Electric Company Aviation bypass valve including a shape memory alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115502A2 (en) * 2008-03-18 2009-09-24 Shell Internationale Research Maatschappij B.V. Lubricating composition
WO2009115502A3 (en) * 2008-03-18 2009-12-30 Shell Internationale Research Maatschappij B.V. Lubricating composition
US9890868B2 (en) 2013-09-20 2018-02-13 General Electric Company Aviation bypass valve including a shape memory alloy material

Similar Documents

Publication Publication Date Title
US5037278A (en) Scroll compressor with heat insulating and soundproof cover in bottom disposed low pressure chamber
KR100944147B1 (en) Scroll compressor with vapor injection
KR101008787B1 (en) Airtight type electric compressor
JPH04234592A (en) Device for introducing liquid into refrigerating unit
JP3014813U (en) High pressure rotary compressor
US7631729B2 (en) Reciprocating electric compressor
KR840001587B1 (en) Two-speed refrigerant motor compressor
JP2003294325A (en) Compressor equipment
JPH06103039B2 (en) Scroll gas compressor
JPS6275084A (en) Automatic flow control valve for compressor
JP3992071B1 (en) Compressor
US2597243A (en) Refrigerator compressor cooling arrangement
JP2568711B2 (en) Gas compressor
US11168687B2 (en) Scroll compressor
JPH06103038B2 (en) Scroll gas compressor
JPH02227583A (en) Scroll compressor
JP7378275B2 (en) Compressor, outdoor unit and air conditioner
JPH0674787B2 (en) Electric compressor
JP2013238191A (en) Compressor
JP7267087B2 (en) Air conditioning compressor
JP7130133B2 (en) Scroll compressor and refrigeration cycle equipment
KR100265405B1 (en) Hermetic rotary compressor
JPH029977A (en) Scroll gas compressor
JPH03237286A (en) Scroll compressor
JPH11303739A (en) Closed compressor