JPS627384A - Variable voltage variable frequency induction motor controller - Google Patents

Variable voltage variable frequency induction motor controller

Info

Publication number
JPS627384A
JPS627384A JP60145230A JP14523085A JPS627384A JP S627384 A JPS627384 A JP S627384A JP 60145230 A JP60145230 A JP 60145230A JP 14523085 A JP14523085 A JP 14523085A JP S627384 A JPS627384 A JP S627384A
Authority
JP
Japan
Prior art keywords
motor
command
induction motor
slip frequency
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60145230A
Other languages
Japanese (ja)
Inventor
Takashi Imazeki
隆志 今関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60145230A priority Critical patent/JPS627384A/en
Publication of JPS627384A publication Critical patent/JPS627384A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively operate an electric motor vehicle while avoiding the hunting vibration of the vehicle due to a motor torque pulsation of a fork lift truck by increasing a slip frequency and a motor applying voltage at light- load and extremely low-speed operation time. CONSTITUTION:When an induction motor 10 is operated at an extremely low speed, a slip frequency command fS is increased by the characteristic 100 of a slip frequency command generator 14 and the characteristic 102 of a modulation ratio calculator 16, a modulation ratio gamma is increased to increase each voltage command V. Thus, since the slip of the motor 10 is controlled to be increased at extremely low-speed operation time, the torque pulsation of the motor 10 is separated from the natural vibration frequency band of a fork lift truck. As a result, the hunting vibration of the truck due to the torque pulsation can be largely reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、誘導モータに対する印加電圧とその周波数を
同時に制御する誘導モータ側部装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an induction motor side device that simultaneously controls voltage applied to an induction motor and its frequency.

(発明の背景) 特公昭59−28146などで示される従来装置におい
ては、モータ回転数foとすべり周波数fsとの加算値
にすべり周波数fsが乗算され、その乗算値に比例して
モータ印加電圧が制御されており、これによりモータ回
転数fo及びすべり周波数fsが低減されて誘導モータ
が軽負荷で微速運転されているときにモータ印加電圧が
低減され、その結果誘導モータのトルクむらが抑制され
ていた。
(Background of the Invention) In the conventional device shown in Japanese Patent Publication No. 59-28146, etc., the sum of the motor rotational speed fo and the slip frequency fs is multiplied by the slip frequency fs, and the voltage applied to the motor is proportional to the multiplied value. This reduces the motor rotational speed fo and the slip frequency fs, and reduces the motor applied voltage when the induction motor is operating at low speed with a light load, and as a result, the torque unevenness of the induction motor is suppressed. Ta.

しかしながら従来装置においては、誘導モータが軽負荷
で微速運転されているときのすべり周波数がモータ特性
にのみ依存し、誘導モータが低い周波数(通常では数H
2)の電圧で運転されるので、フt−クリフトで位置合
せ運転が行なわれるように誘導モータが駆動源とされた
電気自動車が軽負荷で微速運転される場合には、モータ
電流の6倍周期でトルクの脈動か発生し、そのトルク脈
動が車両の固有振動と一致して車両がハンチング振動す
るという問題があった。
However, in conventional devices, the slip frequency when the induction motor is operated at low speed with light load depends only on the motor characteristics, and the induction motor operates at a low frequency (usually several H).
2), so when an electric vehicle with an induction motor as the drive source is operated at low speed with a light load, such as alignment operation using a foot-lift, the voltage is 6 times the motor current. There is a problem in that torque pulsations occur periodically, and the torque pulsations coincide with the vehicle's natural vibrations, causing hunting vibrations in the vehicle.

(発明の目的) 本発明は上記従来の課題に鑑みて為されたものであり、
その目的は、誘導モータが軽負荷で微速運転されてもそ
の誘導モータを駆動源とする電気車両にハンチング振動
を発生させることのない可変電圧可変周波数誘導モータ
のill m装置を提供することにある。
(Object of the invention) The present invention has been made in view of the above-mentioned conventional problems,
The purpose is to provide an ill-m device for a variable voltage variable frequency induction motor that does not generate hunting vibrations in an electric vehicle using the induction motor as a drive source even when the induction motor is operated at low speed under a light load. .

(発明の構成) 上記目的を達成するために本発明は、 アクセル指令を発生するアクセル指令発生手段と、 誘導モータの回転数を検出するモータ回転数検出手段と
、 モータ回転数に応じたすべり周波数指令を発生するすべ
り周波数指令発生手段と、 アクセル指令及びモータ回転数に応じた電圧指令を発生
する電圧指令発生手段と、 誘導モータの微速運転時においてすべり周波数指令を増
加させるすべり周波数指令増加手段と、誘導モータの微
速運転時において電圧指令を増加させる電圧指令増加手
段と、 を含むことを特徴とする。
(Structure of the Invention) In order to achieve the above object, the present invention comprises: an accelerator command generation means for generating an accelerator command; a motor rotation speed detection means for detecting the rotation speed of an induction motor; and a slip frequency according to the motor rotation speed. A slip frequency command generating means for generating a command; a voltage command generating means for generating a voltage command according to the accelerator command and the motor rotation speed; and a slip frequency command increasing means for increasing the slip frequency command during slow operation of the induction motor. , and voltage command increasing means for increasing the voltage command during slow speed operation of the induction motor.

(実施例の説明) 以下図面に基づいて本発明に係る装置の好適な実施例を
説明する。
(Description of Embodiments) Hereinafter, preferred embodiments of the apparatus according to the present invention will be described based on the drawings.

第1図において誘導モータ10はフォークリフトの走行
駆動源とされており、その回転数は回転数検出器12に
より検出されている。
In FIG. 1, an induction motor 10 is used as a driving source for a forklift, and its rotational speed is detected by a rotational speed detector 12.

そして回転数検出器12で検出された誘導モータ10の
回転数fOはすベリ周波数指令発生器14及び変調比演
算器16に与えられている。
The rotational speed fO of the induction motor 10 detected by the rotational speed detector 12 is given to the Suberi frequency command generator 14 and the modulation ratio calculator 16.

ざらにすべり周波数指令発生器14では特性100から
モータ回転数foを用いてすべり周波数指令fsが得ら
れており、そのすべり周波数指令fsは加算器18に与
えられている。
In the rough slip frequency command generator 14, a slip frequency command fs is obtained from the characteristic 100 using the motor rotational speed fo, and the slip frequency command fs is given to the adder 18.

この加算器18にはモータ回転数fOが与えられており
、両者の加算によりモータ印加電圧に対する周波数指令
f (=fo+fs >が得られている。
The motor rotation speed fO is given to this adder 18, and by adding the two, a frequency command f (=fo+fs>) for the motor applied voltage is obtained.

また前記変調比演算器16ではモータ回転数fOを用い
て特性102から変調比γが求められており、その変調
比Tは乗算器20に与えられている。
Furthermore, the modulation ratio γ is determined from the characteristic 102 using the motor rotational speed fO in the modulation ratio calculator 16, and the modulation ratio T is provided to the multiplier 20.

そして乗算器20には線形増幅器22を介してアクセル
指令発生器(アクセルペダルの踏込量を検出するポテン
ショメータで構成されている)のアクセル指令Aが与え
られている。
The multiplier 20 is supplied with an accelerator command A from an accelerator command generator (consisting of a potentiometer that detects the amount of depression of the accelerator pedal) via a linear amplifier 22.

ざらにアクセル指令Aと変調比γとの乗算か乗痺器20
で行なわれており、その乗算で求められたモータ印加電
圧の振幅指令Vは前記加算器18の周波数指令fととも
に正弦波発生器26に与えられている。
Roughly multiply the accelerator command A by the modulation ratio γ or the multiplier 20
The amplitude command V of the motor applied voltage obtained by the multiplication is given to the sine wave generator 26 together with the frequency command f of the adder 18.

この正弦波発生器26では振幅指令■で決定される振幅
であって周波数が周波数指令fで決定される三相の正弦
波が得られており、それらは比較器28U、28V、2
8Wの一方の比較入力に各々与えられている。
This sine wave generator 26 generates a three-phase sine wave whose amplitude is determined by the amplitude command ■ and whose frequency is determined by the frequency command f.
8W are respectively applied to one comparison input.

これら比較器28U、28V、28W(7)他方の比較
入力にはキャリア発生器30のキャリア信号(三角波)
が各々与えられており、比較器28U、28V、28W
では三相のPWM信号か得られている。
The other comparison input of these comparators 28U, 28V, 28W (7) is the carrier signal (triangular wave) of the carrier generator 30.
are given respectively, and the comparators 28U, 28V, 28W
Now, a three-phase PWM signal is obtained.

それらPWM信号はインバータ32に与えられており、
インバータ32では車載バッテリ34の出力電圧がそれ
らPWM信号に従い三相の交流電圧に変換されている。
These PWM signals are given to the inverter 32,
The inverter 32 converts the output voltage of the on-vehicle battery 34 into a three-phase AC voltage according to these PWM signals.

これら各相の交流電圧は電圧指令Vに対応した振幅で周
波数指令fに対応した周波数に制御されており、誘導モ
ータ]Oはそれら交流電圧により駆動制御されている。
The AC voltages of each phase are controlled to have an amplitude corresponding to the voltage command V and a frequency corresponding to the frequency command f, and the induction motor O is driven and controlled by these AC voltages.

以上のようにして誘導モータ10の駆動制御が行なわれ
るが、誘導モータ10が微速で運転される際にはすべり
周波数指令発生器14の特性100、変調比演算器16
の特性102から理解されるようにすべり周波数指令f
sか増加され、また変調比Tが増haされて電圧指令V
が各々増加され第2図に示された誘導モータ10のすベ
リートルク特性104において誘導モータ10が微速回
転される際には、トルクが最大となる動作点Pより左側
の動作点106で誘導モータ10が本来運転されるが、
本実施例ではすへり周波数指令f。
The drive control of the induction motor 10 is performed as described above, but when the induction motor 10 is operated at a slow speed, the characteristics 100 of the slip frequency command generator 14, the modulation ratio calculator 16
As understood from the characteristic 102 of the slip frequency command f
s is increased, and the modulation ratio T is increased so that the voltage command V
When the induction motor 10 is rotated at a very low speed in the full torque characteristic 104 of the induction motor 10 shown in FIG. 10 is originally operated, but
In this embodiment, the edge frequency command f.

がその際に増加されるので誘導モータ10は最大トルク
動作点Pより右側の動作点108で運転される。
is increased at that time, so that the induction motor 10 is operated at an operating point 108 to the right of the maximum torque operating point P.

このように誘導モータ10のすべりが微速運転時におい
て増加制御されるので、誘導モータ10のトルク脈動が
フォークリフトの固有振動周波数帯から離れ、その結果
トルク脈動によるフォークリフトのハンチング振動が大
幅に低減される。
Since the slip of the induction motor 10 is controlled to increase during low-speed operation in this way, the torque pulsation of the induction motor 10 moves away from the natural vibration frequency band of the forklift, and as a result, the hunting vibration of the forklift due to the torque pulsation is significantly reduced. .

またこのようにしてすべり周波数が増加される際には前
述のように電圧指令■が増加されてモータ印加電圧が高
められており、これによりすべり周波数の増加によるモ
ータトルクの減少が補償され、その結果すべり周波数の
増加にもかかわらず誘導モータ10の軽負荷微速運転が
可能となる。
In addition, when the slip frequency is increased in this way, the voltage command ■ is increased and the motor applied voltage is increased as described above, thereby compensating for the decrease in motor torque due to the increase in the slip frequency. As a result, light load slow speed operation of the induction motor 10 is possible despite an increase in the slip frequency.

なお、モータ負荷が増加した場合にはアクセルペダルの
踏み増し操作で電圧指令Vを上昇させることにより運転
にモ分なモータトルクを得ることが可能である。
In addition, when the motor load increases, it is possible to obtain sufficient motor torque for driving by increasing the voltage command V by further pressing the accelerator pedal.

以上説明したように本実施例によれば、誘導モータ10
の軽負荷微速運転時において誘導モータ10のすべり周
波数が増加されるので、誘導モータ10がより高いずへ
り周波数で運転され、このためそのトルク脈動がフォー
クリフトの固有振動周波数帯から離れ、したがってその
トルク脈動によるフォークリフトのハンチング振動が大
幅に低減される。
As explained above, according to this embodiment, the induction motor 10
Since the slip frequency of the induction motor 10 is increased during light load slow speed operation, the induction motor 10 is operated at a higher shear frequency, which causes its torque pulsation to move away from the natural vibration frequency band of the forklift, and therefore its torque Forklift hunting vibration caused by pulsation is significantly reduced.

また本実施例によれば、すべり周波数の増力口とともに
モータ印加電圧も高められるので、すべり周波数の増加
にかかわらず誘導モータ10の軽負荷微速運転を維持す
ることが可能となる。
Further, according to this embodiment, since the voltage applied to the motor is increased along with the increase in the slip frequency, it is possible to maintain light load slow speed operation of the induction motor 10 regardless of an increase in the slip frequency.

(発明の効果) 以上説明したように本発明によれば、誘導モータの軽負
荷微速運転時においてすべり周波数及びモータ印加電圧
が増加制御されるので、誘導モータが走行駆動源とされ
たフォークリフトのモータトルク脈動による電気自動車
のハンチング振動を回避しながらその運転を確実に行な
うことが可能となる。
(Effects of the Invention) As explained above, according to the present invention, the slip frequency and motor applied voltage are controlled to increase during light load slow speed operation of the induction motor. It is possible to reliably drive an electric vehicle while avoiding hunting vibrations caused by torque pulsation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の好適な実施例を示すブロッ
ク図、第2図は第1図実施例の作用を説明するすベリー
トルク特性図である。 10・・・誘導モータ 12・・・回転数検出器 14・・・すべり周波数指令発生器 16・・・変調比演算器 18・・・加算器 20・・・乗算器 24・・・アクセル指令発生器 26・・・正弦波発生器 32・・・インバータ 特許出願人  日産自動車株式会社 第2図 トルク すバ°す
FIG. 1 is a block diagram showing a preferred embodiment of the apparatus according to the present invention, and FIG. 2 is a very torque characteristic diagram illustrating the operation of the embodiment shown in FIG. 10... Induction motor 12... Rotation speed detector 14... Slip frequency command generator 16... Modulation ratio calculator 18... Adder 20... Multiplier 24... Accelerator command generation Device 26...Sine wave generator 32...Inverter Patent applicant Nissan Motor Co., Ltd. Figure 2 Torque bus

Claims (1)

【特許請求の範囲】[Claims] (1)アクセル指令を発生するアクセル指令発生手段と
、 誘導モータの回転数を検出するモータ回転数検出手段と
、 モータ回転数に応じたすべり周波数指令を発生するすべ
り周波数指令発生手段と、 アクセル指令及びモータ回転数に応じた電圧指令を発生
する電圧指令発生手段と、 誘導モータの微速運転時においてすべり周波数指令を増
加させるすべり周波数指令増加手段と、誘導モータの微
速運転時において電圧指令を増加させる電圧指令増加手
段と、 を含むことを特徴とする可変電圧可変周波数誘導モータ
制御装置。
(1) Accelerator command generation means for generating an accelerator command; motor rotation speed detection means for detecting the rotation speed of the induction motor; slip frequency command generation means for generating a slip frequency command according to the motor rotation speed; and a voltage command generating means for generating a voltage command according to the motor rotation speed; a slip frequency command increasing means for increasing a slip frequency command when the induction motor is running at a slow speed; and a voltage command increasing means for increasing the voltage command when the induction motor is running at a slow speed. A variable voltage variable frequency induction motor control device comprising: voltage command increasing means;
JP60145230A 1985-07-02 1985-07-02 Variable voltage variable frequency induction motor controller Pending JPS627384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60145230A JPS627384A (en) 1985-07-02 1985-07-02 Variable voltage variable frequency induction motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145230A JPS627384A (en) 1985-07-02 1985-07-02 Variable voltage variable frequency induction motor controller

Publications (1)

Publication Number Publication Date
JPS627384A true JPS627384A (en) 1987-01-14

Family

ID=15380345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145230A Pending JPS627384A (en) 1985-07-02 1985-07-02 Variable voltage variable frequency induction motor controller

Country Status (1)

Country Link
JP (1) JPS627384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078241A (en) * 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd Controller for electric vehicle and electric vehicle and forklift equipped with the same
US11894788B2 (en) 2020-11-04 2024-02-06 Builtrite, LLC Variable frequency drive electric hydraulic material handler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755791A (en) * 1980-09-16 1982-04-02 Toshiba Corp Inverter device
JPS5838080A (en) * 1981-08-28 1983-03-05 Canon Inc Flicker preventing system for solid-state image pickup device having photometric function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755791A (en) * 1980-09-16 1982-04-02 Toshiba Corp Inverter device
JPS5838080A (en) * 1981-08-28 1983-03-05 Canon Inc Flicker preventing system for solid-state image pickup device having photometric function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078241A (en) * 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd Controller for electric vehicle and electric vehicle and forklift equipped with the same
US9150396B2 (en) 2009-09-30 2015-10-06 Mitsubishi Nichiyu Forklift Co., Ltd. Electric-vehicle control device, and electric vehicle and forklift truck having the same
US11894788B2 (en) 2020-11-04 2024-02-06 Builtrite, LLC Variable frequency drive electric hydraulic material handler

Similar Documents

Publication Publication Date Title
US6639379B2 (en) Electric power steering control system and control method thereof
KR950015169B1 (en) Control system for induction motor driven electric car
US5686807A (en) Torque control system for AC motor
US7653466B2 (en) Control apparatus for electric vehicles
EP0691730A2 (en) Inverter control apparatus
CN1166087A (en) Method and apparatus for compensating voltage drror caused by dead time of motor driving inverter
US20190363646A1 (en) Inverter device and electric vehicle
WO2009111018A1 (en) Varying flux versus torque for maximum efficiency
US5877607A (en) Electric motor controller capable of performing stable current control during load disturbance and/or a regenerating mode
JPH05184182A (en) Inverter controller
JP5236965B2 (en) Motor control device
JPS627384A (en) Variable voltage variable frequency induction motor controller
JP3241252B2 (en) AC motor control device
JPS61262006A (en) Controller of induction motor for vehicle
JPH088722B2 (en) Electric differential drive
JPH0697801B2 (en) Synchronous motor controller
JPS626878Y2 (en)
JPS61258607A (en) Controller of induction motor for vehicle
JPH05328531A (en) Controller for motor of motor-driven vehicle
JPS6264201A (en) Brake system for internal combustion engine-driven electric motor vehicle
JP2638801B2 (en) Method and apparatus for controlling induction motor system
JPS61161995A (en) Pwm inverter controller for driving ac motor
JP3184053B2 (en) Speed control device for electric diesel locomotive
JPH0799885B2 (en) Variable speed controller for synchronous motor
JPS61161974A (en) Regenerative controller of ac motor