JPS6273686A - Isotope separation method by laser - Google Patents

Isotope separation method by laser

Info

Publication number
JPS6273686A
JPS6273686A JP21335285A JP21335285A JPS6273686A JP S6273686 A JPS6273686 A JP S6273686A JP 21335285 A JP21335285 A JP 21335285A JP 21335285 A JP21335285 A JP 21335285A JP S6273686 A JPS6273686 A JP S6273686A
Authority
JP
Japan
Prior art keywords
beams
focus
convex lens
reflected
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21335285A
Other languages
Japanese (ja)
Inventor
Takafumi Okamoto
隆文 岡本
Akio Hosaka
保坂 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP21335285A priority Critical patent/JPS6273686A/en
Publication of JPS6273686A publication Critical patent/JPS6273686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To utilize pulse laser beams effectively by reflecting pulse laser beams onto an incident optical axis, superposing incident beams and reflected beams and forming the focus of reflected beams at the same position on the formation of the focus of pulse laser beams. CONSTITUTION:Pulse laser beams 6 oscillated from a pulse laser device 1 are projected and condensed to a convex lens 2, thus shaping a focus. Photons passing through the focus expand and proceed toward a convex lens 3, are projected to the convex lens 3, and are reflected by a total-reflection plane mirror 5, the reflected beams are condensed by the convex lens again, and move forward to a spot where the focus is shaped previously as incident beams, a focus by reflected beams is formed at the focus forming spot of incident beams, and a cofocus 8 is shaped at the same position. When the cofocus is formed, a large energy region is generated in the cofocus section, and an isotope is decomposed effectively. Accordingly, beams passing through the focus of the incident beams can be used again as reflected beams, and laser beams can be utilized effectively, thus increasing the throughput of samples to be irradiated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザ光等の指向性エネルギーを用いた化学物
質の合成や分解、特に、レーザ法トリチウム同位体分離
等の赤外多光子吸収における解離エネルギーが高い物質
を対象としたレーザ化学分野で用いるレーザ同位体分離
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the synthesis and decomposition of chemical substances using directional energy such as laser light, particularly in infrared multiphoton absorption such as tritium isotope separation by laser method. This paper relates to a laser isotope separation method used in the field of laser chemistry for substances with high dissociation energy.

[従来の技術] 同位体を含む化合物の解離、特に、多数の光子を短時間
に吸収して解離を行う多光子解離を効率よく行うために
は、レンズ等の光学部品によりパルスレーザ光を集光さ
せ焦点付近のみで反応を生じさせるようにしたり、分子
同士の衝突を抑制するために照射試料圧を低く押え、レ
ーザパルス幅を短かくし、極めて短時間に解離を行わせ
る必要がある。このために、照射試料によるレーザ光子
の吸収効率の低下と、照゛射試料の処理量の減少も伴な
うこととなる。これらに対処するために、従来では導波
管を用いる方法、複数レンズによる直列多数焦点形成法
、等が改善技術として提案されている。
[Prior Art] In order to efficiently perform dissociation of compounds containing isotopes, especially multiphoton dissociation, in which a large number of photons are absorbed and dissociated in a short period of time, pulsed laser light is focused using an optical component such as a lens. It is necessary to emit light so that a reaction occurs only near the focal point, to suppress collisions between molecules by keeping the pressure of the irradiated sample low, and to shorten the laser pulse width to cause dissociation to occur in an extremely short time. This results in a decrease in the absorption efficiency of laser photons by the irradiated sample and a decrease in the throughput of the irradiated sample. In order to deal with these problems, methods using a waveguide, a method for forming multiple focal points in series using a plurality of lenses, and the like have been proposed as improvement techniques.

すなわち、前者の方法は、第4図に示す如く、パルスレ
ーザ共振5aからのレーザ光をミラーb、cで屈折させ
た後、凸レンズdによりウィンドeを通して導波管fの
内部に集光させ、該導波管f内で反射させながら複数個
所において焦点を形成させるようにするものである。9
は照射試料導入口である。又、後者の方法は、第5図に
示す如く、中空容器り内に、その長手方向に適宜間隔で
多数の凸レンズdを配置し、且つ中空容器りの一端側に
はパルスレーデ共振器aを設置し、中空容器りの他端に
はウィンド1を設け、パルスレーザ共振器aからのレー
ザ光が順々にレンズdを通過するごとに多数の焦点が形
成されるようにするものである。jはポンプ、kは照射
試料移動用バイブ、!はガス作業物質供給口、糟はガス
作業物質出口である。
That is, in the former method, as shown in FIG. 4, the laser beam from the pulsed laser resonance 5a is refracted by mirrors b and c, and then condensed into the inside of the waveguide f through the window e by the convex lens d. While reflecting within the waveguide f, focal points are formed at a plurality of locations. 9
is the irradiation sample inlet. In the latter method, as shown in FIG. 5, a large number of convex lenses d are arranged at appropriate intervals in the longitudinal direction of the hollow container, and a pulserade resonator a is installed at one end of the hollow container. However, a window 1 is provided at the other end of the hollow container so that a large number of focal points are formed each time the laser beam from the pulsed laser resonator a passes through the lens d one after another. j is the pump, k is the vibrator for moving the irradiation sample, ! is the gas working material supply inlet, and kasu is the gas working material outlet.

[発明が解決しようとする問題点] ところが、上記従来のいずれの方式も、その実施のため
の装置が複雑であると共に、いずれも焦点を結ぶ位置が
異なっており、光の相乗効果等の考慮はされていない。
[Problems to be Solved by the Invention] However, in each of the above-mentioned conventional systems, the equipment for implementing them is complicated, and the focal point is different in each of them, and it is difficult to take into account the synergistic effect of light, etc. Not done.

そこで、本発明は上記従来の多重反射法を利用した照射
装置が複雑であるため、装置の簡略化を図り、更にパル
スレーザ光の有効利用とエネルギー密度を高めることが
ひさるようにしようどするものである。
Therefore, since the conventional irradiation device using the multiple reflection method is complicated, the present invention aims to simplify the device and further improve the effective use of pulsed laser light and increase the energy density. It is something.

[問題点を解決するための手段] 本発明は、焦点距離Rの凸レンズでパルスレーザ光を集
光させるようにし、この凸レンズから上記焦点距#IR
の2倍の距離を隔てたイ装置に設けた、上記と同じく焦
点距ff1Rの凸レンズと全反射平面鏡との組合せ又は
凹面鏡と、これら光学系の間にセットした照射反応セル
を用い、上記パルスレーザ光を入射光軸上に反射させる
ように1ノで入射光と反射光を重ね合わせ、パルスレー
ザ共振器からのパルスレーザ光が焦点を形成していると
ぎに反射光の焦点を同じ位置に形成させるようにする。
[Means for Solving the Problems] The present invention condenses the pulsed laser beam with a convex lens having a focal length R, and from this convex lens the focal length #IR
The above pulsed laser is The incident light and reflected light are superimposed at one point so that the light is reflected on the incident optical axis, and the reflected light is focused at the same position as the pulsed laser light from the pulsed laser resonator is focused. Let them do it.

[作   用コ パルスレーザ光の入射光と反射光が重ね合わされ、入射
光が集光されて形成された焦点と同じ位置に反射光が集
光されて共焦点が形成される。
[Operation] The incident light and reflected light of the copulse laser light are superimposed, and the reflected light is focused at the same position as the focal point formed by focusing the incident light, forming a confocal point.

[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示すもので、パルスレーザ
共振器1からのパルスレーザ光6を集光する凸レンズ(
焦点距離R)2と、該凸レンズ2から距離2Rのところ
に位置させた上記凸レンズ2と同じ焦点距離Rの凸レン
ズ3と、両凸レンズ2と3間にセットした照射反応セル
4と、上記凸レンズ3の後方に位置させた全反射平面1
i5とを用いる。、7は照射試料導入口である。
FIG. 1 shows an embodiment of the present invention, in which a convex lens (
a convex lens 3 having the same focal length R as the convex lens 2 and located at a distance 2R from the convex lens 2, an irradiation reaction cell 4 set between the biconvex lenses 2 and 3, and the convex lens 3. Total reflection plane 1 located behind
i5 is used. , 7 is an irradiation sample inlet.

今、パルスレーザ装置1から発振されたパルスレーザ光
6は、凸レンズ2に入射されて集光され焦点が形成され
る。この焦点を通過した光子は凸レンズ3に向って拡が
って進み、該凸レンズ3に入射された後、全反射平面鏡
5で反射され、この反射光が再び当該凸レンズ3で集光
され、入射光で先に焦点が形成されている地点に向い、
入射光の焦点形成地点で反射光による焦点が形成され、
共焦点8が同じ位置に形成される。
Now, the pulsed laser beam 6 oscillated from the pulsed laser device 1 is incident on the convex lens 2 and condensed to form a focal point. The photons that have passed through this focal point spread out toward the convex lens 3, and after being incident on the convex lens 3, are reflected by the total reflection plane mirror 5. This reflected light is again focused by the convex lens 3, and the incident light is Aim at the point where the focal point is formed,
A focal point is formed by the reflected light at the focal point of the incident light,
A confocal point 8 is formed at the same location.

上記入射光と反射光により共焦点8が形成されるための
条件として、入射光の焦点が形成されて消える前に反射
光の焦点が形成されることが必要であり、これは、パル
スの幅と光のスピードの関係であり、次の如き光学系が
必要である。
As a condition for the above-mentioned incident light and reflected light to form the confocal 8, it is necessary that the reflected light focus is formed before the incident light focus is formed and disappears, and this is determined by the pulse width. This is the relationship between the speed of light and the speed of light, and the following optical system is required.

2R+(凸レンズ3と全反射平面鏡5の距離)×2〈〔
レーザ光のパルス幅(n sec又はuseed]×[
光速度(C)] 上記共焦点が形成されると、その部分に大きなエネルギ
ー領域が生じ、同位体の分解が有効に行われることにな
る。
2R+(distance between convex lens 3 and total reflection plane mirror 5)×2〈
Pulse width of laser light (n sec or used) × [
Velocity of Light (C)] When the above-mentioned confocal area is formed, a large energy region is generated in that portion, and isotopes are effectively decomposed.

上記入射光が焦点を形成した後、反射光が焦点を同じ位
置に形成する状態を、時間の経過で示すと第2図のよう
になる。
After the incident light forms a focus, the state in which the reflected light forms a focus at the same position is shown in FIG. 2 over time.

次に、−例として、トリフルオロメタンを用いたレーザ
法トリチウム同位体分離について説明する。
Next, as an example, laser tritium isotope separation using trifluoromethane will be described.

HTO(トリチウム水)どC)−IF3 (トリフルオ
ロメタン)は、水素同位体交換の結果H20とCTFa
  (hリフルオロトリチウムメタン)になる。すなわ
ち、 HT O+  CHF 3  ’;! H20+ CT
  F 3CHF3とCTFaは光を吸収する波長が違
うので、ある波長ではCHF3は分解せず、CTFaは CTF3→: CF 2 + T F に分解される。
HTO (tritiated water) C)-IF3 (trifluoromethane) is a mixture of H20 and CTFa as a result of hydrogen isotope exchange.
(h-rifluorotritium methane). That is, HT O+ CHF 3';! H20+ CT
Since F3CHF3 and CTFa have different light absorption wavelengths, CHF3 is not decomposed at a certain wavelength, and CTFa is decomposed into CTF3→: CF 2 + T F .

上記の分解を第2図に冶つ′C説明J−ると、TEA 
 CO2レーザのパルスレーザ光を凸レンズ2に入射さ
せ集光させる〈第2図(イ)(0))。
The above disassembly is shown in Figure 2.
The pulsed laser beam of the CO2 laser is made incident on the convex lens 2 and condensed (Fig. 2 (a) (0)).

初めの入射光の集光で形成した焦点でCTFaの分解領
域が形成し始める。次に、上記焦点付近を通過した光子
は凸レンズ3に向って拡がって進むく第2図G’L> 
(−) )。拡がって進んだ光子は、凸レンズ3を通り
反射鏡5で反射されて集光されで、まだ入射光によって
焦点が形成されている地点く焦点)に向う(第2図(ホ
))。凸レンズ3と反射鏡5で反射、集光された光が、
入射光の焦点形成地点で焦点を形成し、共焦点8を形成
する(第2図(へ))これによって入射光のときにCT
Faに吸収されなかった光子が反射光となって再度利用
され、しかも後から来る入射光集光地点に集光されるこ
とになり、CTFaの分解効率の助長と分解領域の拡大
が図れる。
A CTFa decomposition region begins to form at the focal point formed by the initial condensation of the incident light. Next, the photons that have passed near the focal point spread out toward the convex lens 3.
(-) ). The expanded photons pass through the convex lens 3, are reflected by the reflecting mirror 5, and are condensed, heading toward the point where the focal point is still formed by the incident light (FIG. 2 (e)). The light reflected and focused by the convex lens 3 and the reflecting mirror 5 is
A focal point is formed at the focal point of the incident light, forming a confocal point 8 (see Figure 2).
The photons that are not absorbed by Fa become reflected light and are used again, and moreover, they are focused on a later incident light focusing point, thereby promoting the decomposition efficiency of CTFa and expanding the decomposition area.

第3図は本発明の他の実施例を示すもので、上記実施例
における凸レンズ3と反射鏡5に代えて曲率半仔がR/
2の凹面鏡9を用いたものであり、この実施例でも凹面
鏡9によって反射、集光されて前記の実施例と同様に同
位体の分離が行える。
FIG. 3 shows another embodiment of the present invention, in which the convex lens 3 and the reflecting mirror 5 in the above embodiment are replaced with a curvature semicircle of R/
In this embodiment, the light is reflected and focused by the concave mirror 9, and isotopes can be separated in the same manner as in the previous embodiment.

なお、照射反応セル4は光学系と一体望としてもよい。Note that the irradiation reaction cell 4 may be integrated with the optical system.

この場合は、光学部品は照射試料ガス及び分解生成物が
反応又は吸着しにくい材料で製造されていることが必要
である。
In this case, the optical component needs to be made of a material with which the irradiated sample gas and decomposition products are difficult to react with or adsorb.

[発明の効果] 以上述べた如く本発明のレーザ同位体分離法によれば、
照射反応セルに凸レンズを通して入射して来たパルスレ
ーザ入射光と同一光路上に反射させ、入射光の焦点と同
一地点に反射光の焦点を形成させC共焦点を形成させる
ので、照射反応セル中の光路内のエネルギー密度が入射
光と反射光の重複により1発のパルスレーザ光がセル中
を通過グ′る場合より高まる。このため、エネルギー効
率の向上や入射レーザ光のパルスエネルギーの抑制が可
能となる。又、入射光の焦点を通過した光が反射光とな
って再度利用できてレーザ光の有効利用ができ、照射試
料の処理量の増大が図れる。
[Effects of the Invention] As described above, according to the laser isotope separation method of the present invention,
The pulsed laser incident light that enters the irradiation reaction cell through a convex lens is reflected onto the same optical path, and the focus of the reflected light is formed at the same point as the focus of the incident light, forming a C confocal. The energy density in the optical path of the cell is higher than when a single pulsed laser beam passes through the cell due to the overlap of the incident light and the reflected light. Therefore, it is possible to improve energy efficiency and suppress pulse energy of incident laser light. In addition, the light that has passed through the focal point of the incident light becomes reflected light and can be used again, allowing effective use of the laser light and increasing the throughput of irradiated samples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の〜実M例を示す概略図、第2図は本発
明における共焦点を形成するまでの状態を示づ図、第3
図は本発明の他の実施例を示す概略図、第4図及び第5
図はいずれも従来の方法を承り概略図である。 1はパルスレーザ共振器、2.3は凸レンズ、4は照射
反応セル、5は全反射平面鏡、6はパルスレーザ光、8
は共焦点、9は凹面鏡を示す。 第1図 第2図
Fig. 1 is a schematic diagram showing an actual example of the present invention, Fig. 2 is a diagram showing the state up to the formation of a confocal area in the present invention, and Fig. 3 is a schematic diagram showing an actual example of the present invention.
The figures are schematic diagrams showing other embodiments of the present invention, Figures 4 and 5.
All figures are schematic diagrams of conventional methods. 1 is a pulsed laser resonator, 2.3 is a convex lens, 4 is an irradiation reaction cell, 5 is a total reflection plane mirror, 6 is a pulsed laser beam, 8
9 indicates a confocal mirror, and 9 indicates a concave mirror. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)パルスレーザ共振器からのパルスレーザ光を照射反
応セル内で焦点距離Rの凸レンズに入射させて集光させ
、上記凸レンズから焦点距離Rの2倍の距離を隔てた位
置で上記集光された後拡がって進むレーザ光を、凹面鏡
又は凸レンズと反射鏡との組合せにより上記入射光と同
一光路上を反射させて集光させ、入射光が集光されて焦
点が形成されているとき同一地点に反射光を集光させて
焦点を形成させることを特徴とするレーザ同位体分離法
1) The pulsed laser light from the pulsed laser resonator is made incident on a convex lens having a focal length R in the irradiation reaction cell, and the light is focused at a position separated from the convex lens by a distance twice the focal length R. After that, the laser beam that spreads and travels is reflected and focused on the same optical path as the above incident light by a combination of a concave mirror or a convex lens and a reflecting mirror, and when the incident light is focused and a focal point is formed, it is focused at the same point. A laser isotope separation method that is characterized by concentrating reflected light to form a focal point.
JP21335285A 1985-09-26 1985-09-26 Isotope separation method by laser Pending JPS6273686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21335285A JPS6273686A (en) 1985-09-26 1985-09-26 Isotope separation method by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21335285A JPS6273686A (en) 1985-09-26 1985-09-26 Isotope separation method by laser

Publications (1)

Publication Number Publication Date
JPS6273686A true JPS6273686A (en) 1987-04-04

Family

ID=16637739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21335285A Pending JPS6273686A (en) 1985-09-26 1985-09-26 Isotope separation method by laser

Country Status (1)

Country Link
JP (1) JPS6273686A (en)

Similar Documents

Publication Publication Date Title
US3558877A (en) Method and apparatus for mass separation by selective light absorption
JPS6273686A (en) Isotope separation method by laser
US4212716A (en) Method and device for excitation and selective dissociation by absorption of laser light and application to isotopic enrichment
JPS5455184A (en) Semiconductor laser light source unit
US4193855A (en) Isotope separation by multiphoton dissociation of methylamine with an infrared laser
JP3187329B2 (en) Free electron laser isotope separator
JP2815412B2 (en) Isotope separation method and separation apparatus
JP2930244B2 (en) Laser focusing method in photochemical reaction
JP2644826B2 (en) Laser isotope separation device
JPS54143660A (en) Optical system for semiconductor laser
GB2261296A (en) Dual wavelength laser beam delivery system
JPH02251227A (en) Reaction tube for isotope separation by laser
JPS61226918A (en) Optical process device
JP2877891B2 (en) Laser focusing method in photochemical reaction
JPH02258027A (en) Isotope separating reactor by laser beam
JPH0259192A (en) Laser beam equipment with large power
CN116870699A (en) Irradiation system for laser isotope separation
JPS58159834A (en) Isotope separator using laser
JPH0267559A (en) Interference exposure device
JPS5854190Y2 (en) Continuous flow laser chemical reactor
JPH062215B2 (en) Laser beam irradiation method and device for isotope separation
JP2000271773A (en) Laser beam emitting optical system
JPS5922379A (en) Beam-collector for pulse laser
JPS605329B2 (en) Uranium isotope separation device
GB2127208A (en) Process and apparatus for separating rare sulfur isotopes by means of laser radiation