JPS6273617A - Method for measuring thickness of epitaxial wafer layer - Google Patents

Method for measuring thickness of epitaxial wafer layer

Info

Publication number
JPS6273617A
JPS6273617A JP21217085A JP21217085A JPS6273617A JP S6273617 A JPS6273617 A JP S6273617A JP 21217085 A JP21217085 A JP 21217085A JP 21217085 A JP21217085 A JP 21217085A JP S6273617 A JPS6273617 A JP S6273617A
Authority
JP
Japan
Prior art keywords
etching
section
epitaxial wafer
sample
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21217085A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Kuniaki Konno
紺野 邦明
Takayuki Matsuyama
松山 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP21217085A priority Critical patent/JPS6273617A/en
Publication of JPS6273617A publication Critical patent/JPS6273617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain a method to accurately and simply measure the thickness of epitaxial growth layer by cutting a sample in the direction crossing the cutting cross-section after the etching and measuring the thickness of a specified semiconductor layer on the cross-section. CONSTITUTION:A sample 20 is cut out with a scriber along the line A-A at the position sufficiently distant from the abnormal growth section on the end of an eptaxial wafer 10 and etched for a few minutes-10min in a mixture solution of potassium hexacyanoferrate, potasium hydroxide, and water. In this etching, the epitaxial wafer 10 is etched in the direction of depth y of a semiconductor layer 16 and also substancially etched in the direction of x of adjacent semiconductor layers 14 and 18. The sample is cut in the direction crossing the cutting cross-section 22 after the etching, and the cut surface 24 is observed with a scaning type electron microscope to measure the etching width C at the deep section of a groove 26 formed with the etching, thereby providing simpler and accurate measuring of the thickness of an epitaxial wafer.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、エピタキシャルウェハにおける結晶成長層の
層厚の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for measuring the layer thickness of a crystal growth layer in an epitaxial wafer.

(発明の技術的前段とその問題点) 結晶成長後のウェハにおいて、エピタキシャル層厚は種
々のデバイス特性上鏝も重要なパラメータの一つであり
、正確なエピタキシャル層厚を求めることは極めて重要
である。特に光半導体用のエピタキシャルウェハは、活
性層を含むダブルヘテロ構造を有し、また活性層の層厚
さは〜0,15μmであり、少しの誤差でデバイスの特
性は大きく左右される。このため、エピタキシャル層の
厚さを正確に測定し、結晶成長プロセスにフィード・バ
ックすることが、デバイスの特性向上に寄与する。
(Technical first stage of the invention and its problems) In the wafer after crystal growth, the epitaxial layer thickness is one of the important parameters for various device characteristics, and it is extremely important to determine the accurate epitaxial layer thickness. be. In particular, epitaxial wafers for optical semiconductors have a double heterostructure including an active layer, and the layer thickness of the active layer is ~0.15 μm, and even a small error greatly affects the characteristics of the device. Therefore, accurately measuring the thickness of the epitaxial layer and feeding it back to the crystal growth process contributes to improving device characteristics.

従来、エピタキシャルウェハの層厚測定は、ウェハの結
晶成長方向の断面より選択エッチャントにより測定すべ
き所定の成長層をエツチングしたのち、断面を走査型電
子顕微鏡などを用いて観察していた。
Conventionally, the layer thickness of an epitaxial wafer has been measured by etching a predetermined growth layer to be measured from a cross section of the wafer in the crystal growth direction using a selective etchant, and then observing the cross section using a scanning electron microscope or the like.

第5図は、測定すべき所定の成長層を選択エツチングし
たエピタキシャルウェハの層厚評価サンプルを示す。図
中、(1)は半導体基板、(2L (3L(4)は夫々
エピタキシャル結晶成長された半導体層を示す。半導体
層(3)は、半導体B (2)、 (4)とは原子構成
あるいは不純物の種類が異なる物質よりなっている。ま
た、(5)はエツチングにより形成された溝である。こ
のような評価サンプルにおいて、矢印(6)で示す方向
からサンプルのエツチングされた表面(7)を観察し、
エツチング幅D1を測定することにより、所定の半導体
層(3)の層厚を測定していた。
FIG. 5 shows a layer thickness evaluation sample of an epitaxial wafer in which a predetermined growth layer to be measured has been selectively etched. In the figure, (1) indicates a semiconductor substrate, (2L (3L) (4) indicates a semiconductor layer grown by epitaxial crystal growth, respectively. Semiconductor layer (3) is a semiconductor B (2), (4) indicates an atomic structure or It is made of substances with different types of impurities. In addition, (5) is a groove formed by etching. In such an evaluation sample, the etched surface (7) of the sample is viewed from the direction shown by the arrow (6). observe,
The layer thickness of a predetermined semiconductor layer (3) was measured by measuring the etching width D1.

ところで、選択エッチャントにより半導体層(3)のみ
をエツチングしたにも係わらず、実際には隣接した半導
体層(2)、 (4)にもエツチングが生じている。こ
のため、エツチング幅D1は、半導体層(3)の実際の
層厚D2よりも大きくなり、半導体層の層厚を厚く評価
していた。
Incidentally, although only the semiconductor layer (3) was etched using the selective etchant, the adjacent semiconductor layers (2) and (4) were actually etched as well. For this reason, the etching width D1 is larger than the actual layer thickness D2 of the semiconductor layer (3), and the thickness of the semiconductor layer has been evaluated to be thicker.

その他の層厚測定方法として斜め研磨法によるものがあ
るが、この方法では工程が複雑になるうえ、研磨中に結
晶にクラックが入り評価サンプルを損傷するなどの欠点
がある。
Another method for measuring layer thickness is by diagonal polishing, but this method not only complicates the process, but also has drawbacks such as cracks in the crystal during polishing, which can damage the evaluation sample.

(発明の目的) 本発明tよ、エピタキシャル成長層の層厚を正確に、か
つ簡単に求めることができるエピタキシセルウェハの層
厚測定方法を提供するものである。
(Objective of the Invention) An object of the present invention is to provide a method for measuring the layer thickness of an epitaxial cell wafer, which can accurately and easily determine the layer thickness of an epitaxially grown layer.

(発明の概要) 本発明は、複数の半導体層をエピタキシャル成長させた
エピタキシャルウェハからサンプルを切り出す工程と、
サンプルの複数の半導体層のうら所定の半導体芯を選択
エッチャントにより切り出された面からエツチングする
工程と、この工程の後切断面と交差する方向にサンプル
を劈開する工程と、劈開された断面における所定の半導
体層の層厚を測定する工程とを備えたエピタキシセルウ
ェハの層厚測定方法である。
(Summary of the Invention) The present invention includes a step of cutting out a sample from an epitaxial wafer on which a plurality of semiconductor layers are epitaxially grown;
A step of etching a predetermined semiconductor core from the cut out surface of the plurality of semiconductor layers of the sample using a selective etchant, a step of cleaving the sample in a direction intersecting the cut plane after this step, and a step of etching a predetermined semiconductor core in the cleaved cross section. This is a method for measuring the layer thickness of an epitaxial cell wafer, comprising the step of measuring the layer thickness of a semiconductor layer.

即ち、本発明によれば、エピタキシセルウェハに結晶成
長方向の断面を形成し、この断面から選択エッチャント
で層厚を測定ずべき所定の半導体層を選択的にエツチン
グし、この後断面と交差する方向にエピタキシャルウェ
ハを劈開してエツチングの深さ方向の断面を露出させ、
エツチングの深部におけるエツチング幅を測定可能にし
、半導体層のより正確な層厚測定を可能にするものであ
る。
That is, according to the present invention, a cross-section in the crystal growth direction is formed on an epitaxy cell wafer, a predetermined semiconductor layer whose layer thickness is to be measured is selectively etched from this cross-section with a selective etchant, and a cross-section intersecting with this cross-section is selectively etched using a selective etchant. cleave the epitaxial wafer in the direction to expose the cross section in the etching depth direction,
This makes it possible to measure the etching width in the deep part of the etching, thereby making it possible to more accurately measure the layer thickness of the semiconductor layer.

(発明の実施例) 本実施例は、液相結晶成長により作成したI nGaA
sP/InP系光半導体用エピタ主光半導体用エピタキ
シャルウェハた例でおる。第2図に示すように、エピタ
キシャルウェハ(10)は、n−InPからなる基板(
12)上に、n−InPからなる半導体層(14)、I
nGaASPからなる半導体層(16)及び叶InPか
らなる半導体層(18)をI!Ij¥次液相成長してな
り、ダブルヘテロ構造を有している。
(Example of the Invention) This example describes InGaA prepared by liquid phase crystal growth.
This is an example of an epitaxial wafer for an sP/InP optical semiconductor and an epitaxial wafer for a main optical semiconductor. As shown in FIG. 2, the epitaxial wafer (10) has a substrate (
12) On top, a semiconductor layer (14) made of n-InP, I
The semiconductor layer (16) made of nGaASP and the semiconductor layer (18) made of InP are I! It is formed by Ij\order liquid phase growth and has a double heterostructure.

第1図は、本発明にあける層厚評価サンプルを作る工程
を示す図である。まず、第1図(a)に示すように、エ
ピタキシャルウェハ(10)の端部の異常成長部より充
分、例えば2〜3市程度離れた位置でA−A線に沿って
スクライバなどでサンプル(20)を切り出す。図中、
(19)はエピタキシャル成長された半導体層を示す。
FIG. 1 is a diagram showing the process of making a layer thickness evaluation sample according to the present invention. First, as shown in FIG. 1(a), a sample ( 20) Cut out. In the figure,
(19) shows an epitaxially grown semiconductor layer.

次に、同図(b)に示すように、切り出したサンプル(
20)を、ヘキサジ7ノ鉄(III)l!カリウム(k
3[FE(CN)6 ])、水酸化カリウム(に011
)、水(H2O)の混合液により数秒〜10秒程度エツ
チングする。この溶液は、InPに対するInGaAs
Pの選択エッチャントであり、InGaAsPからなる
半導体層(16)は、各半導体層(14)、 (16)
、 (18)が露出する切断面(22)よりエツチング
されていく。
Next, as shown in the same figure (b), the cut out sample (
20), hexadi7iron(III) l! Potassium (k
3[FE(CN)6]), potassium hydroxide (ni011
) and water (H2O) for several seconds to 10 seconds. This solution is a mixture of InGaAs and InP.
The semiconductor layer (16) is a selective etchant of P and is made of InGaAsP.
, (18) are etched from the exposed cut surface (22).

このエツチングの後、同図(C)に示すように、層厚評
価サンプル(20)を切り出された切断面(22)と交
差する方向、例えば直角方向に劈開する。そして、その
劈開面(24)を走査型電子顕微鏡で観察する。この時
見られる典型的な走査型電子顕微鏡像を第3図に示す。
After this etching, the layer thickness evaluation sample (20) is cleaved in a direction intersecting the cut surface (22), for example, in a right angle direction, as shown in FIG. Then, the cleavage plane (24) is observed with a scanning electron microscope. A typical scanning electron microscope image seen at this time is shown in FIG.

また、上述のエラチャン1〜によるInGaAsPから
なる半導体m (16)のエツチング速度を第4図に示
す。上述のエツチングにより、エピタキシャルウェハ(
10)は、半導体1m (16)が深さ方向(y)にエ
ツチングされるのみならず、隣接する半導体層(14)
、 (18)の方向(X )にもかなりエツチングされ
ることがわかる。従って、第3図において、エツチング
面(22)ではなく、劈開面(24)を観察し、エツチ
ングにより形成された溝(26)の深い部分でのエツチ
ング幅Cを測定することにより、所定の半導体層の層厚
を正確に測定することができる。
FIG. 4 shows the etching rate of the semiconductor m (16) made of InGaAsP by the above-mentioned Erachans 1 to 1. By the above etching, the epitaxial wafer (
10) shows that not only the semiconductor 1m (16) is etched in the depth direction (y), but also the adjacent semiconductor layer (14) is etched.
, (18), it can be seen that it is also etched considerably in the direction (X). Therefore, in FIG. 3, by observing the cleavage plane (24) instead of the etching plane (22) and measuring the etching width C at the deep part of the groove (26) formed by etching, a predetermined semiconductor can be etched. The layer thickness of the layers can be measured accurately.

なお、本実施例では、InGaAsP/ I nP系先
光半導体用エピタキシャルウェハ層厚評価についての例
を示したが、GaA I As/GaAs系光半導体、
その他種々の薄膜応用デバイスのエピタキシャルウェハ
の層厚の測定に応用ができる。
In this example, an example was shown for evaluating the layer thickness of an epitaxial wafer for an InGaAsP/InP-based optical semiconductor;
It can also be applied to measuring the layer thickness of epitaxial wafers of various other thin film application devices.

(発明の効果) 以上説明した本発明のエピタキシャルウェハの層厚測定
方法によれば、簡易にして、かつ精度よくエピタキシャ
ルウェハの層厚の測定ができる。
(Effects of the Invention) According to the method for measuring the layer thickness of an epitaxial wafer of the present invention described above, the layer thickness of an epitaxial wafer can be measured easily and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における層厚評価サンプルの作成工程を
示す図、第2図は層厚評価に使用される一例のエピタキ
シャルウェハの断面図、第3図は本発明の実施例におけ
る典型的な走査型電子顕微鏡像を示す図、第4図はエツ
チング時間とエツチング足との関係を示す図、第5図は
従来の層厚測定方法を示す図である。 (10)・・・・・・エピタキシャルウェハ、(12)
−・・・・・半導体基板、 (14)、 (16)、 (18)・・・・・・半導体
層、(20)・・・・・・層厚評価サンプル。 代理人弁理士  則 近 憲 佑 同  大胡典大 (b)            (C)第1図 第2図 ズ 第3図
Fig. 1 is a diagram showing the process of creating a layer thickness evaluation sample in the present invention, Fig. 2 is a cross-sectional view of an example of an epitaxial wafer used for layer thickness evaluation, and Fig. 3 is a diagram showing a typical epitaxial wafer in an embodiment of the present invention. FIG. 4 is a diagram showing a scanning electron microscope image, FIG. 4 is a diagram showing the relationship between etching time and etching foot, and FIG. 5 is a diagram showing a conventional layer thickness measurement method. (10)...Epitaxial wafer, (12)
-...Semiconductor substrate, (14), (16), (18)...Semiconductor layer, (20)...Layer thickness evaluation sample. Representative Patent Attorney Noriyuki Chika Yudo Norihiro Ogo (b) (C) Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)複数の半導体層をエピタキシャル成長させたエピ
タキシャルウェハからサンプルを切り出す工程と、前記
サンプルの前記複数の半導体層のうち所定の半導体層を
選択エッチャントにより切り出された面からエッチング
する工程と、この工程の後前記切断面と交差する方向に
前記サンプルを劈開する工程と、劈開された断面におけ
る前記所定の半導体層の層厚を測定する工程とを備えた
エピタキシャルウェハの層厚測定方法。
(1) A step of cutting out a sample from an epitaxial wafer on which a plurality of semiconductor layers have been epitaxially grown; a step of etching a predetermined semiconductor layer of the plurality of semiconductor layers of the sample from the cut out surface with a selective etchant; and this step. A method for measuring a layer thickness of an epitaxial wafer, comprising: cleaving the sample in a direction intersecting the cut plane; and measuring a layer thickness of the predetermined semiconductor layer in the cleaved cross section.
(2)前記複数の半導体層がダブルヘテロ構造を有する
ことを特徴とする特許請求の範囲第1項記載のエピタキ
シャルウェハの層厚測定方法。
(2) The method for measuring the layer thickness of an epitaxial wafer according to claim 1, wherein the plurality of semiconductor layers have a double heterostructure.
JP21217085A 1985-09-27 1985-09-27 Method for measuring thickness of epitaxial wafer layer Pending JPS6273617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21217085A JPS6273617A (en) 1985-09-27 1985-09-27 Method for measuring thickness of epitaxial wafer layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21217085A JPS6273617A (en) 1985-09-27 1985-09-27 Method for measuring thickness of epitaxial wafer layer

Publications (1)

Publication Number Publication Date
JPS6273617A true JPS6273617A (en) 1987-04-04

Family

ID=16618064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21217085A Pending JPS6273617A (en) 1985-09-27 1985-09-27 Method for measuring thickness of epitaxial wafer layer

Country Status (1)

Country Link
JP (1) JPS6273617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102944A (en) * 2019-12-10 2020-05-05 深圳莱宝高科技股份有限公司 Film thickness detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102944A (en) * 2019-12-10 2020-05-05 深圳莱宝高科技股份有限公司 Film thickness detection method

Similar Documents

Publication Publication Date Title
US6218264B1 (en) Method of producing a calibration standard for 2-D and 3-D profilometry in the sub-nanometer range
DE69204828T2 (en) Manufacture of laser diodes with cleavage faces on a complete wafer.
US4652333A (en) Etch process monitors for buried heterostructures
US6358860B1 (en) Line width calibration standard manufacturing and certifying method
US20080272087A1 (en) Method for fabricating probe for use in scanning probe microscope
JPS6273617A (en) Method for measuring thickness of epitaxial wafer layer
JP2694115B2 (en) Calibration / measurement reference structure, method for forming the same, and measurement method using the same
US4676863A (en) Method of fabricating a mesa stripe on a semiconductor wafer plane
JP3253841B2 (en) Method for manufacturing semiconductor device
US4439268A (en) Orientation of INP substrate wafers
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JP2665093B2 (en) Evaluation method of epitaxial crystal
JPH0194690A (en) Manufacture of buried type semiconductor laser device
JPS61284985A (en) Manufacture of semiconductor laser device
JPS6030120A (en) Measurement of growth thickness of crystal
JP3002526B2 (en) Method for manufacturing semiconductor laser device
JP2002198308A (en) Mask alignment method
JPH0563302A (en) Semiconductor laser
JPS62293687A (en) Manufacture of semiconductor laser
JPS5947480B2 (en) Manufacturing method of semiconductor device
JPH0198215A (en) Compound semiconductor epitaxial substrate
JPH0967200A (en) Defect evaluation method for mercury1-xcadmiumxtellurium epitaxial crystal
JPH0239481A (en) Manufacture of semiconductor laser
JPH0677530A (en) Semiconductor light emitting device and its evaluation method
JPH09321380A (en) Semiconductor light emitting device and its manufacture