JPS6273573A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6273573A
JPS6273573A JP60212461A JP21246185A JPS6273573A JP S6273573 A JPS6273573 A JP S6273573A JP 60212461 A JP60212461 A JP 60212461A JP 21246185 A JP21246185 A JP 21246185A JP S6273573 A JPS6273573 A JP S6273573A
Authority
JP
Japan
Prior art keywords
gas
electrode
carbon material
electrode end
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212461A
Other languages
Japanese (ja)
Inventor
Atsushi Miki
幹 淳
Shohei Uozumi
魚住 昇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60212461A priority Critical patent/JPS6273573A/en
Publication of JPS6273573A publication Critical patent/JPS6273573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To absorb gas leakage with a leaked gas absorbing groove by forming an electrode end part with denser carbon material than that of an electrode power generating part, and installing a leaked gas absorbing groove, which opens on the separator side and absorbs leaked gas, in parallel to a gas passage, in the dense carbon material. CONSTITUTION:An electrode end part 4 is formed with denser carbon material than that of an electrode power generating part 3, and a leaked gas absorbing groove 4a which opens on the side of separator 2 and absorbs leaked gas is installed in parallel to a gas passage 3a in the dense carbon. Since leaked gas is absorbed in the leaked gas absorbing groove 4a, a fuel cell in which the leakage of different gas into the electrode power generating part 3 is decreased can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to fuel cells.

〔発明の背景〕[Background of the invention]

従来、燃料電池の電極端部におけるガス漏れによる燃料
ガスと酸化剤ガスとの混合すなわち異種ガスの混合を防
止するための電極端部シールの技術としては、特開昭5
8−44672号公報、特開昭59−68171号公報
、特開昭59−46767号公報、特開昭60−105
64号公報、特開昭60−10565号公報。
Conventionally, as a technique for sealing the electrode end to prevent the mixing of fuel gas and oxidizing gas due to gas leakage at the electrode end of a fuel cell, that is, the mixing of different gases, there is a technique disclosed in Japanese Patent Laid-Open No. 5
8-44672, JP 59-68171, JP 59-46767, JP 60-105
No. 64, JP-A-60-10565.

特開昭59−205164号公報、特開昭59−207
563号公報、特開昭6.0−66号公報などがある。
JP-A-59-205164, JP-A-59-207
563, Japanese Patent Application Laid-open No. 6.0-66, etc.

このうち例えば特開昭59−207563号公報では電
極端部を貫通するガス漏れに対しては有効であるが、電
極端部とセパレータとの界面を通るガス漏れに対しては
電極表面が十分に平滑でない場合は別途対策が必要であ
る。また、例えば特開昭60−10564号公報や特開
昭60−10565号公報では電極端部を貫通するガス
漏れと、電極端部とセパレータとの界面を通るガス漏れ
との両方に対して有効であるが、セパレータの形状が複
雑になる。
Among them, for example, Japanese Patent Application Laid-Open No. 59-207563 is effective against gas leakage penetrating through the electrode end, but the electrode surface is not sufficient to prevent gas leakage through the interface between the electrode end and the separator. If it is not smooth, separate measures are required. In addition, for example, Japanese Patent Application Laid-Open No. 60-10564 and No. 60-10565 are effective against both gas leakage penetrating through the electrode end and gas leakage through the interface between the electrode end and the separator. However, the shape of the separator becomes complicated.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、電極発電
部への異種ガスの漏れ込みを低減することを可能とした
燃料電池を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a fuel cell that makes it possible to reduce leakage of foreign gases into the electrode power generation section.

〔発明の概要〕[Summary of the invention]

すなわち本発明は対向配置された一対のガス拡散電極と
、このガス拡散電極に積層されたセパレータとを備え、
前記電極はガス流路を有している電極発電部および電極
端部から構成されている燃装電池において、前記電極端
部が、前記電極発電部のそれより緻密な炭素材で形成さ
れると共に、この炭素材に前記ガス流路と平行に、かつ
前記セパレータ側に開口したガスリークを吸収するガス
リーク吸収用溝が設けられたものであることを特徴とす
るものであり、これによってガス漏れはガスリーク吸収
用溝で吸収されるようになる。
That is, the present invention includes a pair of gas diffusion electrodes arranged opposite to each other, and a separator laminated on the gas diffusion electrodes,
In a fuel cell in which the electrode is composed of an electrode power generating section having a gas flow path and an electrode end, the electrode end is formed of a denser carbon material than that of the electrode power generating section; The carbon material is characterized in that a gas leak absorbing groove is provided in the carbon material, which is parallel to the gas flow path and opens toward the separator side, and which absorbs gas leak. It will be absorbed by the absorption groove.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。同図に示さ
れているように燃料電池はガス拡散電w4(1対のうち
1方のもを図示した。以下電極と称す)1.この電極1
に積層されたセパレータ2等を備えている9そして電極
1はガス流路3aを有している電極発電部3および電極
端部4から構成されている。このように構成された燃料
電池で本実施例では電極端部4を、電極発電部3のそれ
より緻密な炭素材で形成すると共に、この炭素材にガス
流路;3aと平行に、かつセパレータ2側に開口したガ
スリークを吸収するガスリーク吸収用溝4aを設けた。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. As shown in the figure, the fuel cell consists of gas diffusion electrodes w4 (one of the pair is shown; hereinafter referred to as the electrode) 1. This electrode 1
The electrode 1 includes a separator 2 and the like laminated on the electrode 9 and an electrode power generating section 3 having a gas flow path 3a and an electrode end portion 4. In this embodiment of the fuel cell configured as described above, the electrode end portion 4 is formed of a carbon material denser than that of the electrode power generating portion 3, and a gas flow path is provided in this carbon material in parallel with the gas flow path 3a and a separator. A gas leak absorption groove 4a opened on the second side and absorbing gas leak was provided.

このようにすることにより電極端部4は電極発電部3の
それより緻密な炭素材で形成されると共に、炭素材には
ガス流路と平行に、かつセパレータ2側に開1」シたガ
入り−クを吸収するガスリーク吸収溝4aが設けられる
ようになって、ガス漏れはガスリーク吸収用溝4aで吸
収されるようになり、電極発電部3ノ\の異種ガスの漏
れ込みを低減することを可能とした燃料電池を得ること
ができる。
By doing so, the electrode end portion 4 is formed of a carbon material that is denser than that of the electrode power generation section 3, and the carbon material has an opening 1" parallel to the gas flow path and on the separator 2 side. Since the gas leak absorption groove 4a is provided to absorb incoming leakage, gas leakage is absorbed by the gas leak absorption groove 4a, thereby reducing the leakage of foreign gases into the electrode power generation section 3. It is possible to obtain a fuel cell that makes this possible.

すなわち電極1をポーラスな炭素材料で構成される電極
発電部3と高度に緻密化された炭素材で構成される電極
端部4とで構成した。この電極発電部3と電極端部4と
は耐熱、耐酸性等を備えた例えばふっ素樹脂で接着され
る。この電極端部4は一般のカーボン材でもよいが、シ
ール性能上ガス透過率が10−” c m”/ s  
以下であることが望ましい、そして電極端部4には電極
発電部3に設けであるガス流路3aと平行に、ガスリー
ク吸収用溝4aを設けた。
That is, the electrode 1 was constructed of an electrode power generation section 3 made of a porous carbon material and an electrode end portion 4 made of a highly densified carbon material. The electrode power generation portion 3 and the electrode end portion 4 are bonded together using, for example, a fluororesin having heat resistance, acid resistance, and the like. This electrode end 4 may be made of a general carbon material, but the gas permeability is 10 cm/s due to sealing performance.
The following is desirable, and a gas leak absorbing groove 4a is provided in the electrode end portion 4 in parallel with the gas flow path 3a provided in the electrode power generation section 3.

このように1!電極端4を形成することによって。Like this 1! By forming the electrode end 4.

反応ガスが流通するガス流路3aへのその反応ガスと異
なる所謂異種ガスの漏れ込みを激減させることができる
ようになる。すなわち電極端部4をガス透過性の小さい
緻密炭素材とすることによって、この緻密炭素材中を通
っての異種ガスの混入は防止することができるが、セパ
レータ2と電極端部4との界面からの異種ガスの混入、
漏出は、電極端部4とセパレータ2との厚みの微小な凹
凸により防止できない恐れがある。すなわち他のガス流
路より漏出し、ガス流路3aを流れるガスとは異なる異
種ガスは、電極端部4とセパレータ2との間の図中矢印
表示のガスリーク経路5から電極発電部3のガス流路3
a内に侵入してくる。ところでこのような異種ガスの漏
れ込み量は電極端部4から1本口のガス流路3aで最大
となり、2木目以降は指数関数的に急激に減少すること
が発明者等の実験結果から実験的に知られている。従つ
て本実施例のように電極端部4の緻密炭素材にガスリー
ク吸収用[4ati−設けておけば、ガスリーク経路5
から侵入してきた異種ガスはほぼその全量近くがガスリ
ーク吸収用溝4aで反応ガスにより希釈されるようにな
って、電極発電部3のガス流路3aへの異種ガス漏れ込
みを激減することができるようになり、電池性能を安定
に保持することができ、その信頼性を向上することがで
きる。
It becomes possible to drastically reduce the leakage of so-called foreign gas different from the reaction gas into the gas flow path 3a through which the reaction gas flows. That is, by making the electrode end 4 a dense carbon material with low gas permeability, it is possible to prevent foreign gas from entering through the dense carbon material, but the interface between the separator 2 and the electrode end 4 can be prevented. Contamination of foreign gases from
Leakage may not be prevented due to minute irregularities in the thickness of the electrode end 4 and the separator 2. That is, a different type of gas leaking from other gas flow paths and different from the gas flowing through the gas flow path 3a is transferred from the gas leak path 5 indicated by the arrow in the figure between the electrode end 4 and the separator 2 to the gas in the electrode power generation section 3. Channel 3
It invades inside a. By the way, the inventors' experimental results show that the leakage amount of such different gases reaches its maximum in the single gas flow path 3a from the electrode end 4, and rapidly decreases exponentially from the second grain onward. is known for. Therefore, if the dense carbon material of the electrode end 4 is provided with a gas leak absorbing material as in this embodiment, the gas leak path 5
Almost all of the foreign gas that has entered from the electrode is diluted by the reaction gas in the gas leak absorbing groove 4a, and the leakage of the foreign gas into the gas flow path 3a of the electrode power generation section 3 can be drastically reduced. As a result, battery performance can be stably maintained and its reliability can be improved.

なお本実施例では電極端部4をガス透過性の小さい緻密
炭素材で形成した場合について説明したが、これのみに
限るものではなく電極端部を例えばポーラスな炭素材料
中に耐熱、耐酸性等に優れ、かつ化学的に安定な液体、
粉体等を充填して形成し、ガス透過性を小さくしたもの
についても同様に実施するこ”とができ、同様な作用効
果を奏することができる。
In this embodiment, a case has been described in which the electrode end portion 4 is formed of a dense carbon material with low gas permeability, but the electrode end portion is not limited to this. A chemically stable liquid with excellent
It is also possible to perform the same operation on a structure filled with powder or the like to reduce gas permeability, and the same effect can be achieved.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は電極発電部への異種ガスの漏れ込
みが低減されるようになって、電極発電部への異種ガス
の漏れ込みを低減することを可能とした燃料電池を得る
ことができる。
As described above, the present invention reduces the leakage of foreign gases into the electrode power generation section, and it is possible to obtain a fuel cell in which the leakage of foreign gases into the electrode power generation section can be reduced. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池の一実施例のガス拡散電極の
電極端部周りの縦断側面図である。 1・・・ガス拡散電極、2・・・セパレータ、3・・・
電極発電部、3a・・・ガス流路、4・・・電極端部、
4a・・・ガスリーク吸収用溝、5・・・ガスリーク経
路。
FIG. 1 is a longitudinal sectional side view of the vicinity of the electrode end of a gas diffusion electrode of an embodiment of the fuel cell of the present invention. 1... Gas diffusion electrode, 2... Separator, 3...
Electrode power generation section, 3a... gas flow path, 4... electrode end,
4a... Gas leak absorption groove, 5... Gas leak path.

Claims (1)

【特許請求の範囲】[Claims] 1、対向配置された一対のガス拡散電極と、このガス拡
散電極に積層されたセパレータとを備え、前記電極はガ
ス流路を有している電極発電部および電極端部から構成
されている燃料電池において、前記電極端部が、前記電
極発電部のそれより緻密な炭素材で形成されると共に、
この炭素材に前記ガス流路と平行に、かつ前記セパレー
タ側に開口したガスリークを吸収するガスリーク吸収用
溝が設けられたものであることを特徴とする燃料電池。
1. A fuel comprising a pair of gas diffusion electrodes arranged opposite to each other and a separator laminated on the gas diffusion electrodes, the electrodes comprising an electrode power generating section and an electrode end portion having a gas flow path. In the battery, the electrode end portion is formed of a denser carbon material than that of the electrode power generation portion, and
A fuel cell characterized in that the carbon material is provided with a gas leak absorbing groove that is open to the separator side and is parallel to the gas flow path and that absorbs gas leak.
JP60212461A 1985-09-27 1985-09-27 Fuel cell Pending JPS6273573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212461A JPS6273573A (en) 1985-09-27 1985-09-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212461A JPS6273573A (en) 1985-09-27 1985-09-27 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6273573A true JPS6273573A (en) 1987-04-04

Family

ID=16623016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212461A Pending JPS6273573A (en) 1985-09-27 1985-09-27 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6273573A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154772A (en) * 1983-02-24 1984-09-03 Toshiba Corp Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154772A (en) * 1983-02-24 1984-09-03 Toshiba Corp Fuel cell

Similar Documents

Publication Publication Date Title
FR2529804A1 (en) DEVICE FOR THE SEPARATION OF GASEOUS ISOTOPES FROM HYDROGEN
JPH041469B2 (en)
JPS6273573A (en) Fuel cell
JP3349189B2 (en) Solid polymer electrolyte fuel cell stack
JPS6191876A (en) Fuel cell device
JPS6091567A (en) Fuel cell
JP2006019034A (en) Fuel cell and its manufacturing method
JPS62103978A (en) Fuel cell
JPS6273576A (en) Fuel cell
JPS60177562A (en) Fuel cell
JP2001023654A (en) Phosphoric acid type fuel cell
JPS6252863A (en) Fuel cell
JPH0473265B2 (en)
JP2693636B2 (en) Fuel cell
JPS5996670A (en) Fused-carbonate fuel cell
JP2949088B2 (en) Molten salt fuel cell
JP2500021B2 (en) Fuel cell
JPS6273574A (en) Fuel cell
JPS62131477A (en) Fuel cell
JPH0129308B2 (en)
JPH06124717A (en) Electrochemical cell
JPS61216251A (en) Fuel cell
JPS6273575A (en) Fuel cell
JPH071699B2 (en) Fuel cell
JPS6240825B2 (en)