JPS6273306A - Interpolating method for three-dimensional curved surface - Google Patents

Interpolating method for three-dimensional curved surface

Info

Publication number
JPS6273306A
JPS6273306A JP60214175A JP21417585A JPS6273306A JP S6273306 A JPS6273306 A JP S6273306A JP 60214175 A JP60214175 A JP 60214175A JP 21417585 A JP21417585 A JP 21417585A JP S6273306 A JPS6273306 A JP S6273306A
Authority
JP
Japan
Prior art keywords
boundary
interpolation
curves
interpolated
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60214175A
Other languages
Japanese (ja)
Inventor
Moriaki Sakakura
坂倉 守昭
Motohiro Tanaka
田中 太宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP60214175A priority Critical patent/JPS6273306A/en
Publication of JPS6273306A publication Critical patent/JPS6273306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To resolve intersection between a ridgeline connecting shape element connection point on a boundary curve and interpolated curves by creating an interpolated curve on a basis of interpolated points on the boundary line operated for individual divided shape elements of boundary curves facing each other. CONSTITUTION:A computer 10 reads in definitions of boundary line and definitions of correspondence described with a part program and decodes them. The computer 10 decodes them to create boundary curves in accordance with program data and discriminates a correspondence method on a basis of correspondence designating data and operates interpolated points on a pair of boundary lines facing each other. The connection processing between interpolated points facing each other is performed for each of boundary curved facing each other after this operation, and intersection coordinate values of boundary curves are operated as interpolated values of a three-dimensional curved surface. When operation is completed, interpolated value data is stored in a disc device 12.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は三次元曲面の補間方法、詳しくは、少なくとも
対向する一対の境界曲線のそれぞれが円弧もしくは線分
から成る相等しい数の形状要素に分割可能な4つの境界
曲線で囲まれた三次元曲面を補間する三次元曲面の補間
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for interpolating a three-dimensional curved surface, and more specifically, a method for dividing at least a pair of opposing boundary curves into an equal number of shape elements each consisting of a circular arc or a line segment. The present invention relates to a three-dimensional curved surface interpolation method for interpolating a three-dimensional curved surface surrounded by four possible boundary curves.

〈従来の技術〉 従来の三次元曲面の補間方法においては、第9図(al
に示すように、対向する一対の境界曲線BL1とBL3
.BL2とBL4上において距離比m:nが等しくなる
点を境界曲線BLI−BLA上の補間点Pli、P2i
、P3i、P4iとして演算するとともに、対向する一
対の境界曲線上の対応する補間点どうしを補間曲線で接
続し、境界曲線BLIとBL3との間を接続する補間曲
線■L1と、境界曲線BL2とBL4との間を接続する
補間曲線rL2との交点の座標値を三次元曲面の補間値
として導出するようにしていた。
<Prior art> In the conventional interpolation method for three-dimensional curved surfaces, the method shown in FIG.
As shown in , a pair of opposing boundary curves BL1 and BL3
.. Points where the distance ratio m:n is equal on BL2 and BL4 are interpolated points Pli and P2i on the boundary curve BLI-BLA.
, P3i, and P4i, and connect corresponding interpolation points on a pair of opposing boundary curves with an interpolation curve to create an interpolation curve ■L1 that connects the boundary curves BLI and BL3, and a boundary curve BL2. The coordinate values of the intersection with the interpolation curve rL2 connecting with BL4 are derived as the interpolation values of the three-dimensional curved surface.

〈発明が解決しようとする問題点〉 対向する一対の境界曲線が相似形である場合には、上記
した補間方法によって一対の境界曲線間に理想に近い形
で補間曲線を形成できるが、対向する一対の境界曲線が
相似形でない場合には、好ましい補間曲線を形成できな
い。例えば第9図(b)に示すように、対向する一対の
境界曲線BLI。
<Problems to be Solved by the Invention> When a pair of opposing boundary curves have similar shapes, an interpolated curve can be formed between the pair of boundary curves in a shape close to the ideal by the interpolation method described above. If the pair of boundary curves are not similar, a preferable interpolation curve cannot be formed. For example, as shown in FIG. 9(b), a pair of opposing boundary curves BLI.

BL3のそれぞれは、線分と円弧を組合わせた形状であ
るが、線分と円弧の境界点DPI、BP2の位置が大幅
に異なる場合には、従来の方式によって補間曲線を作る
と、境界曲線BLIとBL2との間に形成される補間曲
線ILは、点BPI。
Each BL3 has a shape that is a combination of a line segment and a circular arc, but if the positions of the boundary points DPI and BP2 between the line segment and the circular arc are significantly different, if an interpolated curve is created using the conventional method, the boundary curve The interpolation curve IL formed between BLI and BL2 is a point BPI.

BF2を結ぶ稜線と交差するように形成され、これに基
づいて補間点を導出すると点BPI、BP2を結ぶ稜線
の形状がくずれる問題があった。
It is formed so as to intersect with the ridge line connecting points BF2, and when an interpolation point is derived based on this, there is a problem that the shape of the ridge line connecting points BPI and BP2 is distorted.

〈問題点を解決するための手段〉 本発明は、一対の対向する境界曲線上においては、分割
された形状要素毎に境界曲線上の補間点の座標を演算し
て、対向する境界曲線上の補間点との間を補間曲線で結
び、この複数の補間曲線と残りの一対の境界曲線に形成
された複数の補間曲線との交点座標値を三次元曲面の補
間点座標値として算出するようにしたことを特徴とする
ものである。
<Means for Solving the Problems> The present invention calculates the coordinates of interpolation points on the boundary curves for each divided shape element on a pair of opposing boundary curves, and Interpolation points are connected with interpolation curves, and the coordinates of the intersections between these multiple interpolation curves and the multiple interpolation curves formed on the remaining pair of boundary curves are calculated as the interpolation point coordinates of the three-dimensional surface. It is characterized by the fact that

〈作用〉 円弧、線分等の形状要素の数が等しい対向する一対の境
界曲線上においては、第1図に示すように各形状要素P
Ell−PE22毎に、対向する境界曲線の対応する形
状要素と等しい数で形状要素を分割して補間点を導出す
る。そして、このように導出された一対の境界曲線上の
補間点(対応点)間に補間曲線を形成する。この後、残
りの一対の境界曲線間に形成された補間曲線との交点座
標を導出する。このように補間を行うことにより、同数
の形状要素から成る一対の境界曲線間には第1図に示す
ように補間曲線IL影形成れ、補間曲線r r、が一対
の境界曲線上の点BPI〜BP2を結ぶ稜線を横切るこ
とがない。このため、上記方式によって求めた補間点は
稜線近傍の形状を理想に近い形に補間できる。
<Operation> On a pair of opposing boundary curves having the same number of shape elements such as arcs and line segments, each shape element P
For each Ell-PE 22, interpolation points are derived by dividing the shape element into the number equal to the number of corresponding shape elements of the opposing boundary curve. Then, an interpolation curve is formed between the interpolation points (corresponding points) on the pair of boundary curves derived in this way. Thereafter, the coordinates of the intersection with the interpolated curve formed between the remaining pair of boundary curves are derived. By performing interpolation in this way, a shadow of the interpolated curve IL is formed between a pair of boundary curves composed of the same number of shape elements, as shown in FIG. ~Do not cross the ridge line connecting BP2. Therefore, the interpolation points obtained by the above method can interpolate the shape near the ridgeline into a shape close to the ideal.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図において、lOは自動プログラミング装置の本体
をなすコンピュータである。このコンピュータ10には
磁気ディスク装置12が接続されている外、インタフェ
ースIFIを介してCRTターミナル13が接続され、
インタフェースIF2を介してプリンタ15、テープパ
ンチャ16が接続されている。
In FIG. 2, IO is a computer forming the main body of the automatic programming device. This computer 10 is connected not only to a magnetic disk device 12 but also to a CRT terminal 13 via an interface IFI.
A printer 15 and a tape puncher 16 are connected via an interface IF2.

次に上記構成の装置における補間動作について説明する
。まず、コンピュータ10は第3図に示されるステップ
(30)、  (31)の処理により、パートプログラ
ムによって記述された境界曲線の定義と対応付けの定義
を読込み、これを解読する。
Next, the interpolation operation in the apparatus having the above configuration will be explained. First, the computer 10 reads the definition of the boundary curve and the definition of the correspondence described by the part program and decodes it by the processing of steps (30) and (31) shown in FIG.

本実施例では、物品Wが頂面と底面を有する形状である
場合、第5図に示すように、物品Wの底面と頂面を基準
断面SCI、SC2として定義し、物品Wの側面形状を
表わす互いに直交する4つの断面を補間断面SC3,S
C4,SC5,SC6として定義するようになっている
。第6図のパートプログラムにおいて、33行目までが
、これらの断面を定義するプログラムである。
In this example, when the article W has a shape having a top surface and a bottom surface, the bottom surface and the top surface of the article W are defined as reference cross sections SCI and SC2, as shown in FIG. The four mutually orthogonal cross sections represented by interpolated cross sections SC3 and S
They are defined as C4, SC5, and SC6. In the part program shown in FIG. 6, lines up to the 33rd line are programs that define these cross sections.

また、パートプログラムの35行目は、曲面補間を指令
するプログラムであり、この行には、対応付けの方法を
定義する“CR35”の記述が含まれている。この対応
付は定義とは、対向する一対の境界曲線上の補間点をど
のように算出して補間曲線を形成するかを指定するもの
で、表1に示すように長さ比対応付け、座標値対応付け
、要素間対応付けの内の1つを選択する。
The 35th line of the part program is a program that instructs curved surface interpolation, and this line includes a description of "CR35" that defines the association method. This mapping is a definition that specifies how to calculate interpolation points on a pair of opposing boundary curves to form an interpolation curve.As shown in Table 1, length ratio mapping, coordinate Select one of value mapping and inter-element mapping.

表  1 第7図(at、 (b)、 (clは、対応付けの相違
による補間曲線の相違を示し、第7図(alは長さ比対
応付けを選んだ場合、第7図(blは座標値対応付けを
選んだ場合、第7図(C)は要素間対応付けを選んだ場
合を示すものである。
Table 1 Figure 7 (at, (b), (cl) indicates the difference in the interpolation curve due to the difference in mapping, Figure 7 (al) indicates the length ratio mapping, When coordinate value mapping is selected, FIG. 7(C) shows a case where element-to-element mapping is selected.

このようにして、境界曲線と対応付は指定を表わすパー
トプログラムがコンピュータ10によって解読されると
、コンピュータ10は、プログラムデータから境界曲線
を創成するとともに、(32)、対応付は指定データに
基づいて対応付けの方法を判定しく33)、?1定され
た方法で対応点、すなわち対向する一対の境界曲線上に
おける補間点を演算する(35)〜(37)。
In this way, when the part program representing the designation of the boundary curve and the correspondence is decoded by the computer 10, the computer 10 creates the boundary curve from the program data, and (32) the correspondence is made based on the designation data. 33), ? Corresponding points, that is, interpolation points on a pair of opposing boundary curves are calculated using a predetermined method (35) to (37).

そして、この後、対向する一対の境界曲線上の対向する
補間点(対向点)どうしを補間曲線で接続する処理を2
組の対向する境界曲線のそれぞれについて行った後、こ
れらの2組の対向する境界曲線の交点座標値を三次元曲
面の補間値として演算する処理を行う (38)、この
処理は一対の基準断面SC1,SC2と隣り合う一対の
補間断面とによって囲まれる面を単位として行われ、上
記の処理が4回繰返されて全ての処理が完了すると、補
間値データをディスク装置12に記憶する(41)。
After this, a process of connecting opposing interpolation points (opposing points) on a pair of opposing boundary curves with an interpolation curve is performed.
After performing the calculation for each pair of opposing boundary curves, a process is performed to calculate the intersection coordinate values of these two sets of opposing boundary curves as interpolated values of the three-dimensional curved surface (38). This process is performed using a pair of reference cross sections. The process is performed using a surface surrounded by SC1, SC2 and a pair of adjacent interpolated cross sections as a unit, and when the above process is repeated four times and all processes are completed, the interpolated value data is stored in the disk device 12 (41). .

次にステップ(35)〜(37)における対応点の決定
方法について説明する。
Next, a method for determining corresponding points in steps (35) to (37) will be explained.

i)長さ比対応付け これは、第8図(a)に示すように、対向する一対の境
界曲線BLa、BLbのそれぞれを同数に分割して墳界
曲線BLa、BLb上の補間点を導出し、対向する補間
点どうしを結んで補間曲線を作るものである。この方式
によって対向付けを行ってたのが第7図(a)である。
i) Length ratio correspondence As shown in Fig. 8(a), each of the pair of opposing boundary curves BLa, BLb is divided into the same number of parts, and interpolation points on the burial mound curves BLa, BLb are derived. Then, an interpolation curve is created by connecting the opposing interpolation points. FIG. 7(a) shows an example in which facing was performed using this method.

ii )座標値対応付け これは第8図(′b)に示すように、指定された軸方向
の座標値が一定量ずつ変化するように対向する一対の境
界曲線上における補間点(対応点)を導出するもので、
Z軸を指定軸として座標値対応付けを適用したのが第7
図(b)である。
ii) Coordinate value correspondence As shown in Figure 8 ('b), this is an interpolation point (corresponding point) on a pair of opposing boundary curves so that the coordinate value in the specified axis direction changes by a constant amount. It derives
The seventh example applied coordinate value mapping with the Z axis as the designated axis.
It is figure (b).

iii )要素間対応付け この対応付けが、本発明の特徴とする部分であり、対向
する一対の境界曲線BLa、BLbが、等しい数の形状
要素から成っている場合に通用できる。なお、形状要素
とは円弧もしくは線分のみによって構成される基本形状
要素である。
iii) Correspondence between elements This correspondence is a feature of the present invention, and is applicable when a pair of opposing boundary curves BLa and BLb are composed of the same number of shape elements. Note that the shape element is a basic shape element composed only of circular arcs or line segments.

この要素対応付は処理の詳略は第4図に示されており、
1番目の形状要素PEl1.PE21から形状要素毎に
前述した長さ比対応付けで境界曲線BLa、BLb上の
補間点(対応点)PIを順次導出する(50)〜(52
)、そして、残る一対の境界曲線についても同様の処理
を行って対応点を演算する。
The details of this element mapping process are shown in Figure 4.
First shape element PEl1. Interpolation points (corresponding points) PI on the boundary curves BLa and BLb are sequentially derived from PE21 by the aforementioned length ratio correspondence for each shape element (50) to (52).
), and the same process is performed for the remaining pair of boundary curves to calculate corresponding points.

この方法によって対応点を演算して補間曲線を演算した
場合、第7図(C)に示すように、対向する境界曲線上
の形状要素接続点BP1.BP2間を結ぶ稜線が明確に
創成される。
When an interpolation curve is calculated by calculating corresponding points using this method, as shown in FIG. 7(C), the shape element connection point BP1. A ridge line connecting BP2 is clearly created.

パートプログラムにより、上記した3つの対応付は方式
の1つを選択することにより、物品Wの要求形状に最も
通した補間を行うことが可能となる。
By selecting one of the three mapping methods described above using the part program, it is possible to perform interpolation that most closely matches the requested shape of the article W.

〈発明の効果〉 以上述べたように本発明においては、対向する境界曲線
を複数の形状要素に分割し、各形状要素毎に境界曲線上
の補間点を演算し、これに基づいて一対の境界曲線間に
補間曲線を創成するようにしたので、対向する境界曲線
上の形状要素接続点どうしを接続する稜線と補間曲線と
が交差することがな(、稜線近傍を理想に近い形に補間
できる利点がある。
<Effects of the Invention> As described above, in the present invention, opposing boundary curves are divided into a plurality of shape elements, interpolation points on the boundary curve are calculated for each shape element, and based on this, a pair of boundaries Since interpolation curves are created between curves, the interpolation curves do not intersect with the edges that connect shape element connection points on opposing boundary curves (this makes it possible to interpolate the vicinity of the edges into a shape close to the ideal). There are advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の実施例を示すもので、第1図
は本発明の補間方法を示す図、第2図は本発明を適用し
た自動プログラミング装置のブロック図、第3図と第4
図は第2図におけるコンピュータ10の動作を示すフロ
ーチャート、第5図は定義する断面を示す図、第6図は
パートプログラムの一例を示す図、第7図は異なる対応
付は方式を適用した場合の補間曲線を示す図、第8図は
対応付けの方法を示す図、第9図は従来の方法を示す図
である。 10・・・コンピュータ、12・・・磁気ディスク装置
、13・・・CRTターミナル、BLI〜BL4・・・
境界曲線、PEII〜PE22・・・形状要素。
1 to 8 show embodiments of the present invention, with FIG. 1 being a diagram showing the interpolation method of the present invention, FIG. 2 being a block diagram of an automatic programming device to which the present invention is applied, and FIG. and the fourth
The figure is a flowchart showing the operation of the computer 10 in Figure 2, Figure 5 is a diagram showing a defined cross section, Figure 6 is a diagram showing an example of a part program, and Figure 7 is a case where a different mapping method is applied. FIG. 8 is a diagram showing a matching method, and FIG. 9 is a diagram showing a conventional method. 10... Computer, 12... Magnetic disk device, 13... CRT terminal, BLI to BL4...
Boundary curve, PEII to PE22...shape element.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも対向する一対の境界曲線のそれぞれが
円弧もしくは線分から成る相等しい数の形状要素に分割
可能な4つの境界曲線で囲まれた三次元曲面を補間する
三次元曲面の補間方法であって、前記一対の対向する境
界曲線上においては、分割された形状要素毎に境界曲線
上の補間点の座標を演算して対向する境界曲線上の補間
点との間を補間曲線で結び、この複数の補間曲線と残り
の一対の境界曲線間に形成された複数の補間曲線との交
点座標値を三次元曲面の補間点座標値として算出するよ
うにしたことを特徴とする三次元曲面の補間方法。
(1) A three-dimensional curved surface interpolation method that interpolates a three-dimensional curved surface surrounded by four boundary curves, each of which is divisible into an equal number of shape elements, each of which is a pair of opposing boundary curves consisting of circular arcs or line segments. Then, on the pair of opposing boundary curves, the coordinates of the interpolation point on the boundary curve are calculated for each divided shape element, and the interpolation points on the opposing boundary curve are connected by an interpolation curve. Interpolation of a three-dimensional curved surface, characterized in that coordinate values of intersections between a plurality of interpolation curves and a plurality of interpolation curves formed between the remaining pair of boundary curves are calculated as interpolation point coordinate values of the three-dimensional curved surface. Method.
JP60214175A 1985-09-26 1985-09-26 Interpolating method for three-dimensional curved surface Pending JPS6273306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214175A JPS6273306A (en) 1985-09-26 1985-09-26 Interpolating method for three-dimensional curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214175A JPS6273306A (en) 1985-09-26 1985-09-26 Interpolating method for three-dimensional curved surface

Publications (1)

Publication Number Publication Date
JPS6273306A true JPS6273306A (en) 1987-04-04

Family

ID=16651478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214175A Pending JPS6273306A (en) 1985-09-26 1985-09-26 Interpolating method for three-dimensional curved surface

Country Status (1)

Country Link
JP (1) JPS6273306A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169814A (en) * 1981-04-10 1982-10-19 Fanuc Ltd Forming method of curved surface
JPS60173680A (en) * 1984-02-20 1985-09-07 Hitachi Ltd Curved surface forming system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169814A (en) * 1981-04-10 1982-10-19 Fanuc Ltd Forming method of curved surface
JPS60173680A (en) * 1984-02-20 1985-09-07 Hitachi Ltd Curved surface forming system

Similar Documents

Publication Publication Date Title
US20010005425A1 (en) Method and apparatus for reproducing a shape and a pattern in a three-dimensional scene
JP4046370B2 (en) 3D shape drawing method
CN114429535A (en) Smooth cutting method and device for triangular mesh curved surface
JPS6273306A (en) Interpolating method for three-dimensional curved surface
JPH05269956A (en) Electronic composition device for composing along optional line
JP3781008B2 (en) Three-dimensional model editing method and apparatus, and computer program
JP3187808B2 (en) Object surface shape data creation device
JP3221067B2 (en) Method and apparatus for generating three-dimensional structured grid
JP2767865B2 (en) Automatic blur surface data creation device
JP2637923B2 (en) Method for correcting stripe pattern direction data and information processing apparatus for executing the same, and method for correcting stripe pattern pitch data and information processing apparatus for executing the same
JPS6333167B2 (en)
JP3187809B2 (en) Object surface shape data creation method
JP2723058B2 (en) Line-symmetric figure input device
JPH10269371A (en) Free curved line generating method, free curved surface generating method and its recording medium
JP3924891B2 (en) Contour tracking method
JPH0619992A (en) Cad system
JPS6031610A (en) Method for processing data of automatic programming of conversational numerical control
JP2712081B2 (en) Interpolation processing method and interpolation apparatus for multidimensional spatial data
JPH0567071B2 (en)
JP2595568B2 (en) Offset data creation method
JPH052416A (en) Nc data producing method for 5-axis side cutting process
JPH06168300A (en) Three-dimensional shape input device
JP2767807B2 (en) Object surface shape data creation method
JP2600670B2 (en) Free-form surface creation method
JPH083737B2 (en) Three-dimensional curved surface offset processing method