JPS6273197A - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JPS6273197A
JPS6273197A JP60212121A JP21212185A JPS6273197A JP S6273197 A JPS6273197 A JP S6273197A JP 60212121 A JP60212121 A JP 60212121A JP 21212185 A JP21212185 A JP 21212185A JP S6273197 A JPS6273197 A JP S6273197A
Authority
JP
Japan
Prior art keywords
coolant
reactor
temperature
wall
temperature coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212121A
Other languages
Japanese (ja)
Inventor
小倉 健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60212121A priority Critical patent/JPS6273197A/en
Publication of JPS6273197A publication Critical patent/JPS6273197A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は炉容器の健全性を確保するための冷却構造を備
えた高速原子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fast nuclear reactor equipped with a cooling structure for ensuring the integrity of a reactor vessel.

〔発明の技術的背景〕[Technical background of the invention]

一般に高速増殖炉は、炉容器内に炉心及び一次冷却材(
通常、液体ナトリウム)が収容されており、この一次冷
却材は炉心を通して循環させて、炉心における核燃料の
核反応により加熱される。
In general, a fast breeder reactor has a core and a primary coolant (
This primary coolant is circulated through the reactor core and heated by the nuclear reaction of the nuclear fuel in the reactor core.

この加熱された一次冷却材を中間熱交換器へ導いて二次
冷却材(二九も通常、液体ナトリウム)と熱交換し、さ
らにその二次冷却材を蒸発器へ導いて水と熱交換し、こ
こで得られた過熱蒸気を発″止機駆動用のタービンへ送
り込むように構成さ九ている。
This heated primary coolant is led to an intermediate heat exchanger to exchange heat with a secondary coolant (usually liquid sodium), and then the secondary coolant is led to an evaporator to exchange heat with water. The superheated steam obtained here is sent to the turbine for driving the starter.

ところで、この種の高速増殖炉にあっては、炉容器が高
温に耐えるように配慮した設計を行なう必要がある。ま
た炉心を通過した高温の一次冷却材を、温度を低下させ
ないように中ray熱交換器へ導く必要もある。
By the way, in this type of fast breeder reactor, it is necessary to design the reactor vessel in such a way that it can withstand high temperatures. It is also necessary to guide the high temperature primary coolant that has passed through the core to the medium ray heat exchanger so as not to lower the temperature.

そこで、近年では第3図に示すような構成の高速増殖炉
が開発されている。
Therefore, in recent years, a fast breeder reactor having a configuration as shown in FIG. 3 has been developed.

第3図はタンク型高速増殖炉の概略構成を示すもので、
図中1は炉心2及び一次冷却材(通常液体ナトリウム)
3を収容した炉容器であり、この炉容器1の上部開口は
ルーフスラブ4によって遮蔽されている。また炉容器1
の内部には高温冷却材収容容器5が炉底:2を支持する
炉心支持構体6に支持されて配置されている。この収容
容器5は、上半部5Aと炉容器1の内周面との間に隙間
7を存在させ、下半部5Bを小径としてその最下端を前
記炉心支持構体6に取着し、上半部5Aと下半部5Bと
の間には中心方向へ向って下り勾配となる円錐部5Cを
有するように構成されている。
Figure 3 shows the schematic configuration of a tank-type fast breeder reactor.
1 in the figure is the core 2 and the primary coolant (usually liquid sodium)
The upper opening of the furnace vessel 1 is shielded by a roof slab 4. Also, furnace vessel 1
A high-temperature coolant storage container 5 is disposed inside the reactor, supported by a core support structure 6 that supports the reactor bottom 2. This storage vessel 5 has a gap 7 between the upper half 5A and the inner circumferential surface of the reactor vessel 1, has a lower half 5B with a small diameter, and has its lowermost end attached to the core support structure 6. A conical portion 5C having a downward slope toward the center is provided between the half portion 5A and the lower half portion 5B.

前記炉容器1の内側には、炉容器1の内面に沿って流路
形成板8が配設され、炉容器1内面と流路形成板8との
間には低温冷却材流路9が形成されている。上記流路形
成板8は炉心2の直下位置に流通口10を有し、かつ周
壁上部を二重壁(内周壁11. A 、外周壁11B)
としてその二重壁で構成される円環領域(ダウンカマ)
12を低温冷却材収容空間15へ開口させている。
A passage forming plate 8 is disposed inside the furnace vessel 1 along the inner surface of the furnace vessel 1, and a low temperature coolant passage 9 is formed between the inner surface of the furnace vessel 1 and the passage forming plate 8. has been done. The flow path forming plate 8 has a communication port 10 located directly below the core 2, and the upper part of the peripheral wall is a double wall (inner peripheral wall 11.A, outer peripheral wall 11B).
The annular area (downcomer) composed of its double walls as
12 is opened to a low temperature coolant storage space 15.

また前記流路形成板8の二重壁部下端と前記炉心支持構
体6との間には前記炉心2を中心とする環状の隔壁13
が取着されている。この隔壁13は高温冷却材収容容器
5の外側に位置して高温冷却材収容容器5の円錐部5C
との間に環状の冷却材滞留空間14を形成するとともに
、炉容器1との間には前記炉心4の下端部に連通ずる低
温冷却材収容空間15を形成するものである。
Further, between the lower end of the double wall of the flow path forming plate 8 and the core support structure 6, there is an annular partition wall 13 centered around the core 2.
is attached. This partition wall 13 is located on the outside of the high temperature coolant storage container 5 and is located at the conical portion 5C of the high temperature coolant storage container 5.
An annular coolant retention space 14 is formed between the reactor vessel 1 and a low-temperature coolant storage space 15 that communicates with the lower end of the reactor core 4.

さらに、前記ルーフスラブ4には一次冷却材循環ポンプ
16・・・及び中間熱交換器17・・・が支持されてい
る。これらの循環ポンプ16・・及び熱交換器17・・
・は炉心2を中心とする円周上に交互に配置されている
Further, the roof slab 4 supports a primary coolant circulation pump 16 and an intermediate heat exchanger 17. These circulation pumps 16... and heat exchangers 17...
* are arranged alternately on the circumference around the core 2.

一次冷却材循環ポンプ16は、前記冷却材滞留空間14
に連通して円錐部5C上に設けられた筒体18の内部を
通し、さらに隔壁13を貫通して低温冷却材収容空間1
5内に導入されている。そして吸入側を冷却材滞留空間
14に連通させ、かつ吐出側を低温冷却材収容空間15
に連通させて、冷却材滞留空間14内の一次冷却材3を
低温冷却材収容空間15へ送り込むように構成されてい
る。
The primary coolant circulation pump 16 operates in the coolant retention space 14.
It passes through the inside of the cylinder 18 provided on the conical part 5C and further penetrates the partition wall 13 to connect to the low temperature coolant storage space 1.
It has been introduced in 5. The suction side communicates with the coolant retention space 14, and the discharge side communicates with the low temperature coolant storage space 15.
The primary coolant 3 in the coolant retention space 14 is sent into the low-temperature coolant storage space 15 by communicating with the coolant storage space 14 .

また、前記中間熱交換器17は一次冷却材流入側を高温
冷却材収容容器5内に位置させるとともに一次冷却材流
出側を低温冷却材収容空間15に連通させて、高温冷却
材収容容器5内の一次冷却材3を低温冷却材収容空間1
5へ流通させるように構成されている。
Further, the intermediate heat exchanger 17 has a primary coolant inflow side located within the high temperature coolant storage container 5 and a primary coolant outflow side communicated with the low temperature coolant storage space 15 . The primary coolant 3 is stored in the low temperature coolant storage space 1.
It is configured to be distributed to 5.

次に、以上の如く構成されたタンク型高速増殖炉の作用
を説明する。
Next, the operation of the tank-type fast breeder reactor configured as described above will be explained.

今、一次冷却材循環ポンプ16により低温冷却材収容空
間15内の一次冷却材3は加圧されると、低温冷却材収
容空間15内の一次冷却材3は炉心2を矢印aの如く通
過し、炉心2におけるウラン燃料の核反応によって生ず
る熱により加熱されて高温冷却材収容容器5内に至り、
中間熱交換器17内に矢印すの如く流入する。ここで、
一次冷却材3は二次冷却材への熱伝達を行ない、自らは
冷却されて矢印Cの如く低温冷却材収容空間15に流出
され、再び炉心2を通して高温冷却材収容容器5内への
循環を繰返す。
Now, when the primary coolant 3 in the low temperature coolant storage space 15 is pressurized by the primary coolant circulation pump 16, the primary coolant 3 in the low temperature coolant storage space 15 passes through the core 2 as shown by arrow a. , is heated by the heat generated by the nuclear reaction of the uranium fuel in the reactor core 2 and reaches the high temperature coolant storage container 5,
It flows into the intermediate heat exchanger 17 as shown by the arrow. here,
The primary coolant 3 transfers heat to the secondary coolant, is cooled and flows out into the low temperature coolant storage space 15 as shown by arrow C, and is circulated again through the core 2 into the high temperature coolant storage vessel 5. Repeat.

一方、一次冷却材循環ポンプ16により加圧された、低
温冷却材収容空間15内の一次冷却材3は低温冷却材流
路9を矢印dの如く上昇し、二重壁部の外周壁11Bを
矢印eの如く乗越えて内・ 外周壁11A、 118間
に流入し、さらに低温冷却材収容空間15に流出する。
On the other hand, the primary coolant 3 in the low-temperature coolant storage space 15 pressurized by the primary coolant circulation pump 16 moves up the low-temperature coolant flow path 9 as shown by arrow d, and crosses the outer circumferential wall 11B of the double wall portion. As shown by arrow e, the coolant crosses over and flows between the inner and outer peripheral walls 11A and 118, and further flows out into the low-temperature coolant storage space 15.

ところで1以上の如く構成されたタンク型高速増殖炉に
おいて、炉心2を通過して加熱された高温一次冷却材は
高温冷却材収容容器5内に収容され、炉容器1には炉心
2を通過する前の低温一次冷却材が接触するようになる
ので、炉容器1は比較的低温に保たれることになる。従
って炉容器1の設計を容易にすることができる。また高
温冷却材収容容器5の外側には隔壁13を設けて冷却材
滞留空間14を形成しているので、この空間14に存在
する一次冷却材が高温冷却材収容容器5内の高温一次冷
却材と低温冷却材収容空間15の低温一次冷却材との間
の遮熱材として機能し、高温冷却材収容容器5内の冷却
材3の温度低下を防止している。
By the way, in the tank-type fast breeder reactor configured as above, the high temperature primary coolant that has passed through the reactor core 2 and is heated is stored in the high temperature coolant storage container 5, and the high temperature primary coolant that has passed through the reactor core 2 is stored in the reactor vessel 1. Since the previous low temperature primary coolant comes into contact, the furnace vessel 1 will be kept at a relatively low temperature. Therefore, the design of the furnace vessel 1 can be facilitated. Furthermore, since a partition wall 13 is provided on the outside of the high-temperature coolant container 5 to form a coolant retention space 14, the primary coolant present in this space 14 is transferred to the high-temperature primary coolant in the high-temperature coolant container 5. It functions as a heat shield between the low-temperature primary coolant in the low-temperature coolant storage space 15 and prevents the temperature of the coolant 3 in the high-temperature coolant storage container 5 from decreasing.

〔背景技術の問題点〕[Problems with background technology]

次に、前記従来の高速増殖炉における炉容器1を冷却す
るための冷却材流路を形成する、低温冷却材流路9及び
ダウンカマ12での冷却材熱流動特性について説明する
Next, the heat flow characteristics of the coolant in the low temperature coolant flow path 9 and the downcomer 12, which form the coolant flow path for cooling the reactor vessel 1 in the conventional fast breeder reactor, will be explained.

低温冷却材流路9を上昇する冷却材の温度は。The temperature of the coolant rising in the low temperature coolant flow path 9 is:

ダウンカマ12からの入熱と炉容器1から外部空間への
放散熱とのバランスで決まるが、一般的には第4図に示
すように流路下流になるほど温度は上昇する。
Although it is determined by the balance between the heat input from the downcomer 12 and the heat dissipated from the furnace vessel 1 to the outside space, the temperature generally increases toward the downstream of the flow path, as shown in FIG.

このため、低温冷却材流路9では、重力方向に冷却材温
度が低下する温度分布となり、熱流動的に安定な条件と
なる。
Therefore, in the low-temperature coolant flow path 9, the temperature distribution becomes such that the coolant temperature decreases in the direction of gravity, resulting in a thermo-hydraulic stable condition.

一方、ダウンカマ12を下降する冷却材温度は高温冷却
材収容容器5に保持される高温の一次冷却材3からの入
熱と前記低温冷却材流路9を流れる冷却材への放熱によ
り決まるが、この場合にも流路下流(重力方向)になる
ほど温度は上昇する(第4図を参照)。但し、この場合
には重力方向に冷却材温度が上昇する分布となるため、
熱流動的には不安定な条件が生ずる。
On the other hand, the temperature of the coolant flowing down the downcomer 12 is determined by the heat input from the high temperature primary coolant 3 held in the high temperature coolant container 5 and the heat radiation to the coolant flowing through the low temperature coolant flow path 9. In this case as well, the temperature increases as the flow path becomes downstream (in the direction of gravity) (see FIG. 4). However, in this case, the coolant temperature will increase in the direction of gravity, so
Thermo-hydrodynamically unstable conditions arise.

この不安定条件は、特に冷却材流量が小さい原子炉トリ
ップ時に顕著になる。
This unstable condition becomes especially noticeable during a reactor trip when the coolant flow rate is small.

この不安定条件が生ずると冷却材はダウンカマ12を一
様に下降することなく、ダウンカマ12の周方向に大き
な自然対流を生じながら全体として下降する流動パター
ンとなる場合がある。
When this unstable condition occurs, the coolant may not descend uniformly through the downcomer 12, but may form a flow pattern in which it descends as a whole while generating large natural convection in the circumferential direction of the downcomer 12.

仮に、 このような対流を生ずると外周壁11B。If such convection occurs, the outer peripheral wall 11B.

さらに炉容器1の周方向に温度差を生じ、構造の健全性
確保上問題となることが考えられる(第5図参照)。
Furthermore, a temperature difference may occur in the circumferential direction of the furnace vessel 1, which may pose a problem in ensuring the integrity of the structure (see FIG. 5).

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みなされたもので、その目的は、
炉容器内に内周壁と外周壁とを設けて低温冷却材を循環
させ、炉容器を冷却するようにした高速原子炉において
、炉壁と内周壁間および内周壁と外周壁間での周方向の
冷却材対流を局所化することにより、炉容器の周方向に
温度分布が生ずることを防止した高速原子炉を提供する
ことにある。
The present invention was made in view of the above circumstances, and its purpose is to:
In a fast reactor in which an inner peripheral wall and an outer peripheral wall are provided in the reactor vessel to circulate a low-temperature coolant to cool the reactor vessel, the circumferential direction between the reactor wall and the inner peripheral wall and between the inner peripheral wall and the outer peripheral wall is An object of the present invention is to provide a fast nuclear reactor that prevents temperature distribution from occurring in the circumferential direction of a reactor vessel by localizing coolant convection.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、炉容器内に内周
壁と外周壁とを設け、炉容器と外周壁間。
In order to achieve the above object, the present invention provides an inner circumferential wall and an outer circumferential wall in the furnace vessel, and a space between the furnace vessel and the outer circumferential wall.

外周壁と内周壁間に冷却材を循環させることにより炉容
器を冷却するようにした高速原子炉において、上記炉容
器と外周壁間(低温冷却材流路)及び外周壁と内周壁間
(ダウンカマ)に周方向自然対流を局所化する縦リブを
設けるようにしたものである。
In a fast reactor in which the reactor vessel is cooled by circulating coolant between the outer circumferential wall and the inner circumferential wall, there are ) is provided with vertical ribs to localize circumferential natural convection.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を参照して説明する。 An explanation will be given with reference to one embodiment of the present invention.

第1図(a)は本発明の一実施例の上面図であり、第1
図(b)はその一部の縦断面図である。
FIG. 1(a) is a top view of one embodiment of the present invention.
Figure (b) is a longitudinal sectional view of a part thereof.

これらの図に示すように、既に説明した第3図の従来の
高速原子炉と相違する点は、炉容器と外周壁及び外周壁
と内周壁と間に縦リブを設置した構成のみであり、その
他の構成は何等相違しないので同一構成個所には同一符
号を附して、その詳細な説明は省略するものとする。
As shown in these figures, the only difference from the conventional fast reactor shown in Fig. 3 already explained is that vertical ribs are installed between the reactor vessel and the outer circumferential wall, and between the outer circumferential wall and the inner circumferential wall. Since there are no other differences in the configuration, the same components will be designated by the same reference numerals and detailed explanations thereof will be omitted.

第1図(a)および(b)に示すように、炉容器1の内
側に外周壁2及び内周壁3を設け、炉容器1と外周壁2
の間(低温冷却材流路8)及び外周壁2と内周壁3の間
(ダウンカマ9)に冷却材を循環させる。
As shown in FIGS. 1(a) and (b), an outer circumferential wall 2 and an inner circumferential wall 3 are provided inside the furnace vessel 1, and the furnace vessel 1 and the outer circumferential wall 2 are provided inside the furnace vessel 1.
The coolant is circulated between the outer circumferential wall 2 and the inner circumferential wall 3 (downcomer 9).

この低温冷却材流路8及びダウンカマ9に連通孔7を有
する縦リブ5を周方向に等間隔で設置した構成としたも
のである。
Vertical ribs 5 having communicating holes 7 are installed in the low temperature coolant flow path 8 and the downcomer 9 at equal intervals in the circumferential direction.

次に、本実施例の作用について説明する。既に述べたよ
うにダウンカマ9では重力方向に冷却材温度が上昇する
熱流動的に不安定な状態を生ずるが、この傾向は原子炉
トリップ時のような低流量時に特に助長される。
Next, the operation of this embodiment will be explained. As already mentioned, in the downcomer 9, a thermo-hydraulic unstable state occurs in which the temperature of the coolant increases in the direction of gravity, and this tendency is particularly exacerbated when the flow rate is low, such as during a nuclear reactor trip.

しかしながら本実施例によれば、周方向の流れは縦リブ
5で阻害されるため、この縦リブ5がない場合のような
大きなスケールでの周方向対流(渦発生)は発生しない
。 このことを第2図についてさらに詳細に説明すると
2例えば内周壁2と外周壁3との間のダウンカマ9は周
方向に縦リブ5によって仕切られた構成となっているの
で周方向対流fは縦リブ9間の領域内で局所的に対流さ
れるのみとなり、大きなスケールでの周方向対流が阻害
されることにより、炉台iS周方向に非対称な温度分布
が発生するのを防止することが可能となる。
However, according to this embodiment, since the circumferential flow is obstructed by the vertical ribs 5, large-scale circumferential convection (vortex generation) as in the case where the vertical ribs 5 are not generated does not occur. To explain this in more detail with reference to FIG. 2, for example, the downcomer 9 between the inner circumferential wall 2 and the outer circumferential wall 3 is partitioned in the circumferential direction by vertical ribs 5, so that the circumferential convection f is Convection occurs only locally within the area between the ribs 9, and circumferential convection on a large scale is inhibited, making it possible to prevent asymmetric temperature distribution from occurring in the circumferential direction of the furnace stand iS. Become.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば原子炉内の炉容器と
外周壁間及び外周壁と内周壁間における周方向自然対流
を局所化させることにより、炉容器周方向に非対称な温
度分布が発生するのを防止する二とが可能となる。
As explained above, according to the present invention, by localizing circumferential natural convection between the reactor vessel and the outer circumferential wall and between the outer circumferential wall and the inner circumferential wall in the reactor, an asymmetric temperature distribution occurs in the circumferential direction of the reactor vessel. It is possible to prevent this from happening.

・1.  図面の簡!1(な説明 第1図<a)は本発明の一実施例の上面図、第1図(b
)は同図(a)の一部縦断面図、第2図は本発明の詳細
な説明するための拡大断面図、第3図は従来の高速増殖
炉の縦断面図、第4図および第5図はそれぞれ第3図の
高速増殖炉の炉内温度分布および炉内の自然対流の発生
を説明するための図である。
・1. Easy drawing! 1 (explanation Fig. 1<a) is a top view of an embodiment of the present invention, Fig. 1(b)
) is a partial vertical cross-sectional view of the same figure (a), FIG. 2 is an enlarged cross-sectional view for explaining the present invention in detail, FIG. FIG. 5 is a diagram for explaining the temperature distribution in the reactor and the occurrence of natural convection in the reactor of the fast breeder reactor shown in FIG. 3, respectively.

」−・・炉容器 2・外周壁 3 内周壁 5 ・縦リブ 7・・連通孔 8・・低温冷却材流路 9・ダウンカマ 代理人 弁理士 則 近 憲 佑 同      三  俣  弘  支 竿 1 図(b) 第2図 第3図 汚玲只31鰻 第4図 第5図”−・furnace vessel 2.Outer wall 3 Inner peripheral wall 5. Vertical ribs 7...Communication hole 8. Low temperature coolant flow path 9. Downcomer Agent: Patent Attorney Noriyuki Chika Same as Hiroshi Sanmata Rod 1 diagram (b) Figure 2 Figure 3 31 eel Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)炉心及び一次冷却材を収容した炉容器と、前記炉
容器の内面との間に隙間を存して当該炉容器内に配置さ
れ炉心を通過した高温冷却材を収容する高温冷却材収容
容器と、前記高温冷却材収容容器の外側に配置され当該
高温冷却材収容容器との間に冷却材滞留空間を形成する
とともに前記炉容器の内側に配置される外周壁と、前記
炉壁を冷却するための冷却材流路を形成する内周壁とか
ら構成される高速原子炉において、前記炉壁と前記外周
壁間及び前記外周壁と前記内周壁間内の環状空間部に、
周方向に等間隔に縦リブを設置したことを特徴とする高
速原子炉。
(1) High-temperature coolant storage that is arranged within the reactor vessel with a gap between the reactor vessel containing the reactor core and primary coolant and the inner surface of the reactor vessel to accommodate the high-temperature coolant that has passed through the reactor core. A coolant retention space is formed between the container and the high-temperature coolant container arranged outside the high-temperature coolant storage container, and an outer peripheral wall arranged inside the furnace container and the furnace wall are cooled. In a fast nuclear reactor, an annular space between the reactor wall and the outer circumferential wall and between the outer circumferential wall and the inner circumferential wall,
A fast nuclear reactor characterized by vertical ribs installed at equal intervals in the circumferential direction.
(2)前記縦リブは複数個の小孔を有している特許請求
範囲第1項記載の高速原子炉。
(2) The fast nuclear reactor according to claim 1, wherein the vertical rib has a plurality of small holes.
JP60212121A 1985-09-27 1985-09-27 Fast breeder reactor Pending JPS6273197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212121A JPS6273197A (en) 1985-09-27 1985-09-27 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212121A JPS6273197A (en) 1985-09-27 1985-09-27 Fast breeder reactor

Publications (1)

Publication Number Publication Date
JPS6273197A true JPS6273197A (en) 1987-04-03

Family

ID=16617225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212121A Pending JPS6273197A (en) 1985-09-27 1985-09-27 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS6273197A (en)

Similar Documents

Publication Publication Date Title
US3962032A (en) Fast nuclear reactor
US4762667A (en) Passive reactor auxiliary cooling system
GB1491534A (en) Nuclear boiler
JPS5916238B2 (en) Nuclear reactor emergency cooling system
US3403076A (en) Molten salt breeder reactor and fuel cell for use therein
US4302296A (en) Apparatus for insulating hot sodium in pool-type nuclear reactors
JPS6273197A (en) Fast breeder reactor
US4613478A (en) Plenum separator system for pool-type nuclear reactors
GB1314499A (en) Nuclear reactior installation
US4879089A (en) Liquid metal cooled nuclear reactors
JP3110901B2 (en) Fast breeder reactor
CA1140275A (en) Plenum separator system for pool-type nuclear reactors
JPS6131440B2 (en)
JPS6055796B2 (en) pressure tube reactor
JPS6282393A (en) Fuel rod for boiling water type reactor
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPH03122593A (en) Tank type fast bredder reactor
JPH03257398A (en) Tank type fast breeder reactor
JPH03287094A (en) Tank type fast breeder
Sharbaugh Passive reactor auxiliary cooling system
JPS59114494A (en) Lmfbr type reactor
JPS5834390A (en) Liquid metal cooled type fast breeder
JPH1114781A (en) Reactor vessel wall cooling mechanism
JPS6190079A (en) Tank type fast breeder reactor
JPS5997086A (en) Fast breeder