JPS6273103A - Film-thickness measuring method - Google Patents

Film-thickness measuring method

Info

Publication number
JPS6273103A
JPS6273103A JP21228285A JP21228285A JPS6273103A JP S6273103 A JPS6273103 A JP S6273103A JP 21228285 A JP21228285 A JP 21228285A JP 21228285 A JP21228285 A JP 21228285A JP S6273103 A JPS6273103 A JP S6273103A
Authority
JP
Japan
Prior art keywords
measured
light
film
signal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21228285A
Other languages
Japanese (ja)
Other versions
JPH063364B2 (en
Inventor
Jun Torikai
潤 鳥飼
Chikayasu Yamazaki
山崎 親康
Ichiro Kumo
一郎 雲
Mutsumi Hayashi
睦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21228285A priority Critical patent/JPH063364B2/en
Publication of JPS6273103A publication Critical patent/JPS6273103A/en
Publication of JPH063364B2 publication Critical patent/JPH063364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the thickness of a film, by measuring the spectroscopic characteristics of the reflected optical component through an optical window and the spectroscopic characteristics of the reflected optical component from a reflecting plate beforehand, subtracting a window signal from the measured signal and a Planck signal, and performing normalizing operation. CONSTITUTION:Parallel light, which is formed by a light projecting part, is made to pass an optical window 12 and projected on a plate measuring film 15. The light, which is reflected by the film 15, becomes parallel light and enters a planar diffraction grating 7. The image of the light in the specified wavelength range among the lights, divided by the grating 7, is formed on an image sensor 9. The waveform of the image having a specified spectroscopic intensity is sent to an operating part (b). The spectroscopic intensity W(lambda) is measured when nothing is placed as an object to be measured. The spectroscopic intensity B(lambda) is measured when a reflecting plate is placed. The spectroscopic intensity F(lambda) is measured when a thin film is placed. The operation of A(lambda) is carried out according to the expression in the Figure in a processing part (a), and the thickness of the thin film is measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜の膜厚測定方法に関するしので必る。本
発明に係る方法は、特に高悄磨に膜片測定が行なえるこ
とをfi徴とする。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the thickness of a thin film. The method according to the invention is particularly characterized by the ability to perform membrane piece measurements with high precision.

(従来の技術) 従来より、薄膜の膜厚を測定する方法として光の干渉現
象を利用する方法か知られている(持聞昭56−115
905号公報等)。この方法は、薄膜に入13J角θで
白色平行光を八則し、薄11つ)からの反QJ光らしく
は透過光を受光し分光した場合に、第2図(こ示す様な
分光強(aの波形か17られ、この分光強度の波形の隣
合った(へ人魚(bL < +A−,j、へ小点)に対
応する波1モを求めることににすn’i: I’F ”
訓鈴出来る原理に基づいている。
(Prior Art) Conventionally, it has been known to use light interference phenomena as a method of measuring the thickness of a thin film (Jibun Sho 56-115).
905, etc.). In this method, white parallel light enters a thin film at an angle of 13 The waveform of (a) is calculated, and we decide to find the wave 1 mo corresponding to the adjacent (he mermaid (bL < +A-, j, small dot) of this spectral intensity waveform n'i: I' F”
It is based on the principle of making a bell.

以下、数式を用いて、この原理を説明する。This principle will be explained below using mathematical formulas.

白色光を薄膜にへ〇l角θで入射さけると、フィルム内
部に入射けずに表面で゛反則する光と、フィルム内部に
入射した後フィルムの裏面で反則し表面より出C来る光
に分れる。
When white light is incident on a thin film at an angle θ, it is divided into light that does not enter the film but reflects on the surface, and light that enters the film and then reflects on the back of the film and is emitted from the surface. .

反射光には上記の光以外にしフィルム内部て多千反QJ
シた後に表面より出て来る光が存在するか、強度か弱い
のてここでLl、考1j於しないことにする。
The reflected light is other than the light mentioned above, and there are many QJ inside the film.
Since there is light that comes out from the surface after the light is released, or the intensity is weak, we decided not to consider it here.

フィルム表面で反射した光と裏面で反則した光との間に
は光路差Δが生じ、△は(1)式で示される。
An optical path difference Δ occurs between the light reflected on the film surface and the light reflected on the back surface, and Δ is expressed by equation (1).

Δ=2d5■丁コ]7【・・・(1) モして、上記の二つの光が干津・することにより、分光
強度に強弱か発生するか、光路差Δか波長の整数倍に一
致ザろ波長で分光強度か)へ小になり、(整数+]/2
)倍に一致する波長で分光強度が(〜人になる(これは
裏面で反射した光の位相が反転じているためでおり、透
過光の場合には位相の反転か牛しないのてこの関係が逆
になる。)。
Δ=2d5■7]7[...(1) Then, as the above two lights change, the spectral intensity becomes stronger or weaker, or the optical path difference Δ becomes an integer multiple of the wavelength. The spectral intensity at the matching wavelength decreases to (integer +] / 2
) times the spectral intensity becomes (~) (This is because the phase of the light reflected from the back surface is reversed, and in the case of transmitted light, there is a relationship between phase reversal and leverage. is reversed).

この様にして1■られた分光強度波形にJ3いて隣合っ
た二つの)勇人魚(もしくは極小点)の波長をλ 、λ
2とすると次の(2)式が成立する(ただし、λ1〉λ
2)。
In the spectral intensity waveform obtained in this way, the wavelengths of the two adjacent mermaids (or minimum points) at J3 are λ and λ.
2, the following equation (2) holds true (where λ1>λ
2).

か(へ人魚の11、) (1) 、(2)式を整理すると次の(3)式か得られ
る。
By rearranging equations (1) and (2), the following equation (3) can be obtained.

すなわら、分光強度波形において隣合った二つの(か人
魚(もしくは、)へ小点)の波長λ 、λ2を求めれば
(3)式に桔づいて膜厚を61算υることか出来る。
In other words, by finding the wavelengths λ and λ2 of two adjacent (or mermaid (or) small points) in the spectral intensity waveform, the film thickness can be calculated by 61 υ based on equation (3). .

)車人魚に対応する波長を求める方法とじで1は′12
1間昭59−135331号公報に記載された方法等が
知られている。この方法は、分光器1衰の波形の検出器
としてイメージセンサーを用い、イメージセンサの出力
をA/D変換してマイクロコンビコータに取込み、イメ
ージはンザの各セルにズ・1応する出力を逐次比較して
)へ人値を持つセルを調べ、そのセルのI’llJ後の
復改のセルの出力値より極大位置を11F定するもので
ある。
) 1 is '12' according to the method to find the wavelength corresponding to the car mermaid
The method described in Japanese Patent No. 135331/1983 is known. This method uses an image sensor as a detector of the waveform of the spectrometer's 1 attenuation, A/D converts the output of the image sensor, and imports it into the micro combicoater. 11F is determined from the output value of the cell after I'llJ of that cell.

(発明か解決しようとする問題点) しかし、この測定で実際に1?られる波形は第2図に示
す(玉な波形ではなく、第3図(a)に示す(工な波形
て必る。これは、光源、分光器、イメージセンサ−など
か各々分光特性を持ら、それらの総合時11として測定
系が第3図(b)に示す俤な分光特性を待つので、この
測定系で薄膜を測定すると、第3図(b)の持11に膜
厚を測定7ベさフィルム答の、1す摸に、よる干渉1h
性か小賢して第3図(a)の波形になる訊て必る。従っ
て、第3図(a)の波形に塁ついて分光強度波形の極大
点、(へ小点を求めると正しいIIs!厚の測定かでき
ない。
(Invention or problem to be solved) However, is this measurement actually 1? The resulting waveform is shown in Figure 2 (it is not a round waveform, it is shown in Figure 3(a)). , the measurement system waits for the wide spectral characteristics shown in FIG. 3(b) as the total time 11, so when a thin film is measured with this measurement system, the film thickness is measured at 11 in FIG. 3(b). Interference 1h based on the 1st sample of the bass film answer
The waveform shown in Figure 3 (a) is inevitable. Therefore, if the maximum point and the minimum point of the spectral intensity waveform are found based on the waveform of FIG. 3(a), only the correct IIs!thickness can be measured.

この解決策としては、実開昭58−72610号公報簀
に示す方法が知られている。
As a solution to this problem, a method disclosed in Japanese Utility Model Application Publication No. 58-72610 is known.

これfJ、、第3図(b)に示t 博IF+!を除いた
光学系の分光17T斗をB(λ)(以下、ブランク信号
と呼ぶ)、第3図(a)に示す薄膜測定時の分光特性を
ト(λ)としく以下、測定信号と呼ぶ)、A(λ)−F
(λ)/B(λ) なる演算によって第2図に相当する変調信号A(λ)を
得、この変調信号A(λ)の(へ欠点、極小点の波長位
置より膜厚を測定するものでおる。
This is fJ, shown in Figure 3(b) IF+! The spectrum of the optical system excluding 17T is B(λ) (hereinafter referred to as a blank signal), and the spectral characteristics during thin film measurement shown in FIG. ), A(λ)-F
(λ)/B(λ) A modulation signal A(λ) corresponding to Fig. 2 is obtained by the calculation, and the film thickness is measured from the wavelength position of the minimum point of this modulation signal A(λ). I'll go.

原理的には、上記の方法で問題ないが、実用上はこの方
法も以下に述べる欠点をイ1している。
In principle, there is no problem with the above method, but in practice this method also has the following drawbacks.

すなわら、実際の膜17測定器としては第1図の概略溝
成図に示す様に、光学系を1つの節体に収納し、光学窓
12を介して投受光を行なう串になる。この場合、光学
窓12は、防塵、防湿などの為に不可欠で必るが、光学
窓による内部での反則光が無視できない強さになる。
That is, an actual film 17 measuring device is a skewer that houses an optical system in one segment and projects and receives light through an optical window 12, as shown in the schematic groove diagram of FIG. In this case, the optical window 12 is indispensable for dust-proofing, moisture-proofing, etc., but the intensity of the reflected light inside due to the optical window becomes too strong to ignore.

第1図の系において、測定対象を何も置かずに測定する
と光学窓12による反射光の分光特性W(λ)(以下、
ウィンド信号とげ7玉。)が得られる。
In the system shown in FIG. 1, when measuring without placing any object to be measured, the spectral characteristic W(λ) (hereinafter referred to as
7 wind signal thorns. ) is obtained.

また、この系で得られるブランク信号B(λ)は、B’
  (λ)を光学窓を除去した場合の分光性[牛として
、 B(λ)=8’  (λ)+W(λ) となる。
Also, the blank signal B(λ) obtained with this system is B'
(λ) with the optical window removed [as a cow, B(λ)=8'(λ)+W(λ).

同様にして、この系で得られる測定信号F(λ)は、F
’  (λ)を光学窓を除去した場合の薄膜を介した分
光特性とすると、 E(λ)=F’  (λ)十W(λ〉 となる。
Similarly, the measurement signal F(λ) obtained with this system is F
' (λ) is the spectral characteristic through the thin film when the optical window is removed, then E (λ) = F' (λ) + W (λ).

今、ここで得たい変調信号は F′(λ)/B’  (λ)であるか、従来の演節でに
1゜ △(λ)−F(λ)/B(λ) (F′ (λ)十W(λ)) (B′(λ)+W(λ〉) となり、真の変調信号が1qられない。
Now, the modulation signal we want to obtain here is F'(λ)/B'(λ), or 1°△(λ)-F(λ)/B(λ)(F'( λ)10W(λ)) (B'(λ)+W(λ>)), and the true modulated signal cannot be calculated by 1q.

このため、干渉波形の正しい極大点、極小点が冑られず
、誤差の原因であった。この現象は、干渉波形の振幅の
小さい、膜厚の大きい(6〜7μ以上)薄膜では F′(λ):W(λ)=1:0.3 程度にイjす、W </!、>の)ii三t15p I
J顕習とイτる。
For this reason, the correct maximum and minimum points of the interference waveform were not determined, which caused errors. This phenomenon is approximately F'(λ):W(λ)=1:0.3 for a thin film with a small amplitude of the interference waveform and a large film thickness (6 to 7μ or more), W </! , > of) ii threet15p I
I'm with J Kenshu.

本発明の[]的(,15、ト記従来の問題点を11R消
μ/Vとりるしのであり、光の十四現象を利用して博1
1つ)の膜厚を測定づるl’n’iに高“f’l’4度
に膜1′7を測定でさる事を′1!1黴としている。
The purpose of the present invention is to solve the problems of the prior art by using the fourteen phenomena of light.
1) If the thickness of the film 1'7 is measured at l'n'i and the film 1'7 is measured at 4 degrees high, it is considered to be '1!1 mold'.

すなわら、本発明は、 肋膜に光学窓を介して一定の人QJ角で白色光を照則し
、その反射光を該光学窓を介して集光した後、分光して
分光強度の波形を測定し、薄IIう)にJ、る干渉現象
にJ、って牛りろ分光強度の強弱の波長位置から!ル)
厚を測定する方法にd3いて、博11!、3による反0
4光の分光強度をF二(λ)、薄11F、3の代りに反
0’J仮を置いた口)の分光強度をB(λ)、何も置か
ずに光学窓のみによる反q」尤の分光強1宴をW(λ)
とし、 の式に基づいて得られる変調信号△(λ)の強弱の波長
位置から膜厚を測定する事を13徴とするIB>厚測定
方法。
In other words, the present invention aims white light at a constant human QJ angle through an optical window on the pleura, collects the reflected light through the optical window, and then spectrally it to obtain a waveform of the spectral intensity. The interference phenomenon is measured from the wavelength position of the strength and weakness of the spectral intensity! )
d3 on how to measure thickness, Hiroshi 11! , anti-0 by 3
The spectral intensity of the 4 lights is F2(λ), the spectral intensity of the thin 11F, the spectral intensity of the 0'J tentatively placed in place of 3 is B(λ), and the spectral intensity of the light is B(λ), and the spectral intensity of the light is B(λ). The most spectral strength is W(λ)
An IB>thickness measurement method in which the 13 characteristics are to measure the film thickness from the strong and weak wavelength positions of the modulation signal Δ(λ) obtained based on the formula.

を提供するものである。It provides:

(問題点を解決するための手段) 本発明に係る方法を光干渉式膜厚計に適用した場合につ
いて図を用いて説明する。なお、以下に述べる説明では
膜Q測定対巣はフィルムとするが、当然のことながら本
発明に係る方法はフィルムに限定されるものではなく、
カラス薄膜、その他の薄膜のllつ1厚測定にも適応で
きるもので°必る。
(Means for Solving the Problems) A case in which the method according to the present invention is applied to an optical interference type film thickness meter will be described with reference to the drawings. In the following explanation, the membrane Q measurement target is a film, but the method according to the present invention is of course not limited to films.
It is also applicable to measuring the thickness of glass thin films and other thin films.

第1図は光干渉式+1!+! Jり測定系全体の!i+
!略ぜ4成を示すちのでおり、測定系(J、投光部と受
光部を持つ測定部、および演亦処理部から成っている。
Figure 1 shows the optical interference type +1! +! Jri measurement system as a whole! i+
! It consists of a measuring system (J), a measuring section having a light projecting section and a light receiving section, and a calculation processing section.

投光部iJ、光源1、平行光を形成するためのピンホー
ル2、J5よびレンズ3で構成されている。
It is composed of a light projection part iJ, a light source 1, a pinhole 2 for forming parallel light, J5, and a lens 3.

受光部は、集光レンズ4、平行光を形成づるためのピン
ホール5、レンズ6、平面回折格子7、結像レンズ8、
イメージセンサ9、イメージセンサ駆動回路10、バッ
ファアンプ11より(育成されている。また、投光部と
受光部を含む測定部には石英ガラスによる光学窓12か
設(プられている。
The light receiving section includes a condensing lens 4, a pinhole 5 for forming parallel light, a lens 6, a plane diffraction grating 7, an imaging lens 8,
An image sensor 9, an image sensor drive circuit 10, and a buffer amplifier 11 are grown. Also, an optical window 12 made of quartz glass is installed in the measurement section including the light projecting section and the light receiving section.

また、演篇速埋部(よA 、′D変換器′13、マイク
ロコンピュータ141.BJ:び本図では省略されてい
る入出力装置、記・臣に首より偶成されている。
Further, the programmable speed embedding section (YA), 'D converter' 13, microcomputer 141.BJ: and input/output devices, which are omitted in this figure, are connected to the input/output device.

投光部にJ:り形成された平行光(は、光学窓12を通
して、被測定フィルム15に投射され、被測定フィルム
15に占いて反射された光IJ、光学窓12を通して集
光レンズ4により集められ、集光レンズ4の焦点距離に
首かれたピンホール5、及びその後にδバこ7ざrした
レンズ6(レンズ6とピンホール5の距離(J、レンズ
6の焦点距臼に等しい。)により被測定フィルム15で
反CIJさrした光の平(:′i酸成分みか平(]尤と
イヱっ【甲面回折)名j′−7に人qツされる。平面回
折洛j″−7で分光された光のうち、所定の波長範囲が
イメージセンサ9+に!′ll’l像覆る様に佇言集レ
ンズε3が置かれている。イメージセンサ9上に結像さ
れた分光強度の波形(ミ1、イメージセンナ駆動回路1
0により順次レル毎に読出され、バッフ1アンプ11を
介して演亦逸埋部に送られる。
The parallel light (J) formed in the light projecting section is projected onto the film to be measured 15 through the optical window 12, and is reflected by the film to be measured 15. The pinhole 5 is focused and centered at the focal length of the condenser lens 4, and then the lens 6 is rounded by δ (the distance between the lens 6 and the pinhole 5 (J, equal to the focal length of the lens 6). ), the plane of light that is anti-CIJ on the film 15 to be measured (:'i acid component Mikahira ()) is reflected by the name j'-7. Planar diffraction Of the light separated by Rakuj''-7, a predetermined wavelength range is placed on the image sensor 9+!'ll'l A lens collection lens ε3 is placed so that the image is formed on the image sensor 9. Waveform of spectral intensity (Mi1, image sensor drive circuit 1
0 is sequentially read out for each rail and sent to the performance burying section via the buffer 1 amplifier 11.

演亦処狸部で(ま、この信号かA y’ D変換器]3
(こJニリデシタル(言号【こ変(灸された(稔、マイ
クロコンヒJ−−り14に読込まれ、演i;¥i処理が
行なわれる。
In the raccoon section of the performance department (well, this signal is the A y' D converter) 3
(This word is read into the microcomputer 14, and processing is performed.

次に本発明に係る方法の要部となる波線処理のフローヂ
セ−1〜を第4図に示す。
Next, FIG. 4 shows a flowchart of wavy line processing, which is the main part of the method according to the present invention.

ipj pα埋lJL犬別して、破線で囲んだ佳に(a
)、サンプルを測定づる前に行なっておくウィンド信号
、およびブランク信号の測定 (t)) 、 4ナンプルの測定 (C)、デーク込理 の3部により(吊代されでいろ。
ipj pa
), measurement of the wind signal and blank signal (t) performed before measuring the sample, measurement of the 4-number number (C), and the calculation of the data (done).

ここで、「りrンド(1g号と(よ、面性の佳に、第1
図の測定系において測定位置に何ら買かり“に測定した
光学窓12による反射光の分光性1牛の串て必る。
Here, ``Rindo (with issue 1g), the first
In the measurement system shown in the figure, a skewer of the spectroscopic light reflected by the optical window 12 is placed at the measurement position.

また、ブランク信号とは、第1図の測定系において測定
対架のフィルム15の代りに適当な反射板を置き測定し
た光学系全体の分光性[JUの串である。
In addition, the blank signal is the spectral property [JU's skewer] of the entire optical system measured by placing a suitable reflector in place of the film 15 on the measuring rack in the measuring system shown in FIG.

以下、実際の手;;1j″iを説明する。The actual move ;;1j″i will be explained below.

より、ウィンド信号の測定でおるか、測定位置に何も首
かザに測定する。この結果をW(λ)とする。
It is better to measure the wind signal or to measure with nothing in the measuring position. Let this result be W(λ).

次に、ブランク信号の測定であるが、測定対象フィルム
と同じ+A貿で作られ且つ干渉現条の影響を受りない程
度の充分厚い板を用意し、それをフィルムの位置に置き
測定する。これをB(λ)とする。
Next, to measure the blank signal, prepare a plate made of the same +A material as the film to be measured and thick enough to be unaffected by interference currents, place it at the position of the film, and measure. Let this be B(λ).

この時の反射板はミラーでもにいか、ミラーとfナンプ
ルでは反射率が大ぎく違うのでリンプル測定時のダイナ
ミックレンジか狭くなる。モのため、反射板はサンプル
と同一素材の板を用いた方がよい。
In this case, the reflectance plate may be a mirror, but the reflectance between the mirror and the f-number is very different, so the dynamic range during ripple measurement becomes narrow. Therefore, it is better to use a reflector made of the same material as the sample.

また、このつ、インド測定およびブランク測定lま測定
開始前に行なうが、光源ランプの経時変化などを?If
i償するために定1グj的に再測定することか好ましい
。  − 次にサンプル測定を行なう。
Also, this is done before starting the India measurement and blank measurement, but is it possible to check the change over time of the light source lamp? If
It is preferable to periodically re-measure for compensation. - Then perform the sample measurement.

被測定フィルム15を測定位δに置いた後、マイクロコ
ンピュータ14よりの指令ににす、イメージセン1す9
の出力をバッフ7アンブ′11を介して四節処理部に送
り、順次A 、/′D変換器13を介して読取り、測定
(;−E−SF(λ)とする。
After placing the film 15 to be measured at the measurement position δ, the image sensor 19 is activated according to the command from the microcomputer 14.
The output is sent to the four-node processing unit via the buffer 7 amplifier '11, and read out sequentially via the A and /'D converters 13 to be measured (;-E-SF(λ)).

W(λ)、B(λ)測定の手順もF(λ)測定の手順と
同じである。
The procedure for measuring W(λ) and B(λ) is also the same as the procedure for measuring F(λ).

次にデータ速理の説明を行なう。Next, we will explain data processing.

第4図に示す様にデータ込理は次の手順で行なわれる。As shown in FIG. 4, data integration is performed in the following steps.

(a)、ゞI′−滑化 (11)  、  fン−イ ン1へ(i! /シ捕I
F(c) 、 i′I現化 (d)、山谷(1車人、)へ小)侍首検出(C)、脱)
′2演i;東 以下、各、/”l]フッタは能を詳細に説明1−る。
(a), ゞI'-sliding (11), f-in-in 1 (i!/Shi catch I
F(c), i′I manifestation (d), Yamaya (1 Kurumajin, ) to small) Samurai head detection (C), escape)
'2 performance i; East and below, each /"l] footer provides a detailed explanation of the Noh.

まず、平滑1ヒを行なう。平滑化にl(J、 +J々の
f法かあるか、j11悼な移動平均の様に類0.1間て
11なえるしのが好Jニジい。また、移動T均をとるポ
イン1〜教を2  (n=1.2、・・・)に選んてJ
′3けばv1弗をピッj〜シフトで行なえるので高速化
の点て好ましい。′3.た、この時イメージセンリの(
jUt部分以外の所を電って光に感じない様にしたダー
クセルを作っておき各々の出力からこのダークセルの出
力を差引けばイメージセンサの暗電流補償か行イfえる
ので好ましい。
First, smoothing 1H is performed. Is there an f method for smoothing l(J, +J, etc.? It's good to have a similar 0.1 interval difference like a moving average of J11. Also, the point 1 to Select teaching as 2 (n=1.2,...) and select J
'3 allows v1 to be shifted by pitch j~, which is preferable in terms of speeding up. '3. At this time, the image sensor (
It is preferable to create a dark cell in which parts other than the jUt portion are electrically sensitive to light, and then subtract the output of this dark cell from each output to compensate for the dark current of the image sensor.

この様にして平滑化されたデータを平滑化データと呼7
玉。
Data smoothed in this way is called smoothed data7.
ball.

この平滑化により、微小なノイズか除ムされて平滑化信
QF(λ)となるわけで必る。なお、この平滑化の操作
は「ウィンド信号W(λ)、ブランク1言弓B(λ)に
対しても11なってJ’3<。
This smoothing necessarily removes minute noises, resulting in a smoothed signal QF(λ). Note that this smoothing operation is ``11 also for the wind signal W (λ) and the blank 1 word bow B (λ), so that J'3<.

なJ′3、この平滑化は本質的でCJ、ないの−Cづ)
(−りてし良い。以降はF(λ)ど「(λ)(!!−区
別しすにF(λ)と表記する。
J′3, this smoothing is essential and CJ, no-Czu)
(- is fine. From now on, F(λ) and "(λ)(!!-) will be written as F(λ) to distinguish between them.

次1こウィンド信号の補正を行なう。Next, the wind signal is corrected.

ザなわら、平滑化信号「(λ)、ブランク信号B(λ)
よりウィンド信号W(λ)を(4)式に従って引算し、
真の測定信号F’  (λ〉、真の1ランク信号B’ 
 (λ)を1qる。
However, the smoothed signal B(λ) and the blank signal B(λ)
Then subtract the wind signal W(λ) according to equation (4),
True measurement signal F'(λ>, true 1-rank signal B'
(λ) is multiplied by 1q.

次に、(5)式により変調信号A(λ)を1■る。Next, the modulated signal A(λ) is multiplied by 1 according to equation (5).

A(λ)=F’(λ)/B’  (λ)  ・・・(5
)これを正規化と呼び、この操作により第2図に相当す
る干渉波形が得られる。
A(λ)=F'(λ)/B'(λ)...(5
) This is called normalization, and by this operation an interference waveform corresponding to FIG. 2 is obtained.

次に、干渉波形の山、谷(極大、極小)位置の同定て必
るが、前)小までの操作で、ノイズか1か端に少ない干
渉波形が得られているので、信号の傾きの変化により、
本か値位置を求めろ方法なとて容易に山、谷の位δをi
′E確に知る事かできる。
Next, it is necessary to identify the peak and valley (maximum, minimum) positions of the interference waveform, but by performing operations up to the previous step, an interference waveform with little noise or noise at the edge was obtained, so the slope of the signal could be determined. Due to changes,
It is very easy to find the value position of the peaks and valleys by i
'E I can know for sure.

ここで、jqられる4〜値の位置は、イメージセンサの
セル番号であるが、この(Φ値の位置を波長にシ売j負
えるため(こは1育もってイメージセンサのセル番号と
波長との対応関係を知る必要がおる。この対応は、ブラ
ンクデータ測定時に反射板の上に波長既知の干渉フィル
ターを置いて測定し、そのピーク位置を求めることによ
り知ることか出来る。
Here, the position of the value 4 to q is the cell number of the image sensor, but since the position of the Φ value can be sold to the wavelength, the relationship between the cell number of the image sensor and the wavelength is It is necessary to know the correspondence.This correspondence can be found by placing an interference filter with a known wavelength on the reflection plate when measuring blank data, and determining the peak position.

この様にして複数の極大波長、)〜小波長が判れば隣接
する(小人波長(もしくは、#l※小波長)より(3)
式にMついて[4! I’5’ ”: * I Cンリ
−る。この[時、複数の結果を波節してその平均値を求
めても良い。
In this way, if you can find multiple maximum wavelengths, ) to small wavelengths, the adjacent ones (from the dwarf wavelength (or #l*small wavelength) (3)
Regarding M in the formula [4! I'5' ”: * I C read. At this time, it is also possible to combine multiple results and find the average value.

また、非常に薄いフィルムの様に測定波長領域に1周期
以下しか分光波形か入らない揚台には(3)式を変j)
?シて、極大波長と、)※小波長の絹合已で膜厚を81
篇することか好ましい。
In addition, for cases where the spectral waveform enters the measurement wavelength region for one period or less, such as a very thin film, equation (3) should be changed.
? The film thickness is 81 cm with the maximum wavelength and
It is preferable to edit it.

(作 用) 以上、訂述した様に本発明に係る方法(jl、光学系お
よびマイクロコンピュータ等の演暉f段を、1t1いて
、光学窓による反射光成分の分光1hl生と、反Q1.
を反による反rAJ光成分の分光性1iを必らかしめ測
定しておき、測定信号a3よびブランク信号からウィン
ド信号を差引き、その後、正規化演節を行ない1.極値
の位置より膜j7を演算する。
(Function) As described above, the method according to the present invention (jl, optical system, microcomputer, etc., is used to produce a spectrum of light components reflected by an optical window, and to produce a spectroscopic light component of the reflected light component by an optical window, and to generate a spectroscopic light component of the reflected light component by an optical window.
The spectral property 1i of the anti-rAJ light component due to anti-rAJ is measured beforehand, the wind signal is subtracted from the measurement signal a3 and the blank signal, and then normalization is performed.1. The film j7 is calculated from the position of the extreme value.

(実施例) 以下、実施例で本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

光源としてハロゲンランプを使用し、ili而回面帽子
は550・〜850nmに充分感度のあるブレーズ波長
:500nm、溝a:1200本/ml、有効領I戊:
30mmx30mmのものを用い/’T (1よ/L、
イメージセン1月31,2048レルで構成されるCC
Dタイプのものを用いた。A 、/ D変換器はフルス
ケール12ビツト(/1096段階)のちのを使用した
。ざらに平滑化は単純移動平均とし23−8点の移動平
均とした。
Using a halogen lamp as a light source, the blaze wavelength is sufficiently sensitive to 550-850 nm: 500 nm, groove a: 1200 lines/ml, effective area I:
Use a 30mm x 30mm /'T (1yo/L,
Image sensor January 31, CC consisting of 2048 reels
A type D was used. A full-scale 12-bit (/1096 steps) A/D converter was used. Rough smoothing was done using a simple moving average and a moving average of 23-8 points.

第5図にウィンド信号およびブランク信号の分光波形を
示す。これより光学系の特性が一様でないこと、また、
ウィンド12号か無視できない大きさを持つことか判る
FIG. 5 shows the spectral waveforms of the wind signal and blank signal. This means that the characteristics of the optical system are not uniform, and
It turns out that Wind No. 12 has a size that cannot be ignored.

第6図に、各種!14! Ifについて、払来の方法(
実開++<; 5 a −72610号公報)と本発明
の方法によって測定した変調倍量の波形と、その波形の
山、谷の位置からhi師した膜厚を示す。
Figure 6 shows various types! 14! Regarding If, how to pay (
5A-72610) and the waveform of the modulation multiplier measured by the method of the present invention, and the film thickness measured by hi from the peak and valley positions of the waveform.

なお、この図にあ(プる公称++S>厚は、一定面積の
小量を測定して密i良てυ1返す所謂、巾吊平均館て必
る。
In addition, in this figure, (nominal ++S>thickness) is the so-called width-hung average, where a small amount of a certain area is measured and the thickness is returned by υ1.

以上の手順(よ全てマイクロコンピュータによりコント
ロールされ自動的に行なわれる。
All of the above steps are automatically controlled by a microcomputer.

(発明の効果) 以上説明した様に、本発明の膜厚測定方法は、1、―号
迅埋時に情度を低Fさける凹円である光学窓にJ、る反
q4光成分を必らかじめ測定して記、F、 L、ておき
、ブランク信号、測定1言号からウィンド信号を差引い
た後に正規化処理を行ない、冑られた変調信号に基づい
て山、谷の位置を求めlIジ厚を演算する方法でのるの
で高精度な測定か行なえる。
(Effects of the Invention) As explained above, the film thickness measuring method of the present invention requires the J and Q4 light components to be reflected in the optical window, which is a concave circle that avoids low F during rapid burial. After measuring and recording F, L, and blank signals, subtract the wind signal from one word of measurement, perform normalization processing, and find the positions of peaks and valleys based on the modulated signal. Since it uses a method that calculates the thickness, highly accurate measurements can be made.

なお、この効果は、膜j学か大きく(6〜7μ以上)と
なると顕著で必る。
Note that this effect becomes noticeable when the film thickness becomes large (6 to 7 μm or more).

【図面の簡単な説明】[Brief explanation of drawings]

第′1図は本発明に係る方法を実施ザろための測定系全
体の戦略!’l’4成図、第2図IJ、 1% liら
)に」二る一F渉の分光波形を示す)つ)式図、第3図
(ε’J ) lj、実際に:1す膜測定した1月合の
分光波形を承り図、第、13図(b)は光学系の持重分
光波形を承り図、第1図は;1シ)厚測定に必要な曲弾
処理を示すフ[]−1−1・−ト、第5図(a)は本発
明の実施例にJ、るウィンド信号を示1図、第5図(b
)は本発明の実施例ににるブランク信号を示J図、第6
図1;J、、lIつ)厚か4.25μm、7.4μm、
12.2μmの3仔n1のフィルムについて従来の方法
による測定hLl宋と4\発明(こよる測定〒1.l、
−74を比較した図である。 1・・・光源 2・・・ピンホール 3・・・レンズ /1・・・集光レンズ 5・・・ヒ゛ンホール 6・・・〕リメートレンズ 7・・・平面回折+8子 ε3・・・ヤ占像しンス′ 0・・・イメージセン(す ]○・・・イメーシレンリ駆動回路 11・・・バッフl−アンプ 12・・・光学窓 13・・・A/[)変換:己 ]4・・・マイクロコンビコーラ 15・・・測定列♀フィルム 1−4訂出願人 東し株式会社 ’Jtyzm、4nK+=孝3千!麦の4N乞テ皮杉第
5図(し入プランクイLろ 第6m
Figure '1 shows the overall strategy of the measurement system for implementing the method according to the present invention. 'l' 4 diagram, Figure 2 IJ, 1% li et al. Figure 13(b) shows the spectral waveform of the film measured in January, and Figure 13(b) shows the spectral waveform of the optical system. []-1-1・- Fig. 5(a) shows the wind signal according to the embodiment of the present invention. Fig. 1, Fig. 5(b)
) shows the blank signal according to the embodiment of the present invention.
Figure 1; J, , II) Thickness: 4.25 μm, 7.4 μm,
Measurement of 12.2 μm 3-layer n1 film by conventional method
-74 is a comparison diagram. 1...Light source 2...Pinhole 3...Lens/1...Condensing lens 5...Hinhole 6...Remator lens 7...Plane diffraction + 8-element ε3...Ya Imaging sensor' 0...Image sensor (S)○...Image sensor drive circuit 11...Buffer l-amplifier 12...Optical window 13...A/[) conversion: self]4...・Micro Combicola 15...Measurement row ♀ Film 1-4 edition Applicant Toshi Co., Ltd.'Jtyzm, 4nK+=Ko 3,000! Mugi no 4N Koteki Cedar Figure 5

Claims (1)

【特許請求の範囲】 薄膜に光学窓を介して一定の入射角で白色光を照射し、
その反射光を該光学窓を介して集光した後、分光して分
光強度の波形を測定し、薄膜による干渉現象によつて生
ずる分光強度の強弱の波長位置から膜厚を測定する方法
において、 薄膜による反射光の分光強度をF(λ)、薄膜の代りに
反射板を置いた時の分光強度をB(λ)、何も置かずに
光学窓のみによる反射光の分光強度をW(λ)とし、 A(λ)={F(λ)−W(λ)}/{B(λ)−W(
λ)}の式に基づいて得られる変調信号A(λ)の強弱
の波長位置から膜厚を測定する事を特徴とする膜厚測定
方法。
[Claims] A thin film is irradiated with white light at a constant angle of incidence through an optical window,
A method in which the reflected light is collected through the optical window, and then separated into spectra to measure the waveform of the spectral intensity, and the film thickness is measured from the wavelength position of the strength and weakness of the spectral intensity caused by the interference phenomenon caused by the thin film, The spectral intensity of the light reflected by the thin film is F (λ), the spectral intensity when a reflector is placed in place of the thin film is B (λ), and the spectral intensity of the light reflected only by the optical window without anything is W (λ). ), and A(λ)={F(λ)-W(λ)}/{B(λ)-W(
A film thickness measuring method characterized in that the film thickness is measured from the wavelength positions of the strengths and weaknesses of a modulation signal A(λ) obtained based on the formula of λ)}.
JP21228285A 1985-09-27 1985-09-27 Film thickness measurement method Expired - Lifetime JPH063364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21228285A JPH063364B2 (en) 1985-09-27 1985-09-27 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21228285A JPH063364B2 (en) 1985-09-27 1985-09-27 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JPS6273103A true JPS6273103A (en) 1987-04-03
JPH063364B2 JPH063364B2 (en) 1994-01-12

Family

ID=16620017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21228285A Expired - Lifetime JPH063364B2 (en) 1985-09-27 1985-09-27 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JPH063364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237304A (en) * 1990-02-14 1991-10-23 Anelva Corp Thin film manufacturing device
JP2006273525A (en) * 2005-03-30 2006-10-12 Ishikawajima Constr Mach Co Telescopic boom of self-propelled crane
JP2013253803A (en) * 2012-06-05 2013-12-19 Takaoka Electric Mfg Co Ltd Film thickness measuring apparatus and film thickness measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237304A (en) * 1990-02-14 1991-10-23 Anelva Corp Thin film manufacturing device
JP2006273525A (en) * 2005-03-30 2006-10-12 Ishikawajima Constr Mach Co Telescopic boom of self-propelled crane
JP2013253803A (en) * 2012-06-05 2013-12-19 Takaoka Electric Mfg Co Ltd Film thickness measuring apparatus and film thickness measuring method

Also Published As

Publication number Publication date
JPH063364B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JP4978546B2 (en) Film thickness measuring apparatus and method
US5227861A (en) Apparatus for and method of evaluating multilayer thin film
CN107976263B (en) Photothermal reflection temperature measurement method and system
TW200532164A (en) Film thickness measuring method and apparatus
JPH09119815A (en) Method and device for measuring film thickness
JPS6273103A (en) Film-thickness measuring method
JPS59105508A (en) Measurement of whith interference film thickness
JPH01320409A (en) Film thickness measuring method
JPS6271804A (en) Film thickness measuring instrument
JP3864719B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPH029290B2 (en)
JPH028163Y2 (en)
JP7473546B2 (en) Analysis equipment
JPH03110405A (en) Multi-layered thin film evaluator
US20230092614A1 (en) Miniature spectrum measuring device and thin film filter
JPH04120404A (en) Apparatus and method for estimating thickness of semiconductor multilayer thin film
JP3057943B2 (en) Film thickness measuring device
JP2842241B2 (en) Film thickness measurement method
JPS62289749A (en) Reflection factor measuring instrument
JPH0654217B2 (en) Interference film thickness measurement method
JPS63212827A (en) Fourier transform type spectrophotometer
JPS61246607A (en) Measuring method for film thickness
SU737817A1 (en) Interference method of measuring refraction coefficient of dielectric films of variable thickness
SU815492A1 (en) Method of measuring roughness of super-smooth surfaces
SU1370531A1 (en) Method of determining ray strength of optical coating