JPH03237304A - Thin film manufacturing device - Google Patents
Thin film manufacturing deviceInfo
- Publication number
- JPH03237304A JPH03237304A JP3329890A JP3329890A JPH03237304A JP H03237304 A JPH03237304 A JP H03237304A JP 3329890 A JP3329890 A JP 3329890A JP 3329890 A JP3329890 A JP 3329890A JP H03237304 A JPH03237304 A JP H03237304A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- thin film
- substrate
- light
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 81
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims description 19
- 238000002834 transmittance Methods 0.000 claims description 18
- 230000001419 dependent effect Effects 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000010408 film Substances 0.000 abstract description 33
- 238000004544 sputter deposition Methods 0.000 abstract description 13
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 238000012937 correction Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 22
- 230000007246 mechanism Effects 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
- C23C14/545—Controlling the film thickness or evaporation rate using measurement on deposited material
- C23C14/547—Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は薄膜作製装置に関し、特に干渉色のピーク波長
を一定とすることに基づいて成膜速度を一定に制御し同
一膜厚を有する薄膜を作製するようにした薄膜作製装置
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film production apparatus, and in particular, the present invention relates to a thin film production apparatus, and in particular, the production of thin films having the same thickness by controlling the film formation rate to a constant value based on the constant peak wavelength of interference colors. The present invention relates to a thin film manufacturing apparatus for manufacturing a thin film.
従来における例えば連続薄膜作製装置では、放電電力も
しくは放電電流又は基板の搬送速度等の薄膜作製条件を
一定にして基板に成膜を行った場合であっても、ターゲ
ットの使用が進行するとその使用量(積算電力量)に応
じて成膜速度が変化するという不具合があった。このよ
うな不具合を解消する目的で成膜速度を一定に保持する
ための補正・制御を行う場合、従来では3通りの方法が
考えられた。第1の方法は適当なタイミングで膜厚モニ
タ用ダミー基板を入れ、このダミー基板で成膜速度を測
定した後放電電力又は放電電流にフィードバックを行い
これらの値を補正する方法、第2の方法は光学式膜厚モ
ニタ等を用いて成膜中又は成膜後の膜厚をインプロセス
でモニタし補正する方法、第3の方法はレーザー膜厚計
を用いて膜厚測定及び膜厚制御を行い補正する方法であ
る。For example, in conventional continuous thin film production equipment, even if the thin film production conditions such as discharge power, discharge current, or substrate conveyance speed are kept constant and the film is deposited on the substrate, the usage of the target decreases as the use of the target progresses. There was a problem that the film formation speed changed depending on the amount of electric power (integrated electric energy). Conventionally, three methods have been considered when performing correction and control to keep the film formation rate constant in order to eliminate such problems. The first method is to insert a dummy substrate for film thickness monitoring at an appropriate timing, measure the film formation rate with this dummy substrate, and then feed back to the discharge power or discharge current to correct these values.The second method is to The third method uses an optical film thickness monitor, etc. to monitor and correct the film thickness during or after film formation, and the third method uses a laser film thickness meter to measure and control the film thickness. This is a method of performing correction.
しかしながら、従来の方法はそれぞれ次のような問題を
有している。However, each of the conventional methods has the following problems.
第1の方法では、頻繁にモニタ用基板をセットしなけれ
ばならないため面倒であり、且つモニタ用基板を挿入す
る分生産性が落ち、更に実際のプロセス中においてモニ
タが実施されないためモニタ結果の信頼性が低いという
問題があった。第2の方法は、例えば干渉作用を利用し
た2波長の光学膜厚計等の膜厚測定機構では、膜厚その
ものを求めることを目的とするため測定機構と補正機構
を有しなければならず、更に膜厚算出のため所要の幅の
広い一定エリアのモニタを行わなければならないという
問題があった。第3の方法では、レーザー膜厚計は光源
として高価なものであり、装置全体としてのコストが高
くなるという問題があった。In the first method, the monitor board must be set frequently, which is troublesome, productivity decreases due to the need to insert the monitor board, and furthermore, monitoring is not performed during the actual process, making the monitoring results unreliable. There was a problem with low gender. The second method is that a film thickness measurement mechanism, such as a two-wavelength optical film thickness meter that uses interference, must have a measurement mechanism and a correction mechanism because the purpose is to determine the film thickness itself. Furthermore, there is a problem in that a certain wide area must be monitored in order to calculate the film thickness. In the third method, the laser film thickness meter is an expensive light source, and there is a problem in that the cost of the entire device increases.
本発明の目的は、上記問題点を解決すべく、インプロセ
スにおいて簡易に実行でき且つ信頼性が高い測定・補正
機構を備え、干渉色の極値に対応する波長を一定にする
ことにより常に同一膜厚を有する薄膜を作製することが
でき、更に簡易且つ安価に薄膜作製工程の自動、化を確
立することのできる薄膜作製装置を提供することにある
。In order to solve the above-mentioned problems, it is an object of the present invention to provide a measurement and correction mechanism that can be easily executed in-process and has high reliability, and to always maintain the same wavelength by keeping the wavelength corresponding to the extreme value of interference color constant. It is an object of the present invention to provide a thin film manufacturing apparatus capable of manufacturing a thin film having a certain thickness, and also capable of establishing automation of the thin film manufacturing process simply and at low cost.
本発明に係る薄膜作製装置は、基板に作製された透光性
を有する薄膜の光学的な透過率又は反射率の波長依存特
性を測定する測定装置と、この測定装置で測定された透
過率又は反射率の波長依存特性における極値に対応する
波長を検出する極値波長検出手段と、この極値波長検出
手段によって検出される波長が一定となるように薄膜の
作製条件を制御する制御手段とから構成される。The thin film manufacturing apparatus according to the present invention includes a measuring device for measuring wavelength-dependent characteristics of optical transmittance or reflectance of a thin film having light-transmitting properties fabricated on a substrate, and a transmittance or reflectance measured by the measuring device. an extreme wavelength detection means for detecting a wavelength corresponding to an extreme value in the wavelength-dependent characteristic of reflectance; and a control means for controlling thin film manufacturing conditions so that the wavelength detected by the extreme wavelength detection means is constant. It consists of
本発明に係る薄膜作製装置は、前記の装置構成において
、基板が透明又は半透明のときには測定装置は透過率の
波長依存特性を測定するように構成され、基板が不透明
であるときには反射率の波長依存特性を測定するように
構成されることを特徴とする。In the thin film production apparatus according to the present invention, in the above-described apparatus configuration, when the substrate is transparent or semi-transparent, the measuring device is configured to measure the wavelength-dependent characteristic of the transmittance, and when the substrate is opaque, the measuring device is configured to measure the wavelength-dependent characteristic of the reflectance. characterized in that it is configured to measure a dependent characteristic.
本発明に係る薄膜作製装置は、前記の装置構成において
、測定装置が、波長可変スキャン型モノクロメータを含
むか、又は分光器と、フォトダイオードアレイを含む検
出回路とを含むことを特徴とする。The thin film manufacturing apparatus according to the present invention is characterized in that, in the above-described apparatus configuration, the measuring device includes a variable wavelength scanning monochromator, or a spectrometer and a detection circuit including a photodiode array.
本発明による薄膜作製装置では、例えば透明な基板に透
明な薄膜を作製した場合に、この基板及び薄膜に白色光
を照射すると、その透過光は、基板と薄膜層の屈折率の
違いや界面の存在によって干渉作用を生じ、透過率の波
長依存特性が少なくとも1つの極値(極大値又は極小値
)を有する特性となるので、この極値に対応する波長が
常に一定になるように制御することにより成膜速度を一
定に保持することにより、製作される薄膜の膜厚を一定
に保つようにする。このことは反射光を利用しても同じ
ことができる。そこで、本発明では、測定装置によって
光学的な透過率又は反射率の波長依存特性を測定し、極
値検出手段で波長依存特性における極値に対応する波長
を検出し、検出される波長が所定の波長に保持されるよ
うに偏差等に基づき制御手段が薄膜作製の所定条件を補
正し、成膜速度を制御する。In the thin film production apparatus according to the present invention, for example, when a transparent thin film is produced on a transparent substrate, when the substrate and thin film are irradiated with white light, the transmitted light is affected by the difference in refractive index between the substrate and the thin film layer, and the difference in the interface between the substrate and the thin film layer. Its presence causes an interference effect, and the wavelength-dependent characteristic of transmittance has at least one extreme value (maximum value or minimum value), so it is necessary to control the wavelength corresponding to this extreme value to always be constant. By keeping the film formation rate constant, the thickness of the thin film produced is kept constant. The same thing can be done using reflected light. Therefore, in the present invention, the wavelength-dependent characteristic of optical transmittance or reflectance is measured by a measuring device, the wavelength corresponding to the extreme value in the wavelength-dependent characteristic is detected by the extreme value detection means, and the detected wavelength is determined by a predetermined value. The control means corrects the predetermined conditions for forming the thin film based on the deviation etc. so that the wavelength is maintained at the wavelength of , and controls the film forming rate.
以下に、本発明の実施例を添付図面に基づいて説明する
。Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図は本発明の薄膜作製装置の一実施例を示す連続方
式の薄膜作製装置であり、この薄膜作製装置では連続的
に基板を供給し薄膜処理を行うことにより大量の薄膜基
板を作製することができる。FIG. 1 shows a continuous type thin film manufacturing apparatus showing an embodiment of the thin film manufacturing apparatus of the present invention. In this thin film manufacturing apparatus, a large number of thin film substrates are manufactured by continuously supplying substrates and performing thin film processing. be able to.
第1図において、1は長形の真空容器であり、この真空
容器1には例えば4個の開閉自在なゲートパルプ2が配
設され、この4個のゲートパルプ2によって真空容器1
の内部に3つの真空室IA。In FIG. 1, reference numeral 1 denotes a long vacuum container, and this vacuum container 1 is provided with, for example, four gate pulps 2 that can be opened and closed.
There are three vacuum chambers IA inside.
IB、ICが形成される。真空室IAはロードロツタ室
であり、真空室1Bはスパッタリング室であり、真空室
ICはアンロードロック室である。IB and IC are formed. Vacuum chamber IA is a load rotor chamber, vacuum chamber 1B is a sputtering chamber, and vacuum chamber IC is an unload lock chamber.
各真空室にはそれぞれを所要の真空度に排気せしめる真
空ポンプ3A、3B、3Cが設置されている。またスパ
ッタリングを実施する真空室IBにはターゲットを備え
たカソード4が配設され、このカソード4には所要の放
電電力(放電電流)を供給するスパッタリング用電源5
が接続される。Vacuum pumps 3A, 3B, and 3C are installed in each vacuum chamber to evacuate each vacuum chamber to a required degree of vacuum. Further, a cathode 4 equipped with a target is disposed in the vacuum chamber IB in which sputtering is performed, and a sputtering power source 5 that supplies the required discharge power (discharge current) is connected to the cathode 4.
is connected.
上記の構造を有した真空容器1に対して図中左側の外部
より基板が供給される。基板はトレイ6によって支持さ
れており、このトレイ6上において第1図中上部に基板
の薄膜処理表面が現れるように基板はトレイ6に配置さ
れている。トレイ6、すなわち基板は矢印7に示す方向
に進行する。従って、真空容器1に搬入された基板は、
真空室を1A→IB−ICという順序で移動していくの
であるが、そのつど真空室の間に存在するゲートパルプ
2は開閉されることになる。基板を矢印7の方向に移動
させるための搬送装置は第1図中に図示されていないが
、当該技術分野で周知の搬送装置が使用されている。搬
送装置を駆動する手段としては例えば電気モータが使用
される。A substrate is supplied to the vacuum container 1 having the above structure from the outside on the left side in the figure. The substrate is supported by a tray 6, and the substrate is placed on the tray 6 so that the thin film processing surface of the substrate appears at the top in FIG. The tray 6, ie the substrate, advances in the direction shown by arrow 7. Therefore, the substrate carried into the vacuum container 1 is
The vacuum chambers are moved in the order of 1A→IB-IC, and the gate pulp 2 existing between the vacuum chambers is opened and closed each time. Although a transport device for moving the substrate in the direction of arrow 7 is not shown in FIG. 1, transport devices well known in the art may be used. For example, an electric motor is used as means for driving the conveyance device.
上記構成において、スパッタリングが実行される真空室
IBで基板の上面に薄膜が形成される。In the above configuration, a thin film is formed on the upper surface of the substrate in the vacuum chamber IB where sputtering is performed.
本発明では、後述される測定・補正機構において透過方
式が採用される場合には基板は透明又は半透明であるこ
とが必要である。反射方式が採用される場合にはその限
りではない。また本発明において、基板に作製される薄
膜はITO等の如く透明又は半透明であることが条件と
なる。In the present invention, when a transmission method is adopted in the measurement/correction mechanism described later, the substrate needs to be transparent or semitransparent. This is not the case when a reflection method is adopted. Further, in the present invention, the thin film formed on the substrate must be transparent or semitransparent, such as ITO.
本発明による薄膜作製装置において、同一膜厚を有する
薄膜を作るため成膜速度が一定となるように制御する測
定・補正機構の設置箇所は、例えば上記連続薄膜作製装
置では、基板に薄膜が作製される工程の後のいずれかの
箇所である。従って、測定・補正装置は例えば真空室I
Bの後部或いは真空室ICに配置され、更に真空室IC
の後工程に配置することもできる。また成膜後に測定・
補正を行う構成のものであれば、真空中或いは大気中の
任意の箇所にて行うことができる。In the thin film production apparatus according to the present invention, the measurement/correction mechanism that controls the film formation rate to be constant in order to produce thin films having the same thickness is installed at a location where, for example, in the continuous thin film production apparatus described above, the thin film is produced on the substrate. It is any place after the process that is performed. Therefore, the measurement/correction device is, for example, a vacuum chamber I
B or vacuum chamber IC, and further vacuum chamber IC
It can also be placed in a subsequent process. In addition, measurement and
As long as it is configured to perform correction, it can be performed at any location in vacuum or in the atmosphere.
次に基板の薄膜作製工程において成膜速度を常に一定と
し、同一膜厚の薄膜を作製するための測定・補正機構に
ついて説明する。成膜速度を一定にするための原理とし
て、本発明では干渉色のピークトップを一定にすること
を利用する。Next, a measurement/correction mechanism for keeping the deposition rate constant and producing thin films of the same thickness in the thin film production process for the substrate will be explained. As a principle for keeping the film formation rate constant, the present invention utilizes keeping the peak top of interference color constant.
ここで、干渉色のピークトップを一定にするとは、薄膜
が形成された基板に対して透過光又は反射光を与えたと
きその波長依存性によって得られる複数のピーク(極大
値或いは極小値)のうちいずれかのピークの波長の値が
一定に保たれることをいう。デポジション後の基板に、
例えば後述される第2図に示す如き光学的測定系におい
て白色光を照射すると、その透過光又は反射光は光の干
渉作用に基づき第5図のような特性を得ることができる
。第5図において横軸は波長(nm)を表し、縦軸は透
過率(%)を表している。この特性例の場合、基板はガ
ラス基板であり、ガラス基板の屈折率n、は1.5、透
光性薄膜の屈折率n2は2.0である。第5図に示され
るように、膜厚が140nmである場合には特性A1を
得ることができ、この場合において特性A1のピーク、
すなわち極大値(ピークトップ)に対応する波長の値は
屈折率(nl*n2)が一定である場合にはある決まっ
た値X。となる。ところが薄膜の膜厚が変化するとピー
クの波長の値が変化する。例えば、膜厚が5nm薄くな
ると特性はA2の如くなり、ピークに対応する波長はX
。−20となる。Here, keeping the peak top of the interference color constant means that when transmitting light or reflecting light is applied to a substrate on which a thin film is formed, multiple peaks (maximum values or minimum values) obtained due to the wavelength dependence of the transmitted light or reflected light should be kept constant. This means that the wavelength value of one of the peaks is kept constant. On the substrate after deposition,
For example, when white light is irradiated in an optical measuring system as shown in FIG. 2, which will be described later, the transmitted light or reflected light can obtain characteristics as shown in FIG. 5 based on the interference effect of light. In FIG. 5, the horizontal axis represents wavelength (nm), and the vertical axis represents transmittance (%). In the case of this characteristic example, the substrate is a glass substrate, the refractive index n of the glass substrate is 1.5, and the refractive index n2 of the transparent thin film is 2.0. As shown in FIG. 5, when the film thickness is 140 nm, characteristic A1 can be obtained, and in this case, the peak of characteristic A1,
That is, the value of the wavelength corresponding to the maximum value (peak top) is a certain fixed value X when the refractive index (nl*n2) is constant. becomes. However, when the thickness of the thin film changes, the value of the peak wavelength changes. For example, when the film thickness is reduced by 5 nm, the characteristics become as shown in A2, and the wavelength corresponding to the peak is
. -20.
また膜厚が5nm厚くなると特性はA3の如くなり、ピ
ークに対応する波長はX。+20となる。Moreover, when the film thickness increases by 5 nm, the characteristics become like A3, and the wavelength corresponding to the peak is X. It becomes +20.
このように薄膜の膜厚に差が生じると干渉の作用によっ
てピーク波長の値にずれが生じる。反対にピーク波長の
値が一定であることは、薄膜等の屈折率が一定であると
いう条件の下では膜厚が一定であることを意味する。そ
こで、本発明による測定・補正機構では、ピーク波長が
所要の値に一定に保持されるよう薄膜作製の諸条件を制
御するように構成するものであり、このことは実質的に
諸条件が変化したとしても成膜速度が常に一定に保持さ
れるように制御が行われることを意味する。When there is a difference in the thickness of the thin film in this way, a shift occurs in the value of the peak wavelength due to the effect of interference. On the other hand, a constant value of the peak wavelength means that the film thickness is constant under the condition that the refractive index of the thin film or the like is constant. Therefore, the measurement/correction mechanism according to the present invention is configured to control the various conditions of thin film production so that the peak wavelength is kept constant at a required value, and this means that the various conditions are substantially changed. Even if this happens, it means that control is performed so that the film formation rate is always kept constant.
次に第2図に従ってフィードバック機構を有した測定・
補正機構の第1実施例を説明する。この測定・補正機構
は、前述したように透過光の干渉色のピークの波長を測
定し、この波長の値が一定になるように制御することに
より、成膜速度を一定に保ち同一膜厚の薄膜を作製する
ためのものである。従って測定の対象は干渉色のピーク
波長であり、補正の対象はスパッタリングの放電電力(
放電電流)又は基板の搬送速度である。Next, a measurement system with a feedback mechanism according to Fig.
A first embodiment of the correction mechanism will be described. As mentioned above, this measurement/correction mechanism measures the peak wavelength of the interference color of transmitted light and controls the value of this wavelength to be constant, thereby keeping the film deposition rate constant and achieving the same film thickness. This is for producing thin films. Therefore, the measurement target is the peak wavelength of the interference color, and the correction target is the sputtering discharge power (
discharge current) or substrate transport speed.
第2図において10は真空室であり、真空室10は真空
容器1の前述した条件を満たす所要の箇所に設けられる
。薄膜12が形成されたガラス製の基板11は真空室1
0において矢印7に示される方向に図示しない搬送装置
によって移動せしめられる。第1図に示されたトレイ6
の図示は省略されている。真空室10の相互に対向する
2つの壁部にはそれぞれビューイングボート13A、1
3Bが設けられ、ビューイングボート1.3 Aの外側
の箇所に光源14が配設され、ビューイングボート13
Bの外側の箇所に集光レンズ15が前後の2つの遮光板
16と共に配設される。光源14から発した例えば白色
光はビューイングボート13Aを通過して真空室10に
入り、基板11及び薄膜12を透過し、ビューイングボ
ート13Bを通過して外部に出、集光レンズ15を通過
する。In FIG. 2, reference numeral 10 denotes a vacuum chamber, and the vacuum chamber 10 is provided at a required location in the vacuum container 1 that satisfies the above-mentioned conditions. A glass substrate 11 on which a thin film 12 is formed is placed in a vacuum chamber 1.
0, it is moved in the direction shown by arrow 7 by a transport device (not shown). Tray 6 shown in FIG.
The illustration of is omitted. Viewing boats 13A and 1 are provided on two mutually opposing walls of the vacuum chamber 10, respectively.
3B is provided, and a light source 14 is provided outside the viewing boat 1.3A.
A condenser lens 15 is disposed outside B together with two front and rear light shielding plates 16. For example, white light emitted from the light source 14 passes through the viewing boat 13A, enters the vacuum chamber 10, passes through the substrate 11 and the thin film 12, passes through the viewing boat 13B, exits outside, and passes through the condenser lens 15. do.
このようにして得られた透過光17は波長可変スキャン
型モノクロメータ18に入力される。The transmitted light 17 thus obtained is input to a variable wavelength scanning monochromator 18.
19は演算制御装置であり、コンピュータ等によって構
成される。波長可変スキャン型モノクロメータ18では
基板11及び薄膜12を透過した光17において干渉作
用によって生じた多数の光の波長をスキャンしてそれら
の透過率を測定し、その波長に関するデータを出力する
。演算制御装置19は波長可変スキャン型モノクロメー
タ18で出力された波長データを入力し、この波長デー
タを処理する。この演算制御袋ff1f19におけるデ
ータ処理では、要求される膜厚(目標膜厚)に関して第
5図に示された特性を算出してそのピーク波長の値を検
出し、これを記憶する。その後の測定においてピーク波
長を監視し、これが常に目標波長と一致して一定となる
ようにスパッタリング用電源5又は搬送用モータ20に
対して補正用の制御信号をフィードバックする。測定さ
れたピーク波長のデータは演算制御装置19から出力さ
れる。制御信号のフィードバックは必要に応じてスパッ
タリング用電源5と搬送用モータ20のうち少なくとも
いずれか1つに対して行われる。Reference numeral 19 denotes an arithmetic and control unit, which is composed of a computer or the like. The variable wavelength scanning monochromator 18 scans a large number of wavelengths of light generated by interference in the light 17 transmitted through the substrate 11 and the thin film 12, measures their transmittance, and outputs data regarding the wavelengths. The arithmetic and control unit 19 inputs the wavelength data output from the variable wavelength scanning monochromator 18 and processes this wavelength data. In data processing in this arithmetic control bag ff1f19, the characteristics shown in FIG. 5 regarding the required film thickness (target film thickness) are calculated, the value of its peak wavelength is detected, and this is stored. In subsequent measurements, the peak wavelength is monitored, and a correction control signal is fed back to the sputtering power source 5 or the transport motor 20 so that the peak wavelength always matches the target wavelength and remains constant. Data on the measured peak wavelength is output from the arithmetic and control unit 19. Feedback of the control signal is performed to at least one of the sputtering power source 5 and the transport motor 20 as necessary.
上記の構成によれば、光源14から出力され、基板11
及び薄膜12を透過した光の干渉色のピークトップ、す
なわち極大値となる光の波長の値が一定とAるようにス
パッタリング条件又は基板の搬送速度を制御するように
構成したため、予め目標とする膜厚をデータとして与え
ておけば、同一厚膜の薄膜を作製することができる。特
に第1図で示した連続薄膜作製装置では、同一厚膜の薄
膜基板を連続的に多数作製することができる。According to the above configuration, the light is output from the light source 14 and the substrate 11
The sputtering conditions or substrate conveyance speed are controlled so that the peak top of the interference color of the light transmitted through the thin film 12, that is, the wavelength value of the light that becomes the maximum value, is constant A, so that it is set as a target in advance. If the film thickness is given as data, thin films of the same thickness can be produced. In particular, the continuous thin film production apparatus shown in FIG. 1 can continuously produce a large number of thin film substrates having the same thickness.
第3図は測定・補正機構の第2の実施例を示す。FIG. 3 shows a second embodiment of the measurement and correction mechanism.
この構成でも透過方式が採用されており、第2図で説明
した構成と同一の要素には同一の符号を付し、その詳細
な説明は省略する。この測定・補正機構では、前記の波
長可変スキャン型モノクロメータ18の代りに、分光器
21と検出回路22の組合わせを用いる。分光器21は
例えばプリズムであり、検出回路22はフォトダイオー
ドアレイと各ダイオードに対応して接続された電流計と
負荷抵抗から構成されている。光源14から出力され、
基板及び薄膜を透過した光17は分光器21でその屈折
率に応じて各波長の光に分光され、それぞれ検出回路2
2の対応するダイオードに導かれる。各波長の光は基板
11と薄膜12を透過するときにその透過率に応じて減
衰しているため、検出回路22によって各は波長の透過
率に対応した波長データを得ることができる。この波長
データは検出回路22から演算制御装置19に与えられ
、ここでピークの波長の値が求められる。その後の補正
制御の動作は前記第2図に示された実施例の場合と同様
である。この実施例による測定・補正機構では、リアル
タイムの測定、波長の監視を行うことができ、検出回路
22におけるフォトダイオードアレイの波長間隔を狭く
することにより、モニタとしての精度を高めることがで
きる。This configuration also employs a transmission method, and the same elements as those in the configuration explained in FIG. 2 are denoted by the same reference numerals, and detailed explanation thereof will be omitted. In this measurement/correction mechanism, a combination of a spectrometer 21 and a detection circuit 22 is used instead of the variable wavelength scanning monochromator 18. The spectroscope 21 is, for example, a prism, and the detection circuit 22 includes a photodiode array, an ammeter connected to each diode, and a load resistor. Output from the light source 14,
The light 17 that has passed through the substrate and the thin film is separated into light of each wavelength according to its refractive index by a spectroscope 21, and each light is sent to a detection circuit 2.
2 corresponding diodes. Since the light of each wavelength is attenuated according to its transmittance when passing through the substrate 11 and thin film 12, the detection circuit 22 can obtain wavelength data corresponding to the transmittance of each wavelength. This wavelength data is given from the detection circuit 22 to the arithmetic and control unit 19, where the value of the peak wavelength is determined. The subsequent correction control operation is the same as in the embodiment shown in FIG. 2 above. The measurement/correction mechanism according to this embodiment can perform real-time measurement and wavelength monitoring, and by narrowing the wavelength interval of the photodiode array in the detection circuit 22, the accuracy as a monitor can be improved.
第4図は反射方式の構成を有する測定・補正機構の実施
例を示す。この実施例による構成は基板11が不透明で
、薄膜12のみが透明又は半透明の場合に採用される。FIG. 4 shows an embodiment of a measurement/correction mechanism having a reflection type configuration. The configuration according to this embodiment is employed when the substrate 11 is opaque and only the thin film 12 is transparent or semitransparent.
図示例において真空室の構造は省略されている。光源1
4は薄膜12の位置する側に所要の角度を有した姿勢に
て設置される。In the illustrated example, the structure of the vacuum chamber is omitted. light source 1
4 is installed on the side where the thin film 12 is located at a required angle.
光源14から発せられた光17は特定の角度にて薄膜1
2に入射し、薄膜12の表面及び裏面にて反射して例え
ば波長可変スキャン型モノクロメータ18に入力される
。この場合、前記分光器21及び検出回路22の構成を
採用することができるのは勿論である。この実施例では
、波長と反射率の間における第5図と同様な関係図に基
づき干渉色のピークトップを一定にするように測定・補
正の制御が実行される。その他の構成は前記各実施例の
場合と同様である。この実施例によれば特に基板が不透
明であるときに有効である。The light 17 emitted from the light source 14 hits the thin film 1 at a specific angle.
2, is reflected by the front and back surfaces of the thin film 12, and is input to, for example, a wavelength variable scanning monochromator 18. In this case, it goes without saying that the configuration of the spectrometer 21 and detection circuit 22 described above can be adopted. In this embodiment, measurement and correction control is executed to keep the peak top of the interference color constant based on a relationship diagram similar to that shown in FIG. 5 between wavelength and reflectance. The other configurations are the same as in each of the embodiments described above. This embodiment is particularly effective when the substrate is opaque.
第6図にガラス基板の上に透明な薄膜を成膜した場合の
透過率の波長依存特性の例を示す。この波長依存特性3
0を得るに当たって、使用された透明薄膜の屈折率は約
2.0、ガラス基板の屈折率は約1.5である。この波
長依存特性30を利用すれば、ピークトップ(極大値)
の波長533nmを目標とする一定波長として前述した
制御を行うことができる。従来技術の如く透過率特性か
ら膜厚を求める方法では、透過率をモニタするための波
長レンジを広く(数ピーク分)とる必要があるが、これ
に対して本発明の場合にはピークトップの1点(533
nm)の付近の波長のモニタだけで済むため、モニタの
構成を簡略化することができる。またピークトップが複
数存在するときには任意のピークトップを用いることが
できる。FIG. 6 shows an example of the wavelength dependence of transmittance when a transparent thin film is formed on a glass substrate. This wavelength dependent characteristic 3
0, the refractive index of the transparent thin film used is about 2.0, and the refractive index of the glass substrate is about 1.5. By using this wavelength dependent characteristic 30, the peak top (maximum value)
The above-described control can be performed by setting the target wavelength of 533 nm as a constant wavelength. In the conventional method of determining film thickness from transmittance characteristics, it is necessary to have a wide wavelength range (several peaks) for monitoring transmittance, but in the case of the present invention, the wavelength range at the top of the peak 1 point (533
Since it is sufficient to monitor wavelengths around 100 nm), the configuration of the monitor can be simplified. Furthermore, when a plurality of peak tops exist, any peak top can be used.
また第6図の波長依存特性30にはピークボトム(極小
値)32も存在する。上記のピークトップの代りにピー
クボトムを使用しても本発明を同様に構成することがで
きる。Furthermore, a peak-bottom (minimum value) 32 also exists in the wavelength-dependent characteristic 30 in FIG. The present invention can be constructed in the same manner even if peak bottoms are used instead of the peak tops described above.
前記各実施例の説明では第1図に示すような連続方式の
薄膜作製装置であることを前提としたが、本発明は基板
が移動しない方式の薄膜作製装置であっても同様に適用
できるのは勿論である。この場合にはデポジション後の
薄膜に関してピークトップの測定を行い、それ以後の薄
膜作製に測定データを利用する。また非連続方式の場合
、基板の搬送速度は補正対象とはならない。Although the description of each of the above embodiments is based on the assumption that the apparatus is a continuous type thin film fabrication apparatus as shown in FIG. 1, the present invention can be similarly applied to a type of thin film fabrication apparatus in which the substrate does not move. Of course. In this case, the peak top of the thin film after deposition is measured, and the measured data is used for subsequent thin film fabrication. Furthermore, in the case of the discontinuous method, the substrate transport speed is not subject to correction.
また前記実施例では片面スパッタリング装置に適用した
例を説明したが、両面スパッタリング装置に適用するこ
とができるのは勿論である。更に、スパッタリング装置
以外の他の薄膜作製装置にも本発明を適用することがで
きる。Further, in the above embodiments, an example was explained in which the present invention was applied to a single-sided sputtering apparatus, but it goes without saying that the present invention can also be applied to a double-sided sputtering apparatus. Furthermore, the present invention can be applied to other thin film production apparatuses other than sputtering apparatuses.
以上の説明で明らかなように本発明によれば、成膜され
る薄膜の光学的な透過率又は反射率の波長依存特性を測
定し、その波長データから得られるピーク波長を監視し
て、このピーク波長が所要の一定値に保持されるように
薄膜の作製条件を制御するようにしたため、ターゲット
使用量に起因する成膜速度の変化を抑制し、常に安定し
て同一膜厚の薄膜を作製することができる。また、薄膜
の作製条件を、ピーク波長が一定になるように補正・制
御するように構成するため、簡単な構成にて安価に作製
することができる。更にインプロセスで測定、補正を行
うことができるため、膜厚の制御の信頼性が高いという
効果がある。As is clear from the above description, according to the present invention, the wavelength-dependent characteristics of the optical transmittance or reflectance of the thin film to be formed are measured, and the peak wavelength obtained from the wavelength data is monitored. Since the thin film production conditions are controlled so that the peak wavelength is maintained at the required constant value, changes in the film deposition rate caused by the amount of target used are suppressed, and thin films with the same thickness are always produced stably. can do. Furthermore, since the thin film manufacturing conditions are corrected and controlled so that the peak wavelength is constant, the thin film can be manufactured at low cost with a simple configuration. Furthermore, since measurement and correction can be performed in-process, film thickness control is highly reliable.
第1図は本発明の一実施例を示す連続式薄膜作製装置を
示す概略構成図、第2図は測定・補正装置の第1実施例
を示す構成図、第3図は測定・補正装置の第2実施例を
示す構成図、第4図は測定・補正装置の第3実施例を示
す構成図、第5図は膜厚と波長と透過率の関係を示すグ
ラフ、第6図は透過率の波長依存特性の一例を示すグラ
フである。
〔符号の説明〕
1・・・・・・真空容器
2・・・・・・ゲートバルブ
LA、 IB、 IC,10
・・・・真空室
3A、 3B、 3C
・・・・真空ポンプ
4・・・・・・カソード
5・・・・・・スパッタリング用電源
6・・・・・・トレイ
11・・・・・基板
12・・・・・薄膜
14・・・・・光源
18・・・・・波長可変スキャン型モノクロメータ
19・・・・・演算制御装置
20・・・・・搬送用モータ
21・・・・・分光器
22・・・・・検出回路
3A、3B、3C:真空ポンプ
6:トレイFIG. 1 is a schematic configuration diagram showing a continuous thin film production apparatus according to an embodiment of the present invention, FIG. 2 is a configuration diagram showing a first embodiment of a measurement/correction device, and FIG. A block diagram showing the second embodiment, Fig. 4 is a block diagram showing the third embodiment of the measurement/correction device, Fig. 5 is a graph showing the relationship between film thickness, wavelength, and transmittance, and Fig. 6 is the transmittance. 3 is a graph showing an example of wavelength dependent characteristics of . [Explanation of symbols] 1... Vacuum vessel 2... Gate valve LA, IB, IC, 10... Vacuum chamber 3A, 3B, 3C... Vacuum pump 4... ...Cathode 5 ...Sputtering power source 6 ...Tray 11 ...Substrate 12 ...Thin film 14 ...Light source 18 ... Variable wavelength scanning monochromator 19... Arithmetic control unit 20... Transport motor 21... Spectrometer 22... Detection circuits 3A, 3B, 3C: Vacuum pump 6: tray
Claims (5)
透過率又は反射率の波長依存特性を測定する測定装置と
、この測定装置で測定された透過率又は反射率の波長依
存特性における極値に対応する波長を検出する極値波長
検出手段と、この極値波長検出手段によって検出される
波長が一定となるように前記薄膜の作製条件を制御する
制御手段とからなることを特徴とする薄膜作製装置。(1) A measuring device that measures the wavelength-dependent characteristics of the optical transmittance or reflectance of a thin film with light-transmitting properties fabricated on a substrate, and the wavelength-dependent characteristics of the transmittance or reflectance measured by this measuring device The method is characterized by comprising: an extreme wavelength detection means for detecting a wavelength corresponding to an extreme value of , and a control means for controlling the conditions for producing the thin film so that the wavelength detected by the extreme wavelength detection means is constant. thin film fabrication equipment.
が透明又は半透明のときには前記測定装置は透過率の波
長依存特性を測定するように構成されることを特徴とす
る薄膜作製装置。(2) The thin film manufacturing apparatus according to claim 1, wherein when the substrate is transparent or semitransparent, the measuring device is configured to measure wavelength dependent characteristics of transmittance.
が不透明であるときには前記測定装置は反射率の波長依
存特性を測定するように構成されることを特徴とする薄
膜作製装置。(3) The thin film manufacturing apparatus according to claim 1, wherein when the substrate is opaque, the measuring device is configured to measure wavelength dependent characteristics of reflectance.
置において、前記測定装置は波長可変スキャン型モノク
ロメータを含むことを特徴とする薄膜作製装置。(4) The thin film manufacturing apparatus according to any one of claims 1 to 3, wherein the measuring device includes a variable wavelength scanning monochromator.
置において、前記測定装置は、分光器と、フォトダイオ
ードアレイを含む検出回路とを含むことを特徴とする薄
膜作製装置。(5) The thin film manufacturing apparatus according to any one of claims 1 to 3, wherein the measuring device includes a spectroscope and a detection circuit including a photodiode array.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3329890A JPH03237304A (en) | 1990-02-14 | 1990-02-14 | Thin film manufacturing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3329890A JPH03237304A (en) | 1990-02-14 | 1990-02-14 | Thin film manufacturing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03237304A true JPH03237304A (en) | 1991-10-23 |
Family
ID=12382643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3329890A Pending JPH03237304A (en) | 1990-02-14 | 1990-02-14 | Thin film manufacturing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03237304A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479140A (en) * | 1991-09-27 | 1995-12-26 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition |
US5485132A (en) * | 1991-09-27 | 1996-01-16 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition |
JP2006016666A (en) * | 2004-07-01 | 2006-01-19 | Shibaura Mechatronics Corp | Vacuum treatment apparatus |
JP2010118359A (en) * | 2010-02-18 | 2010-05-27 | Horiba Ltd | Manufacturing method and manufacturing apparatus of organic el element |
JP5189711B1 (en) * | 2012-02-15 | 2013-04-24 | 株式会社シンクロン | Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4984461A (en) * | 1972-12-18 | 1974-08-14 | ||
JPS5279953A (en) * | 1975-12-26 | 1977-07-05 | Ulvac Corp | Film thickness monitor for thin film production |
JPS56115905A (en) * | 1980-02-19 | 1981-09-11 | Unitika Ltd | Measuring method for thickness of transparent film and device therefor |
JPS59168310A (en) * | 1983-03-02 | 1984-09-22 | エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド | Method and device for measuring thickness of thin-film |
JPS6073407A (en) * | 1983-09-30 | 1985-04-25 | Nippon Soken Inc | Film thickness monitor |
JPS6270703A (en) * | 1985-09-25 | 1987-04-01 | Oki Electric Ind Co Ltd | Apparatus for measuring thickness of membrane |
JPS6273103A (en) * | 1985-09-27 | 1987-04-03 | Toray Ind Inc | Film-thickness measuring method |
JPH01320409A (en) * | 1988-06-22 | 1989-12-26 | Toray Ind Inc | Film thickness measuring method |
-
1990
- 1990-02-14 JP JP3329890A patent/JPH03237304A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4984461A (en) * | 1972-12-18 | 1974-08-14 | ||
JPS5279953A (en) * | 1975-12-26 | 1977-07-05 | Ulvac Corp | Film thickness monitor for thin film production |
JPS56115905A (en) * | 1980-02-19 | 1981-09-11 | Unitika Ltd | Measuring method for thickness of transparent film and device therefor |
JPS59168310A (en) * | 1983-03-02 | 1984-09-22 | エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド | Method and device for measuring thickness of thin-film |
JPS6073407A (en) * | 1983-09-30 | 1985-04-25 | Nippon Soken Inc | Film thickness monitor |
JPS6270703A (en) * | 1985-09-25 | 1987-04-01 | Oki Electric Ind Co Ltd | Apparatus for measuring thickness of membrane |
JPS6273103A (en) * | 1985-09-27 | 1987-04-03 | Toray Ind Inc | Film-thickness measuring method |
JPH01320409A (en) * | 1988-06-22 | 1989-12-26 | Toray Ind Inc | Film thickness measuring method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479140A (en) * | 1991-09-27 | 1995-12-26 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition |
US5485132A (en) * | 1991-09-27 | 1996-01-16 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition |
US5488019A (en) * | 1991-09-27 | 1996-01-30 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition |
US5493262A (en) * | 1991-09-27 | 1996-02-20 | Ngk Insulators, Ltd. | Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition |
JP2006016666A (en) * | 2004-07-01 | 2006-01-19 | Shibaura Mechatronics Corp | Vacuum treatment apparatus |
JP2010118359A (en) * | 2010-02-18 | 2010-05-27 | Horiba Ltd | Manufacturing method and manufacturing apparatus of organic el element |
JP5189711B1 (en) * | 2012-02-15 | 2013-04-24 | 株式会社シンクロン | Optical film thickness measuring apparatus and thin film forming apparatus using optical film thickness measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sullivan et al. | Deposition error compensation for optical multilayer coatings. I. Theoretical description | |
US5955139A (en) | Automatic film deposition control | |
US7304744B1 (en) | Apparatus and method for measuring the thickness of a thin film via the intensity of reflected light | |
EP0655620A1 (en) | Real-time wafer temperature measurement based on light scattering | |
SE9302985L (en) | Monitoring the thickness of thin films on a substrate | |
EP0121340A2 (en) | Method and apparatus for measuring thin film thickness | |
US4469713A (en) | Method of and photometric arrangement for measuring and controlling the thickness of optically effective coatings | |
CN111417833B (en) | Film thickness measuring device, film thickness measuring method, film thickness measuring program, and storage medium storing film thickness measuring program | |
CN110651353A (en) | Feedback system | |
US3744916A (en) | Optical film thickness monitor | |
JP5725584B2 (en) | Temperature measuring method and temperature measuring device for semiconductor layer | |
JPH03237304A (en) | Thin film manufacturing device | |
KR20040055577A (en) | Method and Device for surface inspection | |
CN105655267A (en) | Early-warning system for detecting substrates, and production equipment | |
JPH11176714A (en) | Intra-chamber deposited film measuring device and maintenance managing system | |
JP2001165628A (en) | Film thickness measuring device | |
JP3717340B2 (en) | Electronic component manufacturing equipment | |
JPS59192904A (en) | Device for measuring film thickness | |
JPH0494533A (en) | Detection of film thickness to be etched, film thickness detector, and etcher | |
TWI641800B (en) | Multi-wavelength optical measuring device and measuring method | |
JPH0346386A (en) | Thickness controlling method and device for reflection preventive film | |
JPH1062129A (en) | Film thickness measuring method | |
JPH01320408A (en) | Thin film monitor using laser and film thickness measuring method | |
JPH01240655A (en) | Thin film-forming equipment | |
JP2970020B2 (en) | Method of forming coating thin film |