JPS6272813A - Formation of composite foundation pile and composite foundation pile thereby - Google Patents
Formation of composite foundation pile and composite foundation pile therebyInfo
- Publication number
- JPS6272813A JPS6272813A JP21416085A JP21416085A JPS6272813A JP S6272813 A JPS6272813 A JP S6272813A JP 21416085 A JP21416085 A JP 21416085A JP 21416085 A JP21416085 A JP 21416085A JP S6272813 A JPS6272813 A JP S6272813A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- concrete
- cast
- place
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Piles And Underground Anchors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、場所打鉄筋コンクリート杭(場所打杭と略称
する。)の上方に、外殻鋼管付きコンクリート杭(SC
杭と略称する。)を一体に接続する合成基礎杭の造成方
法並びにこの合成基礎杭の構造に関し、その目的は、地
震時最大の曲げモーメントを受ける基礎杭の上部を、保
有水平耐力が大きく且つ靭性の高いSC杭とし、このS
C杭を所要の長さ場所打杭の鉄筋かご内に挿入し、地震
時増大する軸力をそれぞれSC杭の先端面及び鉄筋かご
内のSC杭の外周面から場所打のコンクリートに伝達し
、且つSC杭の上方部分を、所要の大きさの変形係数を
もつ円筒状人工層で包覆してSC杭の小径効果による水
平耐震性能を更に高めるとともに、場所打杭の大径効果
によって、合成基礎杭に対する地盤の支持力を増大させ
ることにある。Detailed Description of the Invention The present invention provides a cast-in-place reinforced concrete pile (abbreviated as cast-in-place pile) above a concrete pile with an outer shell steel pipe (SC).
It is abbreviated as a pile. ), and the structure of this composite foundation pile. and this S
Insert a C pile of the required length into the cast-in-place pile's reinforcing bar cage, and transmit the axial force that increases during an earthquake to the cast-in-place concrete from the tip of the SC pile and the outer peripheral surface of the SC pile in the reinforcing bar cage, respectively. In addition, the upper part of the SC pile is covered with a cylindrical artificial layer with a deformation coefficient of the required size to further improve the horizontal seismic performance due to the small diameter effect of the SC pile, and the large diameter effect of the cast-in-place pile The purpose is to increase the bearing capacity of the ground for foundation piles.
次に、この合成基礎杭を造成する施工法の一例を示すが
、以下リバース工法を用いるものとして説明する。第1
図に示す場所打杭bの鉄筋かご3の上端には数個の外側
ガイド筋4を突設し、鉄筋かご3はケーシング5に対し
て所定の位置にある。所要量を打設した生コンクリート
6の上方には水が満たされているので、サクシヨンポン
プに連通するサクシヨンパイプをケーシング5内に差込
み、水及び残留する多少のスライム並びに小量の生コン
クリート6を吸い上げ、生コンクリート6の上面位置を
確認しておく。Next, an example of a construction method for constructing this composite foundation pile will be shown, and the following description will be made assuming that a reverse construction method is used. 1st
Several outer guide bars 4 are protruded from the upper end of the reinforcing bar cage 3 of the cast-in-place pile b shown in the figure, and the reinforcing bar cage 3 is located at a predetermined position with respect to the casing 5. Water is filled above the ready-mixed concrete 6 that has been poured in the required amount, so insert the suction pipe that communicates with the suction pump into the casing 5, and remove the water, some remaining slime, and a small amount of ready-mixed concrete. 6 and check the top position of the fresh concrete 6.
以上の状態にしたケーシング5内に、つり下げ装置Cに
連結したSC杭aを徐除につり下すと、SC杭aは、つ
り下げ装置Cの連結板7及びSC杭aの外面に連結した
環状の閉鎖板8の誘導作用によってケーシング5の中央
を下降し、鉄筋かご3の上端に固着した数個の内側ガイ
ド筋9に誘導され、鉄筋かご3の中央を下降する。一方
、生コンクリートbは下端部を鈍角の円すい体10で締
切ったSC杭aの下降に従ってケーシング5内を上昇し
、生コンクリート6の上面は閉鎖板8の位置に達する。When the SC pile a connected to the suspension device C is gradually lowered into the casing 5 in the above condition, the SC pile a is connected to the connecting plate 7 of the suspension device C and the outer surface of the SC pile a. It descends through the center of the casing 5 by the guiding action of the annular closing plate 8, is guided by several inner guide bars 9 fixed to the upper end of the reinforcing bar cage 3, and descends through the center of the reinforcing bar cage 3. On the other hand, the fresh concrete b rises inside the casing 5 as the SC pile a whose lower end is closed by an obtuse cone 10 descends, and the upper surface of the fresh concrete 6 reaches the position of the closing plate 8.
SC杭aにおける閉鎖板8の連結位置は、SC杭aを所
定の長さ鉄筋かご3内に挿入したとき、鉄筋かご3の上
端より少くとも50cm上方にある位置とする。The connecting position of the closing plate 8 on the SC pile a is a position that is at least 50 cm above the upper end of the reinforcing bar cage 3 when the SC pile a is inserted into the reinforcing bar cage 3 for a predetermined length.
すなわち、生コンクリート6の打設量は、SC杭aの下
端部が所要の長さ鉄筋かご3に挿入されたとき、生コン
クリート6の上面が鉄筋かご3の上端から50cmの位
置に上昇する量とする。In other words, the pouring amount of ready-mixed concrete 6 is the amount by which the upper surface of ready-mixed concrete 6 rises to a position 50 cm from the upper end of reinforcing bar cage 3 when the lower end of SC pile a is inserted into reinforcing bar cage 3 for the required length. shall be.
生コンクリート6の上面の検尺を適時に正確に行うこと
によって、最終時の生コンクリートの搬入量を指図すれ
ば、生コンクリート6の打設量はほぼ計画どおりの量と
なる。閉鎖板8の直径はケーシング5の内径より15m
mないし20mm小さく、閉鎖板8の外周面には数個の
ゴム板11が固着されるので、閉鎖板8がケーシング5
の一方にかたよることがない。生コンクリート6上に残
留する水は透き間を通ってあふれでるが、粘性の高い生
コンクリート6は、ケーシング5と閉鎖板8とのなす狭
い透き間を通り得ず、閉鎖板8のよって封鎖され、SC
杭aは第1図に示す位置に停止する。By timely and accurately measuring the top surface of the fresh concrete 6, the final amount of fresh concrete to be carried in can be directed, and the amount of fresh concrete 6 placed will be approximately as planned. The diameter of the closing plate 8 is 15 m from the inner diameter of the casing 5.
m or 20 mm smaller, and several rubber plates 11 are fixed to the outer peripheral surface of the closing plate 8, so that the closing plate 8 is smaller than the casing 5.
Never lean towards one side. The water remaining on the fresh concrete 6 overflows through the gap, but the highly viscous fresh concrete 6 cannot pass through the narrow gap between the casing 5 and the closing plate 8, and is sealed by the closing plate 8 and SC.
Pile a stops at the position shown in FIG.
次に、つり下げ装置Cの筒状体12に突設した円環13
に取付けた複数のタイロットボルト14の上端の固定六
角ナット15を左に逆転させると、SC杭aの頭部に植
込んだネジ付き鋼棒16(第3図参照)からタイロット
ボルト14の下端のタイロットナット17が外れ、SC
杭aとつり下げ装置Cとの連結が解かれる。以上のよう
につり下げ装置CをSC杭aから解放してつり下げ装置
Cを回収する。SC杭aの上端の中空部はまえもって閉
じてある。なお、つり下げ装置Cの符号18は締込みナ
ットで、SC杭aとつり下げ装置Cとを連結する際、タ
イロットボルト14を円環13上に絞め込む働きをする
ものである。また他の構造として、SC杭aの上方外面
に1対のつり輪を取付けるときは、このつり輪にワイヤ
ーロープを着脱自在にひっかけ、SC杭aをケーシング
5内につり下ろせば、SC杭aの設置作業が単純化し、
作業時間が短縮される。Next, a ring 13 protruding from the cylindrical body 12 of the hanging device C
When the fixed hexagon nut 15 at the upper end of the plurality of tie bolt bolts 14 attached to the Tie rod nut 17 comes off and the SC
The connection between the stake a and the suspension device C is released. As described above, the hanging device C is released from the SC pile a and the hanging device C is recovered. The hollow portion at the upper end of the SC pile a is closed in advance. Reference numeral 18 of the hanging device C is a tightening nut, which serves to tighten the tie rod bolt 14 onto the ring 13 when connecting the SC pile a and the hanging device C. In addition, as another structure, when attaching a pair of hanging rings to the upper outer surface of the SC pile a, a wire rope is removably hooked to the hanging rings, and the SC pile a is suspended inside the casing 5. The installation work is simplified,
Work time is reduced.
次の工程では、循環槽内の砂又は砂利まじり砂をSC杭
aとケーシング5とのなす空間に流し込み、SC杭aの
上端よりかなり上方までこれを満たす。こののち、ケー
シング5に振動機(図面上省略する。)を取付けてこれ
を作動し、ケーシング5を徐徐に引き抜くと、軟弱地盤
では生コンクリート6が原地盤に向ってはり出し、SC
杭aが多少下降し、閉鎖板8と鉄筋かご3上端との間隔
が25cm程度となることがある。In the next step, sand or sand mixed with gravel in the circulation tank is poured into the space formed between the SC pile a and the casing 5, filling the space considerably above the upper end of the SC pile a. After this, a vibrator (not shown in the drawing) is attached to the casing 5 and activated, and when the casing 5 is gradually pulled out, the ready-mixed concrete 6 protrudes toward the original ground on soft ground, and the SC
The pile a may descend to some extent, and the distance between the closing plate 8 and the upper end of the reinforcing bar cage 3 may become approximately 25 cm.
一方、砂又は砂利まじり砂も軟弱地盤ではケーシング5
の低速度の引き抜きに従って原地盤に向ってはり出し、
原地盤を圧縮し、且つ自らも振動締固めを受けて密実な
組織となり、余分な水は上昇して浮き水となる。すなわ
ち、SC杭aの周りには密実な円筒状人工層ができ、更
に周りの原地盤が圧縮され、円筒状人工層変形係数が改
善されて地震時SC杭に作用する曲げモーメントがかな
り減少する効果が期待される。On the other hand, if sand or sand mixed with gravel is also used on soft ground, casing 5
According to the low speed of pulling out, it protrudes towards the original ground,
It compresses the original ground and also undergoes vibration compaction to form a dense structure, and excess water rises and becomes floating water. In other words, a dense cylindrical artificial layer is formed around SC pile a, the surrounding ground is further compressed, the deformation coefficient of the cylindrical artificial layer is improved, and the bending moment acting on the SC pile during an earthquake is considerably reduced. It is expected that this will have the effect of
第3図は、以上の施工法によって造成された合成基礎杭
の上方部の構造を示すもので、フーチング造成にあたっ
てSC杭aの頭部は図示のとおり掘り起こされる。SC
杭aとフーチングとの連結は適切に設計して施工される
。符号20は密実に締固められた砂利まじり砂がうなる
円筒状人工層である。この円筒状人工層20の層厚は、
SC杭aの外径が60cmから100cmのときは、フ
ーチング下面から4メートルないし6メートルが望まし
い。Figure 3 shows the structure of the upper part of the composite foundation pile created by the above construction method, and when creating the footing, the head of SC pile a is dug out as shown. S.C.
The connection between pile a and footing is appropriately designed and constructed. Reference numeral 20 is a cylindrical artificial layer made of tightly compacted sand mixed with gravel. The layer thickness of this cylindrical artificial layer 20 is
When the outer diameter of the SC pile a is 60 cm to 100 cm, the distance from the bottom of the footing is preferably 4 meters to 6 meters.
本発明の合成基礎杭の造成方法は、上記方法に局限され
るものではない。例えば、図示の閉鎖板8をSC杭aに
取付けない場合は、ケーシング内につり下したSC杭に
は生コンクリート6及び上層の水の浮力が作用するが、
浮力を差引いた作用重量が残り、SC杭を所定の位置に
維持確保することはできない。そこでこの場合は、図示
のつり下げ装置Cの筒状体12を更に長くしてその上部
に1対のIビームを突設し、このIビームをケーシング
5の上方外面に装備した油圧ジャッキで受ける構造とし
、ケーシング5の支持力によってSC杭aを所定位置に
維持させる。この状態で30分内外放置すると、生コン
クリート6は流動しにくい性質に変化し、油圧ジャッキ
を作動してそのロットを締め、Iビームを支持しない状
態にしてもIビームは下降しない。この状態を確認した
のち、つり下げ装置CとSC杭aとの連結を解いてつり
下げ装置Cを回収し、次にケーシング5内に砂又は砂利
まじり砂を流下させ、この層をSC杭aの上面より高い
位置まで満たす。この工程時、生コンクリート上の水は
大部分ケーシング外に流出する。次にケーシング5を引
抜いて回収したのち、複数のバイブロフロットをSC杭
aの外側に等間隔に配備し、補給材を補給しながらこの
バイブロフロットの作動によってSC杭の周りの砂又は
砂利まじりの砂及び周りの原地盤を締固める。この場合
も、SC杭の上方部の周りには密実な円筒状人工層が造
成される。更に、前記砂利まじり砂に替え、コンクリー
トの混和材としてカルボキシメチルセルロース又はベン
トナイトを加用し、コンクリートのイールドバリューを
高めたコンクリート内に無数の氣泡を分散させた氣泡コ
ンクリートをケーシング5とSC杭aとの間に流し込み
、このおびただしい氣泡を含んだコンクリートからなる
円筒状人工層を造成する方法も有効な手段である。この
特殊氣泡コンクリートからなる円筒状人工層の変形係数
は、硬質地盤の変形係数と同等又は同等以上となし得、
フーチングの下層が硬質地盤の場合適用して有効な施工
法である。その他種種の施工法が実施可能であろうが、
いずれの方法でも、原地盤のもつ
変形係数E0より大きなE0値を持ち、しかも可塑性を
併せもつ円筒状人工層をSC杭の上方部位の周りに造成
し得る施工法であることが望ましい。The method for constructing a synthetic foundation pile of the present invention is not limited to the above method. For example, if the illustrated closing plate 8 is not attached to the SC pile a, the buoyancy of the fresh concrete 6 and the upper layer of water will act on the SC pile suspended within the casing;
The acting weight, minus the buoyant force, remains and cannot maintain and secure the SC pile in position. Therefore, in this case, the cylindrical body 12 of the hanging device C shown in the figure is further lengthened, a pair of I-beams are protruded from its upper part, and the I-beams are received by a hydraulic jack installed on the upper outer surface of the casing 5. The SC pile a is maintained at a predetermined position by the supporting force of the casing 5. If left in this state for 30 minutes, the ready-mixed concrete 6 will change its properties to be difficult to flow, and even if the hydraulic jack is activated to tighten the lot and the I-beam is not supported, the I-beam will not descend. After confirming this condition, the suspension device C is uncoupled from the SC pile a and the suspension device C is recovered. Next, sand or sand mixed with gravel is allowed to flow down into the casing 5, and this layer is removed from the SC pile a. Fill it to a level higher than the top surface. During this process, most of the water on the fresh concrete flows out of the casing. Next, after pulling out and collecting the casing 5, a plurality of vibroflots are placed at equal intervals on the outside of the SC pile a, and while replenishing supplies, the vibroflots are operated to remove sand or gravel around the SC pile. Compact the mixed sand and surrounding ground. In this case as well, a dense cylindrical artificial layer is created around the upper part of the SC pile. Furthermore, instead of the gravel-mixed sand, carboxymethyl cellulose or bentonite is added as a concrete admixture to increase the yield value of the concrete.The concrete is made of air-foamed concrete, in which countless air bubbles are dispersed in the concrete, and the casing 5 and the SC pile a. Another effective method is to create a cylindrical artificial layer made of concrete containing numerous air bubbles. The deformation coefficient of this cylindrical artificial layer made of special foamed concrete can be equal to or greater than the deformation coefficient of hard ground.
This is an effective construction method when the lower layer of the footing is on hard ground. Although various other construction methods may be possible,
Whichever method is used, it is desirable that the construction method be able to create a cylindrical artificial layer around the upper part of the SC pile, which has a deformation coefficient E0 larger than that of the original ground and also has plasticity.
ところで、外径100cmのSC杭aは、外殻の鋼管1
を必要な板厚に設計し、高強度コンクリート2の円筒厚
さを必要な厚さに設計することによって、外径160c
mの場所打杭の許容軸力、許容曲げモーメント及び許容
せん断力とほぼ同等となし得ることは、SC杭を構成す
る材料の性質上明らかである。SC杭をフーチングに剛
結する場合、地震時に作用する最大の曲げモーメント及
びせん断力の作用位置は杭頭であって、SC杭がその作
用力に杭し得れば、地中部最大曲げモーメント及び地中
部せん断力は、杭頭拘束モーメント及び杭頭せん断力よ
り小さいので、場所打杭の抵抗曲げモーメント及びせん
断抵抗力によってこれに抗するように設計することは容
易である。問題は、SC杭aと場所打杭bとの異種杭体
相互の軸力の伝達機構にある。特に地震時SC杭aに衝
撃的に作用する軸力の激増をどのような機構で場所打杭
bに伝達するかが、この合成基礎杭の最大重要事項とな
る。硬化した場所打コンクリート6′の標準圧縮強度F
Cを210kg/cm2とすると、このコンクリート6
′の地震時許容圧縮応力度δ′Cはδ′C=FC/4.
5X2=210X2/4.5=93,3kg/cm2日
本建築センター発行・地震力に対する建築物の基礎の設
計指針・29ページ参照SC杭aの外径を100cmと
し、円すい体10δ′Cと、SC杭aの先端総面積によ
って決定される。この垂直伝達力P1は
P1=(50X50X3.14)X93.3=732.
4トン外径160cmの場所打杭の地震時の許容軸力は
その最大を1000トンとすることが望ましく、上記P
1では不足する。場所打コンクリート6′の硬化収縮に
よって、SC杭の鋼管1との分厚いコンクリート6′と
には強い付着力が生ずる。By the way, an SC pile a with an outer diameter of 100 cm has a steel pipe 1 as an outer shell.
By designing the cylindrical thickness of the high-strength concrete 2 to the required thickness, the outer diameter is 160 cm.
It is clear from the nature of the material that constitutes the SC pile that the allowable axial force, allowable bending moment, and allowable shear force can be approximately equivalent to the allowable axial force, allowable bending moment, and allowable shear force of a cast-in-place pile of m. When an SC pile is rigidly connected to a footing, the maximum bending moment and shear force that will act during an earthquake will be applied at the pile cap, and if the SC pile can absorb the applied force, the maximum bending moment and shear force will be in the underground area. Since the underground shear force is smaller than the pile cap restraint moment and the pile cap shear force, it is easy to design the cast-in-place pile to resist this with the resistive bending moment and shear resistance force. The problem lies in the mechanism for transmitting the axial force between the different types of piles, SC pile a and cast-in-place pile b. In particular, the most important issue for this composite foundation pile is how to transmit the dramatic increase in axial force that acts impulsively on the SC pile a during an earthquake to the cast-in-place pile b. Standard compressive strength F of hardened cast-in-place concrete 6'
If C is 210 kg/cm2, this concrete 6
The permissible compressive stress degree δ'C during an earthquake for ' is δ'C=FC/4.
5 X 2 = 210 It is determined by the total area of the tip of pile a. This vertical transmission force P1 is P1=(50X50X3.14)X93.3=732.
It is desirable that the maximum allowable axial force of a 4-ton cast-in-place pile with an outer diameter of 160 cm during an earthquake is 1000 tons, and the above P
1 is insufficient. Due to hardening and shrinkage of the cast-in-place concrete 6', a strong adhesion force is generated between the thick concrete 6' and the steel pipe 1 of the SC pile.
鋼管1に対するコンクリートのかぶりが充分にあり、半
径方向に向うコンクリート6′の硬化収縮によってコン
クリート6′の全面が鋼管1の全周面に圧着する点、両
者の付着面が垂直で付着面にコンクリートの空洞が生じ
ない点などを考慮し、地震時の鋼管1に対する場所打コ
ンクリート6′の許容付着応力度を、同コンクリート6
′の異形鉄筋に対する地震時許容付着応力度の1/3と
仮定する。これに従って標準圧縮強度210kg/cm
2のコンクリートの鋼管に対する地震時許容付着応力度
を試算すると7kg/cm2となるが、この値は妥当な
ものと考えられる。鉄筋かご3内に収容されたSC杭a
の平行部(円すい体10の長さは除く。)の長さを35
0cmとし、付着による伝達軸力P2を算定する。There is enough concrete covering the steel pipe 1, and the entire surface of the concrete 6' is pressed against the entire circumferential surface of the steel pipe 1 due to hardening shrinkage of the concrete 6' in the radial direction. Taking into consideration the fact that no cavities will occur, the allowable adhesion stress of cast-in-place concrete 6' to steel pipe 1 during an earthquake is determined by
' is assumed to be 1/3 of the allowable adhesion stress during an earthquake for deformed reinforcing bars. According to this standard compressive strength 210kg/cm
A trial calculation of the allowable adhesion stress for the concrete steel pipe in No. 2 during an earthquake is 7 kg/cm2, which is considered to be a reasonable value. SC pile a housed in reinforcing bar cage 3
The length of the parallel part (excluding the length of the cone 10) is 35
0 cm, and calculate the transmitted axial force P2 due to adhesion.
P2=(100X3.14)X7X350=769.3
トン従って総伝達軸力Pは
P=P1+P2=732.4+769.3=1501.
7≒1500トン
この総伝達軸力Pは、場所打杭bの地震時許容軸力10
00トンの1.5倍となり、このとき安全係数は1.5
となる。最も留意すべきは、鉄筋かご3内のコンクリー
ト6′内にスライムが残留する懸念であって、本例のご
とく生コンクリート上のスライム処理を入念に行う場合
は、上記安全係数を1.4ないし1.3に低下させても
軸力の伝達上不足はないものと考えられる。このように
SC杭の先端から場所打コンクリート6′に伝達する軸
力の作用面積を、SC杭aの中空部19を含む先端総面
積だけに局限したことは、付着力による軸力の伝達がS
C杭の外側のコンクリート6′に作用するので、安全上
伝達軸力の重複を避けた考え方による。以上の軸力の伝
達機構を更に具体的に分析すると、鉄筋かご3に挿入す
るSC杭の長さを極端に短くした場合、SC杭の先端面
から、地震時激増する軸力が場所だコンクリート6′の
中央に衝撃的に作用し、せん断破壊が生じ易い構造とな
るが、本発明の軸力伝達機構では、SC杭aを必要な長
さ鉄筋かご内に挿入し、SC杭に対する場所打コンクリ
ート6′の付着力を充分活用する構造としたので、SC
杭aの先端面から伝達する軸力がそれだけ減少し、SC
杭の下方の場所打コンクリート6′に局部的破壊又は損
傷が生ずる恐れがない。P2=(100X3.14)X7X350=769.3
Therefore, the total transmitted axial force P is P=P1+P2=732.4+769.3=1501.
7≒1500 tons This total transmitted axial force P is the allowable axial force of cast-in-place pile b during an earthquake of 10
00 tons, and the safety factor is 1.5.
becomes. The most important thing to keep in mind is the concern that slime may remain in the concrete 6' in the reinforcing bar cage 3, and when carefully treating the slime on fresh concrete as in this example, the above safety factor should be set to 1.4 or above. It is considered that even if it is lowered to 1.3, there will be no shortage in transmitting the axial force. The fact that the area of action of the axial force transmitted from the tip of the SC pile to the cast-in-place concrete 6' is limited to the total area of the tip including the hollow part 19 of the SC pile a means that the axial force is not transmitted by the adhesive force. S
Since it acts on the concrete 6' outside of the C pile, the idea is to avoid duplication of the transmitted axial force for safety reasons. A more specific analysis of the above axial force transmission mechanism shows that if the length of the SC pile inserted into the reinforcing bar cage 3 is extremely shortened, the axial force that increases dramatically during an earthquake will be applied from the tip of the SC pile to the concrete. However, in the axial force transmission mechanism of the present invention, the SC pile a is inserted into the reinforcing bar cage for the required length, and the spot driving of the SC pile is performed. The structure makes full use of the adhesion of concrete 6', so SC
The axial force transmitted from the tip surface of pile a decreases accordingly, and SC
There is no risk of localized destruction or damage to the cast-in-place concrete 6' below the pile.
以上の説明では円すい体10とSC杭aを締切ったが、
SC杭aの中空部19に生コンクリート6を進入させ、
中空部19をコンクリートで栓状閉鎖する構造としてよ
い。この場合SC杭の円筒の下端部はV形斜面に構成し
、スライムが斜面に沿って上昇し、SC杭の下端部にス
ライムが残留しない構造とする。In the above explanation, the conical body 10 and the SC pile a were closed, but
Fresh concrete 6 is introduced into the hollow part 19 of the SC pile a,
The hollow portion 19 may be closed with concrete in a plug-like structure. In this case, the lower end of the cylinder of the SC pile is formed into a V-shaped slope, so that the slime rises along the slope and no slime remains at the lower end of the SC pile.
以上述べたとおり、SC杭aから場所打杭bへの軸力の
総伝達量は、前記P1とP2との和からなる。そのうち
垂直伝達軸力P1はSC杭aの先端総面積が一定のため
固定値となり、付着力による伝達軸力P2は、鉄筋かご
3に収容されたSC杭aの平行部の長さ、すなわち変動
させ得る付着面積が総伝達軸力の大きさを決定する。従
って、安全係数を1.3ないし1.5としたPを満足さ
せるP2を設計すれば、巨大地震時の軸力の激増に耐え
うる合成基礎杭が得られる。As described above, the total amount of axial force transmitted from the SC pile a to the cast-in-place pile b is the sum of P1 and P2. Among them, the vertical transmitted axial force P1 is a fixed value because the total area of the tip of the SC pile a is constant, and the transmitted axial force P2 due to the adhesion force is the length of the parallel part of the SC pile a housed in the reinforcing bar cage 3, that is, it is a variable value. The adhesion area that can be applied determines the magnitude of the total transmitted axial force. Therefore, by designing P2 that satisfies P with a safety factor of 1.3 to 1.5, a composite foundation pile that can withstand a dramatic increase in axial force during a huge earthquake can be obtained.
以上の説明は、SC杭aの鋼管1の外面に加工を施さな
い場合の付着力を基準としたものであるが、SC杭の鋼
管1外面の下方部分に多段の鉄筋リングを溶接する手段
、又は外面にスパイラル状の突条を設けた特殊鋼管を使
用するなどの場合は、鋼管1と場所打コンクリート6’
との付着力が格別に増大し、鉄筋かご3内に収容するS
C杭の平行部の長さが大幅に短縮されることが期待され
る。The above explanation is based on the adhesion force when no processing is applied to the outer surface of the steel pipe 1 of the SC pile a, but there are methods for welding multistage reinforcing bar rings to the lower part of the outer surface of the steel pipe 1 of the SC pile, Or, when using a special steel pipe with spiral protrusions on its outer surface, the steel pipe 1 and cast-in-place concrete 6'
The adhesion force with the S
It is expected that the length of the parallel part of the C pile will be significantly shortened.
次に、以上に述べた本発明の合成基礎杭の特長を列記す
る。Next, the features of the synthetic foundation pile of the present invention described above will be listed.
(1)外径1メートルのSC杭の小径効果(SC杭の断
面2次モーメントが、外径1.6メートルの場所打杭の
断面2次モーメントの15%ないし18%となる効果)
によって、地震時の水平力によりSC杭に作用する曲げ
モーメントは、同一水平力によって外径1.6メートル
の場所打杭に作用する曲げモーメントの80%を超える
ことはない。従って、場所打杭に要求される抵抗曲げモ
ーメントを200ton−mとする場合、SC杭ではそ
の抵抗曲げモーメントは最大160ton−mに設計す
ればよく、経済的にSC杭が得られる。(1) Small diameter effect of an SC pile with an outer diameter of 1 meter (effect that the moment of inertia of an SC pile is 15% to 18% of the moment of inertia of a cast-in-place pile with an outer diameter of 1.6 meters)
Therefore, the bending moment acting on an SC pile due to horizontal force during an earthquake will not exceed 80% of the bending moment acting on a cast-in-place pile with an outer diameter of 1.6 meters due to the same horizontal force. Therefore, when the resistance bending moment required for a cast-in-place pile is 200 ton-m, the SC pile can be designed to have a maximum resistance bending moment of 160 ton-m, and the SC pile can be obtained economically.
(2)前項(1)に述べた小径効果によって、外径1メ
ートルのSC杭の抵抗曲げモーメントを、外径1.6メ
ートルの場所打杭の抵抗曲げモーメントと同等にすれば
、SC杭の抵抗曲げモーメントは実質的には外径1.6
メートルの場所打杭の抵抗曲げモーメントの1.25倍
以上となる。この特長を活用すれば、必要軸耐力に比較
し大きな抵抗曲げモーメントを特に要求される土木分野
の特殊モーメント基礎杭では、許容軸力の範囲内で場所
打杭自体を小径化する設計が可能となり、経済的モーメ
ント合成基礎杭を提供することができる。(2) Due to the small diameter effect mentioned in the previous section (1), if the bending moment resistance of an SC pile with an outer diameter of 1 meter is made equal to the bending moment resistance of a cast-in-place pile with an outer diameter of 1.6 meters, then The resistance bending moment is essentially the outer diameter of 1.6
This is more than 1.25 times the bending moment resistance of a meter-meter cast-in-place pile. By utilizing this feature, special moment foundation piles in the civil engineering field, which require a large resistance bending moment compared to the required axial strength, can be designed to reduce the diameter of the cast-in-place pile itself within the range of allowable axial force. , can provide an economical moment composite foundation pile.
(3)SC杭の小径効果によってフーチングが小形軽量
となり、フーチングの造成費が小額となり、且つ作用す
る水平力がわずかではあるが減少する。(3) Due to the small diameter effect of the SC pile, the footing becomes small and lightweight, the cost of constructing the footing becomes small, and the horizontal force that acts on it is reduced, albeit slightly.
(4)場所打杭の上方部外面を鋼管で巻く合成杭では、
場所打コンクリートの短期許容圧縮応力度が通常100
kg/cm2以内で、鋼管の力が充分活用できない。こ
れに対してSC杭では高強度コンクリート2の短期許容
圧縮応力度が400kg/cm2で鋼管1の力を充分活
用でき、且つSC杭の小径効果によって鋼管巻き場所打
杭と相対的に同等の短期許容曲げモーメントに設計する
ことができ、鋼管1の利用効率が高く、経済性に富む合
成基礎杭を提供することができる。(4) For composite piles in which the upper outer surface of cast-in-place piles is wrapped with steel pipes,
The short-term allowable compressive stress of cast-in-place concrete is usually 100.
kg/cm2 or less, the force of the steel pipe cannot be fully utilized. On the other hand, with SC piles, the short-term allowable compressive stress of high-strength concrete 2 is 400 kg/cm2, making it possible to fully utilize the force of steel pipe 1, and due to the small diameter effect of SC piles, the short-term allowable compressive stress of high-strength concrete 2 is relatively the same as that of cast-in-place piles. It is possible to provide a synthetic foundation pile that can be designed to have an allowable bending moment, has high utilization efficiency of the steel pipe 1, and is highly economical.
(5)地盤沈下地帯を除く通常の地盤では、場所打杭の
大径効果によって地盤との周面摩擦力が増大し、合成基
礎杭の摩擦支持力を高め得る。(5) In normal ground, excluding areas of ground subsidence, the large diameter effect of cast-in-place piles increases the circumferential frictional force with the ground, which can increase the frictional bearing capacity of synthetic foundation piles.
(6)場所打杭の大径効果によって、杭先端に拡底根を
造るとき、地盤との接地面積が拡大し、合成基礎杭の先
端支持力を高め得る。(6) Due to the large-diameter effect of cast-in-place piles, when creating an expanded root at the tip of the pile, the contact area with the ground is expanded, and the supporting capacity of the tip of the composite foundation pile can be increased.
(7)場所打杭の鉄筋かご内に挿入されたSC杭の外面
と、場所打コンクリートとの付着力によって、地震時S
C杭に引抜力が作用しても、SC杭が場所打杭から離脱
して抜け上がることがない。(7) Due to the adhesion between the outer surface of the SC pile inserted into the reinforced cage of the cast-in-place pile and the cast-in-place concrete, the
Even if a pulling force is applied to the C pile, the SC pile will not separate from the cast-in-place pile and will not come up.
(8)合成基礎杭の上段に配設したSC杭の周りに、原
地盤のもつ変形係数E02より大きな変形係数E01を
もつ円筒状人工層20を造成する施工法を行う場合、地
震時にSC杭に作用する曲げモーメントはE01の改善
効果に応じて、SC杭が原地盤にじかに接する場合より
低下する。この変形係数の改善効果と、前1項に述べた
小径効果とは相乗すべき関係にあり、この両者の相乗効
果によって、地震時必要とするSC杭の抵抗曲げモーメ
ントが更に減少し、この合成基礎杭に用いるSC杭の原
価がおのずから低下する。(8) When performing a construction method that creates a cylindrical artificial layer 20 with a deformation coefficient E01 larger than the deformation coefficient E02 of the original ground around the SC pile placed on the upper stage of the composite foundation pile, the SC pile According to the improvement effect of E01, the bending moment acting on the SC pile is lower than when the SC pile is in direct contact with the original ground. This deformation coefficient improvement effect and the small diameter effect described in the previous section 1 have a synergistic relationship, and the synergistic effect of the two further reduces the resistance bending moment of the SC pile required during an earthquake. The cost of SC piles used for foundation piles will naturally decrease.
本発明の合成基礎杭は、以上に列記した多面にわたる有
効な特長をもち、上段に配設したSC杭によって基礎杭
の耐震能力を確実に高め得るとともに、下方に配設した
場所打杭によって基礎杭に対する地震の支持力を増大さ
せ得る誠に望ましい特性をもち、その有効性が高い。The composite foundation pile of the present invention has the multifaceted effective features listed above, and can reliably increase the seismic capacity of the foundation pile by the SC pile placed in the upper stage, and can improve the foundation pile by the cast-in-place pile placed below. It has very desirable properties that can increase the earthquake bearing capacity of piles, and its effectiveness is high.
なお、第1図に示すSC杭aを連結するつり下げ装置C
の筒状体12の外径をSC杭aの外径とほぼ同等とする
改造を行い、この筒状体の頭部に突設したビームを、ケ
ーシングに装備した油圧ジャッキで受けるようにし、ケ
ーシング5と、筒状体12及びSC杭aとの間に、砂利
まじり砂又は氣泡コンクリートなどを流し込み、円筒状
人工層を造るようにすれば、この流し込み工程の経過時
間中に場所打コンクリート6の流動性がほとんど失なわ
れ、つり下げ装置CとSC杭aとの連結を解いてもSC
杭aは生コンクリート6内に沈降しないようになる。す
なわち、施工時における待ち時間がほとんどなくなり、
合成基礎杭の施工が能率化され、且つこの施工法では環
状の閉鎖板8の外径を縮小するか又は省略してよい。こ
のように、この合成基礎杭の施工には種種の改変を加え
ることができる。In addition, the suspension device C that connects the SC pile a shown in FIG.
The outer diameter of the cylindrical body 12 is made almost equal to the outer diameter of the SC pile a, and the beam protruding from the head of this cylindrical body is received by a hydraulic jack installed in the casing. 5, and the cylindrical body 12 and SC pile a, if sand mixed with gravel or foamed concrete is poured to create a cylindrical artificial layer, the cast-in-place concrete 6 can be poured during the elapsed time of this pouring process. Almost all fluidity is lost, and even if the suspension device C and the SC pile a are uncoupled, the SC
The pile a is prevented from settling into the ready-mixed concrete 6. In other words, there is almost no waiting time during construction,
The construction of the composite foundation pile is streamlined and the outer diameter of the annular closure plate 8 may be reduced or omitted in this construction method. In this way, various modifications can be made to the construction of this composite foundation pile.
また、この合成基礎杭の施工法に求められる最も重要な
条件は、SC杭aの上方部の周りに造成する円筒状人工
層の変形係
数E01を、周りの原地盤の変形係
数E02と少なくとも同等とすること、更には周りの原
地盤のE02より増大させることである。このことは極
めて重要で、若し円筒状人工層の前記E01が周りの原
地盤のE02より小さければ、人口層の変位抵抗力(受
働土圧)が弱くなり、地震時SC杭に作用する曲げモー
メントが増大し、且つ地震時のSC杭の頭部変位が拡大
し、SC杭の耐震性能が明らかに低下する。すなわち、
本施工法においては円筒状人工層の変形係数E01を周
りの原地盤のE02より大きくして人工層の変位抵抗力
を高めることが、本合成基礎杭の耐震性能を高める重要
な因子となる。In addition, the most important condition required for the construction method of this synthetic foundation pile is that the deformation coefficient E01 of the cylindrical artificial layer built around the upper part of the SC pile a should be at least equal to the deformation coefficient E02 of the surrounding original ground. Furthermore, the E02 of the surrounding ground should be increased. This is extremely important; if the E01 of the cylindrical artificial layer is smaller than the E02 of the surrounding original ground, the displacement resistance (passive earth pressure) of the artificial layer will be weaker, and the bending force acting on the SC pile during an earthquake will weaken. The moment increases, and the displacement of the head of the SC pile during an earthquake increases, and the seismic performance of the SC pile clearly deteriorates. That is,
In this construction method, increasing the displacement resistance of the artificial layer by making the deformation coefficient E01 of the cylindrical artificial layer larger than the E02 of the surrounding original ground is an important factor in improving the seismic performance of the synthetic foundation pile.
第1図は本発明の合成基礎杭造成時、SC杭に連結した
閉鎖板で場所打の生コンクリートを封鎖した状態を示す
態様図、第2図は、第1図のA−A線に沿う横断面図、
第3図は場所打コンクリート硬化後の合成基礎杭の上方
部の構造図である。
図面中、 符号a・・・SC杭、 b・・・場所打鉄筋
コンクリート杭、 C・・・つり下げ装置、 1・・・
SC杭の外殻となる鋼管、 2・・・SC杭の高強度コ
ンクリート、 3・・・場所打杭の鉄筋かご、 5・・
・ケーシング、 6・・・場所打杭の生コンクリート、
6′・・・場所打杭の硬化したコンクリート、 8・
・・SC杭に連結した閉鎖板、 19・・・SC杭の中
空部、20・・・SC杭の周りの砂利まじり砂からなる
円筒状人工層。Figure 1 is a diagram showing the state in which ready-mixed concrete cast in place is sealed off with a closure plate connected to an SC pile when constructing a composite foundation pile according to the present invention, and Figure 2 is a view taken along line A-A in Figure 1. cross section,
Figure 3 is a structural diagram of the upper part of the composite foundation pile after the cast-in-place concrete has hardened. In the drawings, code a...SC pile, b...cast-in-place reinforced concrete pile, C...hanging device, 1...
Steel pipe that becomes the outer shell of the SC pile, 2... High-strength concrete of the SC pile, 3... Rebar cage of the cast-in-place pile, 5...
・Casing, 6...Ready-mixed concrete with cast-in-place piles,
6'...Hardened concrete of cast-in-place piles, 8.
...Closing plate connected to the SC pile, 19...Hollow part of the SC pile, 20...Cylindrical artificial layer made of sand mixed with gravel around the SC pile.
Claims (2)
の下方部分を所要の長さ挿入し、場所打杭の生コンクリ
ートの上方にSC杭を包覆する円筒状人工層を造り、こ
の円筒状人工層の変形係数を、その周りの原地盤の変形
係数と同等又は同等以上となるように工作することを特
徴とする合成基礎杭の造成方法。(1) Insert the lower part of the SC pile to the required length inside the reinforcing bar cage placed on the cast-in-place pile, and create a cylindrical artificial layer that covers the SC pile above the ready-mixed concrete of the cast-in-place pile. , A method for constructing a synthetic foundation pile, characterized by engineering the cylindrical artificial layer so that its deformation coefficient is equal to or greater than the deformation coefficient of the surrounding original ground.
所打杭のコンクリートとの付着力で負担するに要する面
積をもつSC杭の下方部分を、場所打杭の鉄筋かご内に
収容し、場所打コンクリートより上方のSC杭の周りを
、所要の大きさの変形係数をもつ円筒状人工層で包覆し
てなる合成基礎杭。(2) The lower part of the SC pile, which has the area required to bear part of the axial force that increases during an earthquake, through the adhesion force between the outer surface of the SC pile and the concrete of the cast-in-place pile, is placed inside the reinforced cage of the cast-in-place pile. A composite foundation pile is constructed by encasing the SC pile above the cast-in-place concrete with a cylindrical artificial layer having a deformation coefficient of the required size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21416085A JPS6272813A (en) | 1985-09-26 | 1985-09-26 | Formation of composite foundation pile and composite foundation pile thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21416085A JPS6272813A (en) | 1985-09-26 | 1985-09-26 | Formation of composite foundation pile and composite foundation pile thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6272813A true JPS6272813A (en) | 1987-04-03 |
Family
ID=16651224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21416085A Pending JPS6272813A (en) | 1985-09-26 | 1985-09-26 | Formation of composite foundation pile and composite foundation pile thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6272813A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1662049A2 (en) * | 2004-09-29 | 2006-05-31 | Jan Wind | Method for positioning concrete piles |
-
1985
- 1985-09-26 JP JP21416085A patent/JPS6272813A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1662049A2 (en) * | 2004-09-29 | 2006-05-31 | Jan Wind | Method for positioning concrete piles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100567659C (en) | The base configuration of iron tower | |
US7909541B1 (en) | Apparatus and method for improved grout containment in post-grouting applications | |
CN204456167U (en) | Prestress anchoraging blower foundation | |
CN110042844B (en) | Construction method of cast-in-situ large-diameter foundation pit supporting tubular pile | |
US4634316A (en) | Compacted deep foundation structure, method of and apparatus for building the same | |
CN211573533U (en) | Tunnel constraint filling type lining structure capable of adapting to large deformation of surrounding rock | |
CN107604929A (en) | The anti-liquefaction friction pile of integrate draining and construction method | |
CN106988303B (en) | A kind of pile foundation and its construction method | |
EA031926B1 (en) | Method for forming a pillar part and reinforcing adjacently constructed parallel tunnels with reinforcing rods | |
CN103993598A (en) | Crashed stone grouting pile with lead holes implanted in cloth bag and construction method | |
CN111962533A (en) | Energy dissipation type pile anchor structure in strong seismic region and construction method thereof | |
US3385070A (en) | Shell-less cast-in-place concrete pile | |
CN109024721B (en) | Reinforced foundation and method for improving bending and shearing resistance of existing building rigid foundation | |
CN106638655A (en) | Conical-head tendon body post-tensioning pile foundation and construction process thereof | |
CN111058475A (en) | High-intensity seismic area pile foundation joist constant-weight retaining wall structure and construction method | |
CN102808407B (en) | Construction method of soft-foundation reinforced concrete cast-in-place pile | |
CN107938696A (en) | A kind of prestressing force base expanding and base expanding anchor cable blower foundation for Rock Region | |
CN108360535A (en) | Foundation pit supporting construction based on campshed and inner support and its construction method | |
CN204112318U (en) | A kind of technique device improving CFG guncreting pile bearing capacity | |
CN108385674A (en) | High-bearing capacity thin-wall steel tube concrete pile construction method and device and its application | |
CN104929101B (en) | Resistance to plucking prestress anchoraging broken stone pile and construction method that a kind of base expanding and base expanding multistage side is expanded | |
CN212335996U (en) | Resistance to compression resistance to plucking variable diameter steel reinforcement cage club-footed pile | |
CN207846456U (en) | A kind of prestressing force base expanding and base expanding anchor cable blower foundation for Rock Region | |
CN207277358U (en) | A kind of pile anchor rod basis available for soft clay area | |
JPS6272813A (en) | Formation of composite foundation pile and composite foundation pile thereby |