JPS6272116A - Doping method - Google Patents

Doping method

Info

Publication number
JPS6272116A
JPS6272116A JP21288485A JP21288485A JPS6272116A JP S6272116 A JPS6272116 A JP S6272116A JP 21288485 A JP21288485 A JP 21288485A JP 21288485 A JP21288485 A JP 21288485A JP S6272116 A JPS6272116 A JP S6272116A
Authority
JP
Japan
Prior art keywords
organic tin
tin compound
gas
container
dilution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21288485A
Other languages
Japanese (ja)
Other versions
JPH0652718B2 (en
Inventor
Naoyoshi Maeda
尚良 前田
Masashi Isemura
雅士 伊勢村
Masahiko Hata
雅彦 秦
Noboru Fukuhara
昇 福原
Kenichi Sarara
讃良 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60212884A priority Critical patent/JPH0652718B2/en
Publication of JPS6272116A publication Critical patent/JPS6272116A/en
Publication of JPH0652718B2 publication Critical patent/JPH0652718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform a uniform doping with excellent reproducibility by a method wherein the raw material of organic tin, which is diluted with carrier gas to the desired concentration, is prepared and placed in a container in advance, and it is used with gas supplied in the controllable quantity without performing a bubbling. CONSTITUTION:When Sn is doped using an MOCVD (metal oxide chemical vapor deposition) method which is a vapor-phase growth method, an organic tin compound is used as a precursor. An organic tin compound vapor of dopant material is placed in a container, and it is used after dilution with diluting gas. (CH3)4Sn and (C2H5)4Sn are desirable as the above-mentioned organic tin compound, and the inert gas such as H2, N2, Ar, He and the like which do not react with the organic tin compound is considered suitable as the organic tin compound to be used for doping. The degree of dilution can be arbitrarily determined in the range of dilution wherein the materials of organic tin compound is not liquefied. However, the range of several - several tens of ml/min of MFC (flow rate regulator) is set as the quantity of supply which can be controlled easily, and the practical concentration of the organic tin compound in the container is in the range of 0.2-200ppm. The control of the feeding quantity of the organic tin material can be accomplished by merely feeding the diluted gas of fixed concentration to the reaction chamber with an MFC.

Description

【発明の詳細な説明】 本発明はm−v族化合物半導体の有機金属化学的気相成
長法(以下MOCVD法と略称する)におけるドーピン
グ方法に関し、特にそのドーピング原料である有機金属
化合物の供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a doping method for metal-organic chemical vapor deposition (hereinafter abbreviated as MOCVD) for m-v group compound semiconductors, and particularly to a method for supplying an organometallic compound as a doping raw material. Regarding.

GaAsで代表される[1−V族化合物半導体のn型単
結晶薄膜をエピタキシャル成長させる場合は、不純物と
して硫黄(S)、セレン(Se)、シリコン(Si)、
スズ(Sn)等が通常ドーピングされる。
When epitaxially growing an n-type single crystal thin film of a [1-V group compound semiconductor represented by GaAs], impurities such as sulfur (S), selenium (Se), silicon (Si),
It is usually doped with tin (Sn) or the like.

これら不純物の中で特にSnはGaAs結晶中での拡散
係数が小さく、そのためエピタキノヤル膜作成後の素子
化の工程で熱処理を受けてもドープした不純物のプロフ
ァイルの”ダレ” といった現象を起こし難い特長を存
している。よって液相法によるエピタキシャル成長では
、従来からSnが用いられてきた実績がある。
Among these impurities, Sn has a particularly small diffusion coefficient in the GaAs crystal, which makes it difficult to cause phenomena such as "sag" in the doped impurity profile even if it is subjected to heat treatment in the device fabrication process after epitaxial film formation. Exists. Therefore, in epitaxial growth by the liquid phase method, Sn has been used for a long time.

一方、気相成長法であるMOCVD法ではこのように長
所のあるSnをドープする場合は、前駆体とじて有機ス
ズ化合物を用いる必要がありテトラメルスズ(TMSn
)やテトラエチルスズ(TESn)が有効であることは
、Journal of Gysta! Growth
第68巻(1984)第60−64及び65−70頁で
既にに報告されている。
On the other hand, in the MOCVD method, which is a vapor phase growth method, when doping Sn, which has such advantages, it is necessary to use an organic tin compound as a precursor, and tetrameltin (TMSn) is used as a precursor.
) and tetraethyltin (TESn) are effective, as reported in the Journal of Gysta! Growth
68 (1984), pp. 60-64 and 65-70.

しかしながら、上記文献からも明らかなように成長反応
室へはこの化合物を蒸気にして輸送することが必要であ
る。
However, as is clear from the above literature, it is necessary to transport this compound in the form of vapor to the growth reaction chamber.

すなわち、第1図に示したように原料の液体有機スズ化
合物1を冷媒2の入った恒温構3内におかれたバブラー
(T発器)4に充填し、これ゛、水素等のキャリヤーガ
スを流fft調節器(MFC)6で所定の流量に調節し
、バブラー4に導入する。この際、切換弁7.8は開の
状態、9は閉の状態にしておく。バブリングにより有機
スズ化合物の飽和蒸気としたものをライン10を通して
反応室(図示せず)へ供給するが、予めトリメチルガリ
ウム(TMG)、アルシン(Asf13)等を含むガス
と混合して反応室へ供給する。
That is, as shown in FIG. 1, a liquid organic tin compound 1 as a raw material is filled into a bubbler (T generator) 4 placed in a constant temperature chamber 3 containing a refrigerant 2, and this is filled with a carrier gas such as hydrogen. is adjusted to a predetermined flow rate using a flow fft controller (MFC) 6 and introduced into the bubbler 4. At this time, the switching valves 7.8 are kept open and the switching valves 9 are kept closed. Saturated vapor of an organic tin compound by bubbling is supplied to the reaction chamber (not shown) through line 10, but it is mixed in advance with a gas containing trimethyl gallium (TMG), arsine (Asf13), etc., and then supplied to the reaction chamber. do.

この場合、Snの供給量はキャリアーガス量とバブラ一
温度を厳密に制御することにより求めることとなる。
In this case, the supply amount of Sn is determined by strictly controlling the carrier gas amount and bubbler temperature.

ところが、従来からのこのような供給方法では再現性良
く均一にドーピングすることは非常に困難であり、現実
には後述の比較例に挙げたように不満足な結果しか得ら
れないことが判った。
However, it has been found that it is very difficult to achieve uniform doping with good reproducibility using such a conventional supply method, and in reality, only unsatisfactory results can be obtained as shown in the comparative example below.

この原因として一般的に次のことが考えられる。すなわ
ち、通常のドーピングずべき濃度は多くとも10目〜1
0′9個/cI113 のレベルであるから、分解効率
の差を無視するとして、トリメチルガリウム(TMGa
)等の■族側原料4度の1/1000〜1/10000
の4麿を制御する必要がある。
The following are generally thought to be the causes of this. In other words, the normal doping concentration should be at most 10 to 1
Since the level is 0'9 pieces/cI113, if the difference in decomposition efficiency is ignored, trimethyl gallium (TMGa
) etc. 1/1000 to 1/10000 of 4 degrees of group ■ side raw materials
It is necessary to control the four main characters.

通常のMOCVD法ではTMGaは〜10− ’mol
e/minの供給量であるから結局ドーパント量は10
−8〜10− ”mole/winに制御する必要があ
る。
In the normal MOCVD method, TMGa is ~10-'mol
Since the supply amount is e/min, the dopant amount is 10
-8 to 10- It is necessary to control to "mole/win."

この量を現行の?R量調節器(MFC)と、温度制御さ
れたバブリングシステムとの併用で達成することは、は
とんど不可能に近い。何故ならば例えば、供給する場合
には実質的にはキャリヤー流量を0.01m1/min
で制御しなければならなく、通常のMFCではこれは不
可能である。逆にMFCの制御範囲内になる、例えば、
1 ml/winのキャリアー供給量にするには、バブ
ラ一温度は一80℃まで冷却する必要があり、TMSn
の凝固点以下となってバブリングには不都合が生じる。
Is this amount current? This is almost impossible to achieve with the combined use of an R quantity controller (MFC) and a temperature-controlled bubbling system. This is because, for example, when supplying, the carrier flow rate is substantially set to 0.01 m1/min.
This is not possible with normal MFC. Conversely, within the control range of the MFC, for example,
To obtain a carrier supply amount of 1 ml/win, the bubbler temperature must be cooled to -80°C, and TMSn
If the temperature drops below the freezing point of the liquid, bubbling becomes inconvenient.

更に、バブラーのディップチューブの実際的な口径に対
して、バブリングガスがl ml/minの供給lでは
過少であるため、バブリング気泡の生しる間隔が数回7
分となってしまって脈流を生しる原因となっている。
Furthermore, since the supply of bubbling gas at 1 ml/min is too small for the practical diameter of the dip tube of the bubbler, the intervals between bubbling gases are several times 7 ml/min.
This is the cause of pulsating currents.

この脈流はJournal of Crystal G
rowth 第68巻 第412頁(1984)でも考
察されている通りである。
This pulsating flow is Journal of Crystal G
Rowth, Vol. 68, p. 412 (1984).

本発明はかかる現状に鑑みなされたもので、上記の欠点
を改良するものである。
The present invention was made in view of the current situation and aims to improve the above-mentioned drawbacks.

すなわち、本発明は容器に予めキャリアーガスで所望の
/a変まで希釈した有機スズ原料を調製し、該シリンダ
ーから原料有機スズ化合物の所定量をNFCにより反応
室へ供給することを特徴とするMOCVDにおけるドー
ピング方法を提供するものである。
That is, the present invention is a MOCVD method characterized by preparing an organic tin raw material diluted in advance with a carrier gas to a desired /a concentration in a container, and supplying a predetermined amount of the raw organic tin compound from the cylinder to a reaction chamber by NFC. A doping method is provided.

本発明によれば、バブリングを行わないため脈流の心配
がなく、また胞和茎気法を採らないため、有機スズ原料
を充分な希薄濃度でキャリアーガスで希釈できる。従っ
て、NFCの制御可能な範囲に入るガス量で供給できる
こととなり、制i:llIが容易で、かつ均一で再現性
に優れたドーピングをすることができる。
According to the present invention, since bubbling is not performed, there is no concern about pulsating current, and since the sulfur gas method is not used, the organic tin raw material can be diluted with a carrier gas at a sufficiently dilute concentration. Therefore, it is possible to supply the gas in an amount that falls within the controllable range of NFC, and it is possible to easily control i:llI and to perform doping uniformly and with excellent reproducibility.

また、温度制御の必要がなく 、NFCにょリイ】度の
定まったガス量を制御するだけで良いためg置が簡単に
なるという利点もある。
Another advantage is that there is no need for temperature control and it is only necessary to control the amount of gas at a fixed temperature using NFC, which simplifies the g setting.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明のドーピング法は従来公知の■−■族半導体、す
なわちGaAs、 GaAlAs、 InP、InAI
P等のMOCVD法による製造において好適に採用でき
る。
The doping method of the present invention can be applied to conventionally known ■-■ group semiconductors, namely GaAs, GaAlAs, InP, and InAI.
It can be suitably employed in the production of P and the like by the MOCVD method.

本発明において、使用する有機スズ化合物としては(C
lli)4Sn、(Czlls)aSnが好ましく、希
釈用のキャリアーガスとしては、H2、N2、Ar、、
He等の有機スズ化合物と反応しない不活性ガスが好ま
しい。
In the present invention, the organic tin compound used is (C
lli)4Sn, (Czlls)aSn are preferable, and the carrier gas for dilution is H2, N2, Ar,...
An inert gas that does not react with organotin compounds such as He is preferred.

但し、H2やHeガスと有機スズ化合物原料とを容器中
でガス混合する場合、若干の注意を払う必要があり、均
一的な混合状態となるために長時間の熟成時間が不可欠
である。これを怠ると、容器内の4度分析値が一定せず
再現性が不定となる原因になる。従って、これを避ける
ため、N8ガスで混合するのが好ましい。
However, when gas-mixing H2 or He gas and the organic tin compound raw material in a container, some care must be taken, and a long aging time is essential to achieve a uniform mixed state. If this is not done, the 4-degree analysis value in the container will not be constant and the reproducibility will be unstable. Therefore, to avoid this, it is preferable to mix with N8 gas.

希釈の濃度は、原ネ4の有機スズ化合物が液化しない範
囲で任意に決めることができる力< MFCの数ml/
min〜数10 ml/winの範囲が現実的に制御容
易な供給量とすると、通常のドーピングレベルが結晶中
不純物濃度で10皇6〜101個/cII+3であるか
ら容器内の有機スズ化合物濃度は0.2ppm〜200
ppmの範囲が実用的である。
The concentration of dilution can be arbitrarily determined within a range that does not liquefy the organic tin compound of raw material 4.
Assuming that the supply amount is realistically easy to control in the range of min to several tens of ml/win, the normal doping level is 10 to 101 impurities/cII+3 in the crystal, so the organotin compound concentration in the container is 0.2ppm~200
A range of ppm is practical.

原料有機スズ化合物の供給量の制御には、バブリング法
とは異なりシリンダーの厳密な温度制御■は不要であり
、7肩度の一定した希釈ガスをMFCにより一定量を反
応室へ送るだけで良い。
Unlike the bubbling method, strict temperature control of the cylinder is not required to control the supply amount of the raw material organic tin compound, and it is only necessary to send a constant amount of diluent gas at a constant temperature of 7 degrees to the reaction chamber using the MFC. .

すなわち、温度を厳密に制御するための高価な恒温槽と
その制御システム、第1図に例示したような?jl H
な形状をしたバブラーとこれに付随したガス切替弁類が
不要という(所を併せもつ。
In other words, an expensive thermostat and its control system to strictly control the temperature, such as the one illustrated in Figure 1? jl H
It also eliminates the need for a bubbler with a unique shape and the accompanying gas switching valves.

以下、実施例により本発明を具体的に説明するが本発明
はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例 第2図に示したシリンダー容器11にドーピング用のT
MSnを窒素ガスに希釈しTMSn i: rf−2,
5ppmとしたガス12を減圧弁13を通してMFC6
によりloml/minの流量でライン14へ導き、G
aAs成長用のキャリアー水素(9000ml/m1n
)、  アルシン(Asll*、 15m1/m1n)
  ガスと混合し、更にこれに第1図に示した蒸発2=
(バブラー)4を用いてTMGaをバブラ一温度−10
℃でバブル用水素(15ml/+in)に飽和させた7
MGaガスを混合しりTMSn、 AsL、 TMGa
の混合原料ガスを縦型の反応成長室(図示せず)へ上方
か:)導入する。
Embodiment A T for doping was placed in the cylinder container 11 shown in FIG.
MSn was diluted with nitrogen gas and TMSn i: rf-2,
The gas 12 with a concentration of 5 ppm is passed through the pressure reducing valve 13 to the MFC 6.
G
Carrier hydrogen for aAs growth (9000ml/m1n
), Arsine (Asll*, 15m1/m1n)
evaporation 2= as shown in Figure 1.
(Bubbler) TMGa using bubbler temperature -10
7 saturated with bubble hydrogen (15 ml/+in) at °C.
Mix MGa gas TMSn, AsL, TMGa
A mixed raw material gas is introduced upward into a vertical reaction growth chamber (not shown).

反応室中央部に高周波誘導加軌できるグラファイト製支
持台があり、この上に (100)面GaAs1ij結
晶基板を置き、成長1麿650℃に加執し、前記導入原
料ガスを吹付けてエビタキンヤル成長を実施した。2時
間の成長時間で約6μmの膜厚まで成長した。
In the center of the reaction chamber, there is a graphite support stand capable of high-frequency induction heating, on which a (100)-plane GaAs 1ij crystal substrate is placed, heated to 650°C for one growth period, and the introduced raw material gas is blown to perform Evita growth. was carried out. The film was grown to a thickness of about 6 μm in a growth time of 2 hours.

第3図のaにこのようにして得られたエビタキンヤル成
長膜中の不純物l4度のイエさ方向プロファイルをと8
式電解研磨法によるC−■測定により求めた結果を示し
た。非常に均一なプロファイルが得られていることが良
く理解される。
Figure 3a shows the horizontal profile of the impurity l4 degrees in the Evita kinial grown film obtained in this way.
The results obtained by C-■ measurement using the electrolytic polishing method are shown. It is well understood that a very uniform profile is obtained.

比較例 TMSnドーパントの反応室への輸送方法を、従来の奈
発器(第1図)を用いた以外は実施例と全く同し条件で
成長を行った。 TMSnの蒸発条件は実施例の場合と
供給TMSnを同じにするためにバブラ一温度−80℃
、バブル用Hzガス導入f!tO,2ml/+inから
最大10m1/minまで流れるMFCを用いて調節し
た。
Comparative Example Growth was carried out under exactly the same conditions as in the Example, except that a conventional reactor (FIG. 1) was used to transport the TMSn dopant to the reaction chamber. The evaporation conditions for TMSn were as follows: The bubbler temperature was -80°C to make the supplied TMSn the same as in the example.
, Hz gas introduction for bubble f! tO, was regulated using an MFC that flows from 2 ml/+in up to 10 ml/min.

成長膜の不純物7農度プロファイルを同し手法で求め、
図3のb に示した。
The impurity 7 degree profile of the grown film was determined using the same method,
It is shown in Figure 3b.

実施例の膜とは異なり、均一なドーピングが起こってい
ないことがわかる。
It can be seen that, unlike the films of Examples, uniform doping did not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMOCVD装置の液体ドーパント供給部
(蒸発用バブラー)の−例のブロック図、第2図は本発
明の実施例のブロック図、第3図a、bはそれぞれ、実
施例、比較例で得られたGaAs膜中の不純物濃度の濶
さ方向プロファイルである。 4・・・・・バブラー(蒸発器) 6    ・  ・  ・  ・ 流 量 調 節 器
  (MFC)11・・・・シリンダー容器 第 2 図 第 3 図 手続補正書(方式) %式% 2、発明の名称 ドーピング方法 3、補正をする者 事件との関係  特許出願人 住所  大阪市東区北浜5丁目15番地住所  大阪市
東区北浜5丁目15番地住友化学工業株式会社内 +i
”’ ” ’ :”5.I 5、補正命令の日付 昭和61年1月28日(発送日) 6、補正の対象 明細書の「図面の簡単な説明」の欄 7、補正の内容 明細書第9頁第19〜第10頁第2行「第3図a、bは
それぞれ−・・−−−−プロファイルである。 」を「第3図は実施例および比較例で得られたCaAs
膜中の不純物濃度の深さ方向の分布を示す図で縦軸は不
純物l肩度、横軸は深さを示す。」に訂正する。 以  上
FIG. 1 is a block diagram of an example of a liquid dopant supply section (evaporation bubbler) of a conventional MOCVD apparatus, FIG. 2 is a block diagram of an embodiment of the present invention, and FIGS. It is a profile of the impurity concentration in the GaAs film obtained in a comparative example in the direction of thickness. 4... Bubbler (evaporator) 6... Flow controller (MFC) 11... Cylinder container Figure 2 Figure 3 Figure procedure amendment (method) % formula % 2. Invention Name Doping Method 3, Relationship with the Amendment Case Patent Applicant Address 5-15 Kitahama, Higashi-ku, Osaka Address Inside Sumitomo Chemical Co., Ltd., 5-15 Kitahama, Higashi-ku, Osaka +i
``'''': 5. I 5. Date of amendment order January 28, 1985 (shipping date) 6. Column 7 of "Brief explanation of drawings" of the specification subject to amendment 7. Description of contents of amendment Page 9, pages 19 to 10, line 2, ``Figure 3 a and b are profiles.'' was changed to ``Figure 3 shows CaAs obtained in the examples and comparative examples.
In the diagram showing the distribution of impurity concentration in the film in the depth direction, the vertical axis shows the impurity level, and the horizontal axis shows the depth. ” is corrected. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)III−V族の化合物半導体の有機金属化学的気相
成長法において、ドーパント原料の有機スズ化合物蒸気
を容器に希釈ガスであらかじめ希釈して用いることを特
徴とするドーピング方法。
(1) In the organometallic chemical vapor deposition method of group III-V compound semiconductors, a doping method characterized in that the vapor of an organotin compound as a dopant raw material is diluted in advance with a diluent gas in a container.
(2)有機スズ化合物が(CH_3)_4Snまたは(
C_2H_3)_4Snである特許請求の範囲第(1)
項記載のドーピング方法。
(2) The organotin compound is (CH_3)_4Sn or (
Claim No. (1) which is C_2H_3)_4Sn
Doping method described in section.
(3)希釈ガスがN_2、Ar、H_2またはHeであ
る特許請求の範囲第(1)または(2)項記載のドーピ
ング方法。
(3) The doping method according to claim (1) or (2), wherein the diluent gas is N_2, Ar, H_2 or He.
JP60212884A 1985-09-26 1985-09-26 Doping method Expired - Fee Related JPH0652718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212884A JPH0652718B2 (en) 1985-09-26 1985-09-26 Doping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212884A JPH0652718B2 (en) 1985-09-26 1985-09-26 Doping method

Publications (2)

Publication Number Publication Date
JPS6272116A true JPS6272116A (en) 1987-04-02
JPH0652718B2 JPH0652718B2 (en) 1994-07-06

Family

ID=16629853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212884A Expired - Fee Related JPH0652718B2 (en) 1985-09-26 1985-09-26 Doping method

Country Status (1)

Country Link
JP (1) JPH0652718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484620A (en) * 1987-09-26 1989-03-29 Ricoh Kk Mocvd process
KR100549090B1 (en) * 2003-01-08 2006-02-06 이명기 Evaporator for organic vapor deposition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500954A (en) * 1983-04-04 1985-06-27 ヒユ−ズ・エアクラフト・カンパニ− Tetramethyltin dopant source for MOCVD grown epitaxial semiconductor layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500954A (en) * 1983-04-04 1985-06-27 ヒユ−ズ・エアクラフト・カンパニ− Tetramethyltin dopant source for MOCVD grown epitaxial semiconductor layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484620A (en) * 1987-09-26 1989-03-29 Ricoh Kk Mocvd process
KR100549090B1 (en) * 2003-01-08 2006-02-06 이명기 Evaporator for organic vapor deposition apparatus

Also Published As

Publication number Publication date
JPH0652718B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
US3394390A (en) Method for making compond semiconductor materials
JPH0688871B2 (en) Chemical beam deposition method
JPS6272116A (en) Doping method
US4407694A (en) Multi-range doping of epitaxial III-V layers from a single source
JPH0510317B2 (en)
JPS61275191A (en) Vapor-phase growth method for gaas thin film
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPH01261818A (en) Method of vapor growth of high-resistance algaas mixed crystal
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
Koukitu et al. Vapor-phase epitaxial growth of GaAs by the single flat temperature zone method
JPS63227007A (en) Vapor growth method
JPS6124227A (en) Vapor growth apparatus
JPH06314658A (en) Vapor growing apparatus
JPH01103996A (en) Vapor growth method for compound semiconductor
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JPS63190330A (en) Organo metallic chemical vapor deposition method
JPS5826655B2 (en) The best way to do it
JPS6381813A (en) Vapor growth method
JPS60245214A (en) Vapor growth of compound semiconductor crystal
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JPS5948788B2 (en) Vapor phase epitaxial growth method
JPH03133123A (en) Organic metal vapor phase growth method
JPH03297129A (en) Organometallic molecular-beam epitaxial growth apparatus

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees