JPS6272102A - Iron powder for magnetic dust core used at high frequency and manufacture thereof - Google Patents

Iron powder for magnetic dust core used at high frequency and manufacture thereof

Info

Publication number
JPS6272102A
JPS6272102A JP60211104A JP21110485A JPS6272102A JP S6272102 A JPS6272102 A JP S6272102A JP 60211104 A JP60211104 A JP 60211104A JP 21110485 A JP21110485 A JP 21110485A JP S6272102 A JPS6272102 A JP S6272102A
Authority
JP
Japan
Prior art keywords
iron powder
powder
aspect ratio
heat treatment
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60211104A
Other languages
Japanese (ja)
Inventor
Sadakimi Kiyota
禎公 清田
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60211104A priority Critical patent/JPS6272102A/en
Publication of JPS6272102A publication Critical patent/JPS6272102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enable the titled iron powder to have a high saturation magnetic flux density, a high permeability and excellent frequency characteristics by a method wherein the flake-like iron powder having the specific oxygen content, the specific average aspect ratio and the average grain diameter is formed, and a heat treatment is performed at the specific temperature in a reducing atmosphere. CONSTITUTION:The titled iron powder contains oxygen of 0.15-0.5wt% and the remaining part is composed of inevitable impurities and Fe. The average grain diameter of the iron powder is in the range of 40-170mum, and its average aspect ratio is in the range of 4-25. Reduce iron powder or atomized iron powder is used as the starting material of the iron powder having the above-mentioned constitution. The parameter such as the grain size of the material to be processed, the quantity of iron powder to be processed, the quantity of lubricant auxiliary agent, period of processing and the like are properly set, and the iron powder is formed into the desired grain size and shape. In the heat treatment process, the atmosphere, the temperature, the period, the condition of removal of the strain due to working and the growth of crystal grains utilizing the strain due to working, the maintenance of shape and grain size of the iron powder after processing, and the condition wherein no condensation is generated on the iron powder are established. The heat treatment is performed at 550-850 deg.C in a non-oxidizing atmosphere or a reducing atmosphere, and the flake-like iron powder is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高飽和磁束密度、高透磁率および良好な周波
数特性を要求される圧粉磁心1例えばリアクトル・コア
、ノイズフィルタ書コアなどの原料となる鉄粉およびそ
の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to powder magnetic cores 1 such as reactor cores and noise filter cores that require high saturation magnetic flux density, high magnetic permeability, and good frequency characteristics. This article relates to iron powder as a raw material and its manufacturing method.

〔従来の技術〕[Conventional technology]

周知のように鉄粉を樹脂などのバインダと混合した後、
加圧成形し、さらに必要に応じてバインダを加熱硬化さ
せて得られる圧粉磁心は、通常の金属磁性材料、例えば
電気鉄板を打ち抜き積層したいわゆるM層鉄心と比較し
て周波数特性に優れ、しかも製造コストが低い等の利点
を有し、またフェライトと比較しても、低コストである
のみならず、温度安定性に優れ、また飽和磁束密度が高
く、印加磁界に対する透磁率の変動が小さいという特徴
をもつため、リアクトル拳コアやノイズフィルタ・コア
等に利用されている。
As is well known, after mixing iron powder with a binder such as resin,
The powder magnetic core obtained by pressure molding and heat curing of a binder if necessary has excellent frequency characteristics compared to the so-called M-layer core made of ordinary metal magnetic materials such as punched and laminated electric iron plates. It has advantages such as low manufacturing cost, and compared to ferrite, it is not only low cost but also has excellent temperature stability, high saturation magnetic flux density, and small fluctuation in magnetic permeability with respect to applied magnetic field. Due to its characteristics, it is used in reactor fist cores, noise filter cores, etc.

ところで、鉄粉を用いた圧粉磁心に要求される最も重要
な特性は、高周波域での透磁率が大きいことである0便
宜的には、透磁率の周波数依存性について、周波数をO
に外挿した透磁率を直流透磁率と定義し、透磁率が直流
透磁率の80%になる周波数を限界周波数と定義すると
、 (L)  直流透磁率が大きいこと。
By the way, the most important characteristic required of a powder magnetic core using iron powder is high magnetic permeability in the high frequency range.
If we define the magnetic permeability extrapolated to the DC magnetic permeability as the DC magnetic permeability, and define the frequency at which the magnetic permeability becomes 80% of the DC magnetic permeability as the limit frequency, then (L) The DC magnetic permeability is large.

2 限界周波数が大きいこと、 が不可欠となる。2. The critical frequency is large; becomes essential.

直流透磁率は、磁心の密度と有効反磁界に大きく影響を
受け、密度が高く、有効反磁界が小さいほど高くなる。
The DC permeability is greatly influenced by the density of the magnetic core and the effective demagnetizing field, and increases as the density increases and the effective demagnetizing field decreases.

一方、限界周波数は、渦電流損が小さいほど高くなる量
で、磁心の見掛の抵抗率に比例し直流透磁率に反比例す
ると考えられる。
On the other hand, the limit frequency increases as the eddy current loss decreases, and is considered to be proportional to the apparent resistivity of the magnetic core and inversely proportional to the DC magnetic permeability.

従来の発明者らの研究や他の報告によると、バインダの
種類や添加量を適切に選ぶことによって、限界周波数を
ある程度改善することができるものの、その一方では直
流透ai率が低下するのが通常であり、鉄粉自体の性状
の改善なしには、磁心の特性を大幅に向ヒさせることは
できないことがr1明している。
According to previous studies by the inventors and other reports, it is possible to improve the critical frequency to some extent by appropriately selecting the type and amount of binder added, but on the other hand, the DC ai rate decreases. It is clear that the characteristics of the magnetic core cannot be significantly improved without improving the properties of the iron powder itself.

鉄粉の性状を制御することによって、前記■、■の条件
を満たす方法としては、適切な粒度と見掛密度をもつ還
元鉄粉を用いる方法(例えば特開昭6O−21301)
を既に提案している。しかし、従来の還元鉄粉は磁路に
モ行な軸および磁路に昨直な2袖に対して等方的である
ため、反磁界が大きく、直流透磁−tiについて改りの
余地を残している。
A method of satisfying the conditions (1) and (2) above by controlling the properties of iron powder is a method of using reduced iron powder with appropriate particle size and apparent density (for example, JP-A-6O-21301).
has already been proposed. However, since conventional reduced iron powder is isotropic with respect to the axis that is perpendicular to the magnetic path and the two sleeves that are perpendicular to the magnetic path, the demagnetizing field is large and there is room for improvement in DC permeability. I'm leaving it behind.

また、この見地から、フレーク状磁性体を結合材で結合
する方法(例えば特開昭59−119801)も提出さ
れているものの、限界周波数の観点からみた検13・i
は全くされていない。
Also, from this point of view, a method of bonding flake-like magnetic materials with a bonding material (for example, Japanese Patent Application Laid-Open No. 119801/1983) has been proposed, but
has not been done at all.

また、従来使用されてきた電解鉄粉は、前記(D、■の
1−面から他のものに比し総合的に優れてはいるが、−
殻粉末冶金用鉄粉に比べきわめて高価格であるとともに
、上記特性も必ずしも十分ではなかった。
In addition, the electrolytic iron powder that has been used conventionally is comprehensively superior to other powders in terms of (1) (D and (1)), but -
It is extremely expensive compared to iron powder for shell powder metallurgy, and the above characteristics are not necessarily sufficient.

以上のように、高周波で用いられる圧粉磁心用鉄粉とし
て、特性・価格の両面に優れる鉄粉がないのが実情であ
る。
As described above, the reality is that there is no iron powder that is excellent in both properties and cost as iron powder for powder magnetic cores used in high frequencies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上の“バ情に鑑みてなされたもので、優れた
周波数特性を有する低価格の圧粉磁心用フレーク状鉄粉
およびその製造方法を提供することをl]的とするもの
である。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a low-cost flaky iron powder for powder magnetic cores having excellent frequency characteristics and a method for producing the same. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、還元鉄粉またはアトマイズ鉄粉のような
低価格の鉄粉を原料とし、粉砕後焼鈍によって製造され
るフレーク状鉄粉に関して、原料鉄粉の種類、製造条件
およびフレーク状鉄粉の性状と磁気特性との関係を詳細
な実験によって調べ、本発明を完成するに至った。
The present inventors have investigated the type of raw material iron powder, the manufacturing conditions, and the flaky iron powder produced by annealing after crushing low-priced iron powder such as reduced iron powder or atomized iron powder as a raw material. The present invention was completed by investigating the relationship between powder properties and magnetic properties through detailed experiments.

すなわち本発明は、その目的を達成するため、圧粉磁心
用フレーク状鉄粉として次の特徴を有する。
That is, in order to achieve the object, the present invention has the following characteristics as a flaky iron powder for powder magnetic core.

(a)酸素を0.15〜0.5 w t%を含み残部が
不0■避的不純物とFeとから成る。
(a) Contains 0.15 to 0.5 wt% of oxygen, with the remainder consisting of unavoidable impurities and Fe.

(b)平均アスペクト比(篩分析による平均粒径に対す
る粒子の平均厚みの比の総平均)が4〜25の範囲にあ
る。
(b) The average aspect ratio (total average of the ratio of the average thickness of the particles to the average particle diameter as determined by sieve analysis) is in the range of 4 to 25.

(c)平均粒径が40〜170ルmである。(c) The average particle size is between 40 and 170 m.

このような鉄粉の製造方法については、(d)出発原料
鉄粉を還元鉄粉、アトマイズ鉄粉またはその混合物とし
、 (e)粉砕後、焼鈍前の羽均粒径および平均アスペクト
比をそれぞれ40−170ルm、4〜25に加工する。
Regarding the manufacturing method of such iron powder, (d) the starting material iron powder is reduced iron powder, atomized iron powder, or a mixture thereof, and (e) the average particle diameter and average aspect ratio after crushing and before annealing are determined respectively. 40-170 lm, process to 4-25.

(f)焼鈍温度を550〜850℃に限定する。(f) Limiting the annealing temperature to 550 to 850°C.

〔作用〕[Effect]

以下、本発明の限定理由およびその作用について順に説
明する。
Hereinafter, the reasons for the limitations of the present invention and their effects will be explained in order.

まず、フレーク状鉄粉中に含有される不純物について述
へる。
First, impurities contained in flaky iron powder will be described.

含有酸JS :u、’については、以下の理由によって
0.15〜0.5 w t%に限定する必要がある。
Containing acid JS:u,' needs to be limited to 0.15 to 0.5 wt% for the following reasons.

含有酸素は、その多くが鉄粉粒子表面に分布しており、
鉄粉粒子間の絶縁性を向1−させ圧縮性を低下させる。
Most of the oxygen contained is distributed on the surface of iron powder particles,
It improves the insulation between iron powder particles and reduces compressibility.

すなわち、上限0.5 w t%を越えると、著しく圧
粉密度が低下しその結果使用に耐えない程直流透磁率が
低下してしまう。
That is, if the upper limit of 0.5 wt% is exceeded, the green powder density will drop significantly, and as a result, the DC permeability will drop to such an extent that it cannot withstand use.

一方、下限値0.15wt%未膚になると、酸素皮膜が
粒子間絶縁にr);y%することが全くできなくなり、
渦電流損が増大し限界周波数が低下する。
On the other hand, when the lower limit of 0.15 wt% is reached, the oxygen film becomes completely unable to provide interparticle insulation.
Eddy current loss increases and the limit frequency decreases.

また、焼鈍工程で酸素を0.15 w t%未猫に低減
しようとすると多くの場合、焼鈍中に鉄粉粒子が強く凝
集する。この凝集は解砕後も多数残存し、箸しく粒子間
絶縁性を阻害する。しかもフレーク状鉄粉は焼鈍[程で
一旦凝集を起こすと、非常に解離しにくく、無理に解砕
しても粒P表面酸化物をはがしたり、形状を非フレーク
状にするというI悪影響がでることが多い。
Further, when attempting to reduce oxygen to 0.15 wt% in the annealing process, iron powder particles often strongly aggregate during annealing. A large number of these agglomerates remain even after disintegration, and seriously impede interparticle insulation. Moreover, once the flaky iron powder has agglomerated during the annealing process, it is extremely difficult to dissociate, and even if it is forcibly crushed, it has the negative effect of peeling off the surface oxides of the grains and changing the shape to a non-flake-like shape. There are many things.

以上の理由により、フレーク状鉄粉の含有酸素賃を0.
15〜0.5wt%に限定する。
For the above reasons, the oxygen content of flaky iron powder is 0.
It is limited to 15 to 0.5 wt%.

次に平均アスペクト比を4〜25と限定した理由につい
て、説明する。
Next, the reason why the average aspect ratio is limited to 4 to 25 will be explained.

平均7スベクト比のみが異なるフレーク状鉄粉を 一定
のバインダ埴、一定の圧力で成形した場合、平均アスペ
クト比が増加すると、反磁界が減少するため直流透磁率
は増加するが、粒子間の接触面積が増加し磁心の見掛の
抵抗率が低ドするため限界周波数が低下する。しかし、
各々の鉄粉に対し、各々バインダ量と成形圧力とを適切
に調整することによって、直流透磁率と限界周波数の両
特性を従来の鉄粉より大きくすることができる。
When flaky iron powders differing only in their average aspect ratios are molded using a constant binder clay and a constant pressure, as the average aspect ratio increases, the demagnetizing field decreases and the DC permeability increases, but the contact between the particles increases. As the area increases and the apparent resistivity of the magnetic core decreases, the limit frequency decreases. but,
By appropriately adjusting the amount of binder and molding pressure for each iron powder, both the DC permeability and limit frequency characteristics can be made larger than those of conventional iron powders.

ただし、平均アスペクト比が4未満のものではフレーク
化の効果が小さい、一方平均アスペクト比が25を越え
ると、粒子間の接触面積が箸しく太きくなり、バインダ
ー1.1や成形圧力を調整しても従来鉄粉より大きな限
界周波数を決して得ることができない。
However, if the average aspect ratio is less than 4, the flaking effect will be small, while if the average aspect ratio exceeds 25, the contact area between particles will become extremely large, making it difficult to adjust the binder 1.1 or molding pressure. However, it is never possible to obtain a higher limit frequency than with conventional iron powder.

したがって、平均アスペクト比は4〜25の範囲に含ま
れることが必要である。さらに好ましくは平均アスペク
ト比6〜20がよい。
Therefore, the average aspect ratio needs to be in the range of 4-25. More preferably, the average aspect ratio is 6 to 20.

平均粒径を40−170μmに限定した理由は次のとお
りである。
The reason why the average particle size was limited to 40-170 μm is as follows.

平均粒径が40gm未満では、圧縮性の低ドにより直流
透磁率が極端に低ドする。一方、170gmを越えると
、フレーク状鉄粉の厚みが大きくなるため、粒子内部に
流れる渦電流が大きくなり、その結果限界周波数が低下
する。
When the average particle size is less than 40 gm, the DC permeability becomes extremely low due to low compressibility. On the other hand, when it exceeds 170 gm, the thickness of the flaky iron powder becomes large, so that the eddy current flowing inside the particles becomes large, and as a result, the limit frequency decreases.

したがって、平均粒径は40−170 g mの範囲に
なくてはならない、なお、ここでいう粒径はふるい分析
またはそれに類似の方法によって求めたふるい目のサイ
ズで求められる。
Therefore, the average particle size must be in the range 40-170 gm, where the particle size is determined by the size of the sieve mesh determined by sieve analysis or similar methods.

以下、製造方法について説IIする。The manufacturing method will be explained below.

出発原料として、還元鉄粉、アトマイズ鉄粉、電解鉄粉
またはカーボニル鉄粉等が考えられるが、電解鉄粉やカ
ーボニル鉄粉は高価格であり。
Possible starting materials include reduced iron powder, atomized iron powder, electrolytic iron powder, and carbonyl iron powder, but electrolytic iron powder and carbonyl iron powder are expensive.

本発明の目的にそぐなわないので除外する。ここでいう
還元鉄粉とは鉄酸化物を還元して得られた鉄粉をいう。
This is excluded because it does not meet the purpose of the present invention. The term "reduced iron powder" as used herein refers to iron powder obtained by reducing iron oxide.

還元鉄粉あるいはアトマイズ鉄粉を用いた場合、後の実
施例からも明らかなように、出発原料の差による格差は
小さい、これは、両出発原料には見掛密度で表わされる
形状の差および不純物礒の差はあるものの、前者につい
ては、粉砕工程を経ることで有意差がなくなり、後者に
ついてはある程度の密度が(与られる限り影響が小さい
からである。
When reduced iron powder or atomized iron powder is used, as is clear from the later examples, the difference due to the difference in starting materials is small. This is because both starting materials have a difference in shape expressed by apparent density and Although there is a difference in the amount of impurities, the former is no longer significant after the pulverization process, and the latter has little influence as long as a certain degree of density is applied.

以上の理由により、本発明では出発原料として、還元鉄
粉またはアトマイズ鉄粉に限定する。
For the above reasons, in the present invention, the starting material is limited to reduced iron powder or atomized iron powder.

以下、加工、熱処理方法について説明する。The processing and heat treatment methods will be explained below.

加工は通常の振動ボールミル、アトライタ、スタンプミ
ル等を用い、原料粒度、鉄粉処理;β、潤滑助剤品およ
び処理時間等のパラメータを適切に、1党定することで
、鉄粉を所望のれ度、形状にすることができる。
Processing is carried out using ordinary vibrating ball mills, attritors, stamp mills, etc., and by appropriately determining parameters such as raw material particle size, iron powder treatment; It can be made into any shape.

加工は平均粒径40〜170gm、f均アスペクト比4
〜25まで行われなければならない。
Processing is done with an average grain size of 40-170gm and an f-average aspect ratio of 4.
~25 must be carried out.

しかし、本発明のフレーク状鉄粉を11>るために、熱
処理工程においては、 ■ 熱処理前の鉄粉の酸素F5に応じて雰囲気、温度1
時間を設定する8凹がある。
However, in order to make the flaky iron powder of the present invention 11>, in the heat treatment process,
There are 8 concave holes for setting the time.

史)加工歪の除去および加工歪を利用した結晶粒の成長
を図る条件を設定することが必要である。
History) It is necessary to set conditions to remove processing strain and to grow crystal grains using processing strain.

(■ 加工後の鉄粉形状、粒度を可能な限り維持し、鉄
粉の凝集が実質的に起こらない条件を、設定することが
必要である。これは、フレーク状鉄粉が一般粉末冶金用
鉄粉に比べ凝集しやすく、この凝集が限界周波数を箸し
く低下させてしまうからである。
(■ It is necessary to maintain the iron powder shape and particle size as much as possible after processing, and to set conditions in which iron powder agglomeration does not substantially occur. This is because flaky iron powder is suitable for general powder metallurgy. This is because it aggregates more easily than iron powder, and this aggregation significantly lowers the limit frequency.

ざらに熱処理は非酸化性またはΩ元性雰囲気ドで550
〜850℃で行なうことが必要である。
Rough heat treatment is performed in a non-oxidizing or Ω-based atmosphere at 550 °C.
It is necessary to carry out at a temperature of ~850°C.

550 ’C未満のような低温では、加工歪の除去や結
晶粒の成長が不充分となることが多く、その結果、直流
透磁率が低下してしまう、また加工歪の除去や結晶粒の
成長は、低温においても長時間の保持によってはり詣で
あるが、1又的には有効な焼鈍法とはいえず本発明の目
的に反する。したがって、熱処理温度の下限を550℃
と規定する。
At low temperatures, such as less than 550'C, removal of processing strain and growth of crystal grains are often insufficient, resulting in a decrease in DC permeability. Although this method can be used even at low temperatures by holding it for a long time, it is not an effective annealing method and is contrary to the purpose of the present invention. Therefore, the lower limit of the heat treatment temperature is 550°C.
It is stipulated that

一方、熱処理温度が850℃を越えると、フレーク状鉄
粉が強く凝集し、後工程である解砕によって凝集を解離
させることが事実ト不可崗となり、限界周波数が著しく
低下する。したがって、焼鈍温度の上限を850℃と規
定する。
On the other hand, when the heat treatment temperature exceeds 850° C., the flaky iron powder is strongly agglomerated, and it is virtually impossible to dissociate the agglomeration by crushing, which is a subsequent process, and the limit frequency is significantly lowered. Therefore, the upper limit of the annealing temperature is defined as 850°C.

以上のように条件を設定することではじめて本願発明の
圧粉磁心用フレーク状鉄粉が得られるものである。
Only by setting the conditions as described above can the flaky iron powder for dust cores of the present invention be obtained.

なお当然のことながら、篩分は工程などによって平均粒
径を40〜200ルmに調整することば熱処理後に行っ
てもよい。
As a matter of course, the sieving may be carried out after heat treatment to adjust the average particle size to 40 to 200 m by a process or the like.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例−1 第1表に示す特性を持つミルスケール還元鉄粉(鉄粉A
)およびアトマイズ鉄粉(鉄粉B)を川、I した。鉄
粉A、Bを出発原料とし、乾式アトライタでそれぞれ粉
砕した鉄粉C,Dの特性を第1表に付記する。さらに管
状炉を用い、アンモニア分解ガス(露点20’C)中、
750℃で1時間保持して焼鈍を行ない、得られた焼結
ケーキを解砕し、第2表に示す特性を有する鉄粉E、F
(それぞれC,Dを焼鈍した鉄粉)を得た。
Example-1 Mill scale reduced iron powder (iron powder A) having the characteristics shown in Table 1
) and atomized iron powder (iron powder B) were collected. The characteristics of iron powders C and D, which were ground using a dry attritor using iron powders A and B as starting materials, are listed in Table 1. Furthermore, using a tube furnace, in ammonia decomposition gas (dew point 20'C),
Annealing is performed by holding at 750°C for 1 hour, and the obtained sintered cake is crushed to produce iron powders E and F having the properties shown in Table 2.
(Iron powders obtained by annealing C and D, respectively) were obtained.

試験片は、フレーク状鉄粉にエポキシ樹脂粉末および1
wt%ステアリン酸亜鉛を混合後、7t/cm’の圧力
で外径38mm、内径25mm、高さ6.5 m mの
リング片を金型成形し大気中150℃で1時間の樹脂硬
化処理を行い作製した。
The test piece was made of flaky iron powder, epoxy resin powder and 1
After mixing wt% zinc stearate, a ring piece with an outer diameter of 38 mm, an inner diameter of 25 mm, and a height of 6.5 mm was molded at a pressure of 7 t/cm', and the resin was cured at 150°C in the atmosphere for 1 hour. I made it.

磁気特性は、リング試験片に捲線を施し、インピーダン
スアナライザにより、透磁率の周波数依存性を測定し、
直流透磁率および限界周波数を求めた。
Magnetic properties were determined by winding a ring test piece and measuring the frequency dependence of magnetic permeability using an impedance analyzer.
The DC permeability and limit frequency were determined.

ところで、鉄粉の種類が異なると、添加混合すべき最適
樹脂量が異なるため、樹脂量一定では鉄粉を正当に評価
できない、そこで、一般に使用されている直流透磁率7
5±1になるように樹脂量を調整した時に得られる限界
周波数によって鉄粉の良否を判定する。
By the way, since the optimal amount of resin to be added and mixed differs depending on the type of iron powder, iron powder cannot be properly evaluated with a constant amount of resin.Therefore, the commonly used DC magnetic permeability 7
The quality of the iron powder is determined based on the limit frequency obtained when the resin amount is adjusted to 5±1.

第2表に本実施例の直流透磁率75±1の時の限界周波
数を示す。
Table 2 shows the limit frequencies when the DC magnetic permeability of this example is 75±1.

なお、比較のために電解鉄粉を用いて、同様の試料作製
方法および同様の磁気特性測定方法によって得られる限
界周波数を付記した。
For comparison, the limit frequencies obtained by a similar sample preparation method and a similar magnetic property measurement method using electrolytic iron powder are also noted.

第2表から、出発原料として、還元鉄粉あるいはアトマ
イズ鉄粉を用いて得られるフレーク状鉄粉はいずれも電
解鉄粉より優れていることがわかる。なお還元鉄粉の方
がさらにやや優れている。
From Table 2, it can be seen that flaky iron powder obtained using reduced iron powder or atomized iron powder as a starting material is superior to electrolytic iron powder. Note that reduced iron powder is even slightly better.

以下の実施例および比較例におけるリング状試験片作製
方法および限界周波数測定方法は同じである。
The method for producing a ring-shaped test piece and the method for measuring the limit frequency in the following Examples and Comparative Examples are the same.

実施例−2 出発原$4Bを用い、実施例1と熱処理条件以外は同様
にして酸素量の異なるフレーク状鉄粉を作製した。ここ
で用いた熱処理条件と実施例工のそれとの違いは1保持
時間だけである。得られた本発明および比較用の鉄粉の
性状および限界周波数の値を第3表に示す。
Example 2 Using the starting material $4B, flaky iron powder with different amounts of oxygen was produced in the same manner as in Example 1 except for the heat treatment conditions. The difference between the heat treatment conditions used here and those of the example process is only one holding time. Table 3 shows the properties and limit frequency values of the obtained iron powders of the present invention and for comparison.

比較例で酸素rI3:がO,l 2 w t%の時、直
流透磁率を75±1に調整するために他より樹脂績を増
やしたが、その鉄粉量絶縁性の劣悪さのために限界周波
数が低い。
In the comparative example, when the oxygen rI3: was O, l 2 wt%, the amount of resin was increased compared to the others in order to adjust the DC permeability to 75 ± 1, but due to the poor insulation properties of the iron powder. The limit frequency is low.

酸素1間が0.58 w t%の場合、圧縮性が低すぎ
、直流透磁率が75±1に達しなかった。
When the oxygen concentration was 0.58 wt%, the compressibility was too low and the DC permeability did not reach 75±1.

第3表 (注)本限界周波数の測定不能 実施例−3 見掛密度2.53 g 7’ c m’、セ均78gm
のミルスケール還元粉を乾式撮動ボールミルを用い、種
々の時間処理した、 以ド実施例1と同様のL順で平均アスペクト比の異なる
木51明および比較用のフレーク状鉄粉をfl製した。
Table 3 (Note) Example of unmeasurable limit frequency - 3 Apparent density 2.53 g 7'cm', average density 78 gm
The mill scale reduced powder was processed for various times using a dry photographing ball mill, and wood 51 light and comparative flaky iron powder with different average aspect ratios were produced in the same L order as in Example 1. .

その性状および限界周波数を第3表に!+<す・ 平均アスペクト比が3の鉄粉については、有効反磁界が
大きく、樹脂を多く添加することができないために限界
周波数は低い。
Its properties and limit frequencies are shown in Table 3! +<S・ For iron powder with an average aspect ratio of 3, the effective demagnetizing field is large and a large amount of resin cannot be added, so the limit frequency is low.

一方、平均アスペクト比が30の鉄粉は、未発明に比へ
樹脂を多く添加することができZ、ものの、その鉄粉量
接触断面積が大きすぎ、有効に絶縁することができない
、その結果、限界周波数が極端に低下している。
On the other hand, iron powder with an average aspect ratio of 30 can have a large amount of resin added to it, but the cross-sectional area of contact with the iron powder is too large and cannot be effectively insulated. , the limit frequency is extremely low.

実施例−4 見掛密度2.75 g / crnj、  ’l”均粒
径120 Jimの口元鉄粉を用い、実施例1と同様に
してフレーク状鉄粉を製造した後、篩分けによって平均
粒径の異なるフレーク状鉄粉を得た。
Example 4 Flaky iron powder was produced in the same manner as in Example 1 using iron powder with an apparent density of 2.75 g/crnj and an average particle diameter of 120 Jim, and then sieved to reduce the average particle size. Flake-like iron powder with different diameters was obtained.

平均粒径の異なる本発明および比較用の鉄粉の性状およ
び限界周波数の値を第3表に示す。
Table 3 shows the properties and limit frequency values of iron powders of the present invention and comparative iron powders having different average particle diameters.

平均粒径22gmのフレーク状鉄粉は、圧縮性が低いう
え、有効反磁界が大きく、直流透磁率75±1を得るた
めにはiとんど樹脂を添加できなかった。その結果、限
界周波数は未発明に比べ低くなっている。
Flake-like iron powder with an average particle size of 22 gm has low compressibility and a large effective demagnetizing field, so that almost no resin could be added to obtain a DC permeability of 75±1. As a result, the limit frequency is lower than that without invention.

平均粒径189ALmのフレーク状鉄粉については、直
流透磁率調整用に、本発明の鉄粉より多く樹脂を添加し
たにもかかわらず、限界周波数は極端に低くなっている
。これは、大きな鉄粉については、渦電流損の大半は各
鉄粉粒子内を流れるものの寄生であり、粒子間絶縁の強
化の効果が小さいことに起因している。
Regarding the flaky iron powder with an average particle size of 189 ALm, the limit frequency is extremely low even though more resin was added than the iron powder of the present invention for DC permeability adjustment. This is because, for large iron powders, most of the eddy current loss is due to parasitic currents flowing within each iron powder particle, and the effect of strengthening interparticle insulation is small.

実施例−5 実施例−1の途中で得られる粉砕処理のみを行なった鉄
粉Cについて、H2ガス中で種々の温度で焼鈍し、以下
実施例1と同様の処理を行い、第4表に示す性状および
限界周波数を持つ本発明および比較用のフレーク状鉄粉
を得た。
Example-5 Iron powder C obtained in the middle of Example-1 and subjected to only pulverization treatment was annealed at various temperatures in H2 gas, and then subjected to the same treatment as in Example 1, and the results are shown in Table 4. Flaky iron powders of the present invention and for comparison were obtained having the properties and limit frequencies shown below.

900℃で焼鈍した場合、あまりに強く焼結してしまい
1強く解砕しても平均アスペクト比を規定しうるほどの
フレーク状鉄粉が得られなかったが、いずれにせよ、限
界周波数は極端に低い。
When annealing at 900°C, sintering was so strong that flaky iron powder could not be obtained to the extent that the average aspect ratio could be determined even by crushing it strongly. low.

一方、500 ’Cで焼鈍した場合、加丁歪が残ってい
ることや、結晶粒の成長が不充分なため、直流透磁率調
整用にほとんど樹脂を添加することができず、その結果
限界周波数は極端に低下している。
On the other hand, when annealing at 500'C, almost no resin can be added to adjust the DC magnetic permeability due to residual cutting strain and insufficient growth of crystal grains, resulting in the limit frequency has declined extremely.

〔発明の効果〕〔Effect of the invention〕

本発明により、高飽和磁束密度、高透磁率および良lI
fな周波数特性を要求される圧粉磁心、例えば、リアク
トル・コア、ノイズフィルタなどの原料として、現在最
も一般に使用されている電解鉄粉と比較して、特性的に
も優れ、低コストのフレーク状鉄粉を得ることができた
The present invention provides high saturation magnetic flux density, high permeability and good lI
Compared to electrolytic iron powder, which is currently most commonly used as a raw material for powder magnetic cores that require high frequency characteristics, such as reactor cores and noise filters, flakes have superior characteristics and are lower in cost. We were able to obtain iron powder.

Claims (1)

【特許請求の範囲】 1 酸素0.15〜0.5wt%を含み残部が不可避的
不純物とFeからなり、平均粒径が40〜170μmの
範囲にあり、かつ平均アスペクト比が4〜25の範囲に
ある圧粉磁心用鉄粉。 2 還元鉄粉、アトマイズ鉄粉またはその混合物を平均
粒径40〜170μm、平均アスペクト比4〜25に加
工すると共に、非酸化性または還元性雰囲気下550〜
850℃で熱処理し酸素量を調整することを特徴とする
圧粉磁心用フレーク状鉄粉の製造方法。
[Claims] 1. Contains 0.15 to 0.5 wt% of oxygen, the remainder consists of unavoidable impurities and Fe, has an average particle size in the range of 40 to 170 μm, and has an average aspect ratio in the range of 4 to 25. Iron powder for powder magnetic cores. 2. Process reduced iron powder, atomized iron powder, or a mixture thereof to have an average particle size of 40 to 170 μm and an average aspect ratio of 4 to 25, and process it under a non-oxidizing or reducing atmosphere to
A method for producing flaky iron powder for powder magnetic cores, which comprises heat-treating at 850°C and adjusting the amount of oxygen.
JP60211104A 1985-09-26 1985-09-26 Iron powder for magnetic dust core used at high frequency and manufacture thereof Pending JPS6272102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211104A JPS6272102A (en) 1985-09-26 1985-09-26 Iron powder for magnetic dust core used at high frequency and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211104A JPS6272102A (en) 1985-09-26 1985-09-26 Iron powder for magnetic dust core used at high frequency and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6272102A true JPS6272102A (en) 1987-04-02

Family

ID=16600472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211104A Pending JPS6272102A (en) 1985-09-26 1985-09-26 Iron powder for magnetic dust core used at high frequency and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6272102A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800636A (en) * 1996-01-16 1998-09-01 Tdk Corporation Dust core, iron powder therefor and method of making
JP2002289417A (en) * 2001-01-18 2002-10-04 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic device, and its manufacturing method
CN102319895A (en) * 2011-10-12 2012-01-18 长沙市杰冠电子科技有限公司 Clad powder for powdered iron core and preparation process for clad powder
WO2014185443A1 (en) * 2013-05-16 2014-11-20 山陽特殊製鋼株式会社 Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
JP2015026749A (en) * 2013-07-27 2015-02-05 株式会社豊田中央研究所 Soft magnetic powder, powder-compact magnetic core, and soft magnetic alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800636A (en) * 1996-01-16 1998-09-01 Tdk Corporation Dust core, iron powder therefor and method of making
JP2002289417A (en) * 2001-01-18 2002-10-04 Matsushita Electric Ind Co Ltd Composite magnetic material, magnetic device, and its manufacturing method
JP4701531B2 (en) * 2001-01-18 2011-06-15 パナソニック株式会社 Dust core
CN102319895A (en) * 2011-10-12 2012-01-18 长沙市杰冠电子科技有限公司 Clad powder for powdered iron core and preparation process for clad powder
WO2014185443A1 (en) * 2013-05-16 2014-11-20 山陽特殊製鋼株式会社 Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
JP2014225548A (en) * 2013-05-16 2014-12-04 山陽特殊製鋼株式会社 Soft magnetic flat powder for magnetic sheet having high magnetic permeability excellent in smoothness on sheet surface, magnetic sheet using the same, and method of manufacturing soft magnetic flat powder
CN105122390A (en) * 2013-05-16 2015-12-02 山阳特殊制钢株式会社 Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
JP2015026749A (en) * 2013-07-27 2015-02-05 株式会社豊田中央研究所 Soft magnetic powder, powder-compact magnetic core, and soft magnetic alloy

Similar Documents

Publication Publication Date Title
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
KR100531253B1 (en) Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
US7371271B2 (en) Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
JP2001011563A (en) Manufacture of composite magnetic material
US5382303A (en) Permanent magnets and methods for their fabrication
CN111816401A (en) Method for producing flat soft magnetic powder
EP3689825A1 (en) Mn-zn ferrite particles, resin molded body, soft magnetic mixed powder, and magnetic core
JPWO2019123681A1 (en) MnCoZn ferrite and method for producing the same
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
JPS6272102A (en) Iron powder for magnetic dust core used at high frequency and manufacture thereof
JPS6181606A (en) Preparation of rare earth magnet
JP2003109810A (en) Dust core and its manufacturing method
JPH07211531A (en) Manufacture of powder magnetic core
JPS62250607A (en) Manufacture of fe-si-al alloy dust core
JPH0734183A (en) Composite dust core material and its production
JPH06204021A (en) Composite magnetic material and its manufacture
JP2001107104A (en) High permeability iron-base magnetic metal powder for powder magnetic core
JPH08104563A (en) High magnetic permeability manganese-zinc ferrite and its production
JP2003124016A (en) Magnetic material for noise countermeasure and its manufacturing method
JPH0149762B2 (en)
CN117383924B (en) Wide-band high-impedance high-permeability manganese-zinc soft magnetic ferrite and preparation method thereof
JPH08236331A (en) Iron powder for high-frequency dust core and its manufacture
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JPH11329821A (en) Dust core and manufacture thereof