JPS6271855A - Defect detecting method for turbine rotor - Google Patents

Defect detecting method for turbine rotor

Info

Publication number
JPS6271855A
JPS6271855A JP60213071A JP21307185A JPS6271855A JP S6271855 A JPS6271855 A JP S6271855A JP 60213071 A JP60213071 A JP 60213071A JP 21307185 A JP21307185 A JP 21307185A JP S6271855 A JPS6271855 A JP S6271855A
Authority
JP
Japan
Prior art keywords
rotor
turbine rotor
signal
cooling
center hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213071A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saito
潔 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60213071A priority Critical patent/JPS6271855A/en
Publication of JPS6271855A publication Critical patent/JPS6271855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Abstract

PURPOSE:To detect a harmful defect in a stationary state safely with high precision by cooling the center part of a rotor, heating the outer peripheral part and generating a tensile stress distribution at the center part of the rotor, and detecting an AE signal from the defect part. CONSTITUTION:Cooling pipes 4a and 4b transport cooling oil for cooling the center hole 1b of the turbine rotor 1. A high frequency coil 7 for heating is wound around the rotor 1 and plural temperature detectors 9 composed of a thermocouple, etc., are fitted on the surface of the hole 1b and the outer periphery of the rotor 1. Plural resonance type AE sensors 11 and wide-band AE sensors 12 for position evaluation are arranged nearby both ends of the rotor 1 and connected to an AE signal analyzing device 13. The sensors 11 and 12 detect and send AE signals to the device 13 for a specific period from the start of heating. The device 13 reads the difference in the rise starting time of the signal from the sensor 11 to evaluate a signal generation position and analyzes the frequency and energy of the signal from the sensor 12 to evaluate the position and degree of the harmful defect.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は蒸気タービンやガスタービン等のタービンロー
タの欠陥検出方法に係わり、特に応力負荷状君での欠陥
を正確に検出できるタービンロータの欠陥検出方法に関
する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a method for detecting defects in a turbine rotor of a steam turbine, a gas turbine, etc., and in particular, a method for detecting defects in a turbine rotor that can accurately detect defects under stress load conditions. Regarding the method.

〔発明の技術的背mとその問題点〕[Technical background of the invention and its problems]

蒸気タービンやガスタービン等のタービンロータは高速
回転状態で使用されるので、ロータ中心部には遠心力に
よる大きな引張応力が作用する。
Since turbine rotors such as steam turbines and gas turbines are used at high speeds, large tensile stress due to centrifugal force acts on the center of the rotor.

また、タービンロータの中心孔周辺ではロータの素材製
造時に生じるMnS等の介在物が集中し易く、この介在
物と母材との剥離により亀?Jが発生するおそれがある
In addition, inclusions such as MnS, which are generated during the manufacture of rotor materials, tend to concentrate around the center hole of the turbine rotor, and peeling of these inclusions from the base material can cause cracks. J may occur.

タービンロータに一旦亀裂が発生すると、この亀裂は短
期間のうち急速に伸展し、最終的にはロータの飛散等と
いう大事故につながる危険性がある。
Once a crack occurs in a turbine rotor, this crack will rapidly propagate within a short period of time, and there is a danger that it will eventually lead to a major accident such as the rotor flying off.

このような重大事故を未然に防止するためにタービンロ
ー夕の製造過程および供用中の定期検査時に超音波探傷
、4a粉探傷、浸透探傷等の各種非破壊検査が実施され
ている。しかしながら、これらの非破壊検査はある程度
の人きざを右する欠陥の有無とその位δを検出するには
有効であるが、欠陥の形状や性状を精度よく検知できな
いという欠点がある。また応力の負荷されない静的な状
態での検査であるため、稼働中に有害な作用をもたらす
欠陥か否かを評価するには不充分である。
In order to prevent such serious accidents, various non-destructive tests such as ultrasonic flaw detection, 4A powder flaw detection, and penetrant flaw detection are carried out during the manufacturing process of turbine rotors and during periodic inspections during service. However, although these non-destructive inspections are effective in detecting the presence or absence of defects that cause injuries to a certain extent and the extent δ thereof, they have the disadvantage that they cannot accurately detect the shape and properties of defects. Furthermore, since the inspection is performed in a static state without any stress being applied, it is insufficient to evaluate whether or not the defect causes harmful effects during operation.

そのため、予防保全の立場からタービンロータの稼働中
、あるいは供用中の定期検査時の回転試験のように応力
の加わった状態寸なわち動的状態において欠陥の挙動を
監視し、欠陥の有害度を評価する方法の1月発が望まれ
ていた。
Therefore, from the viewpoint of preventive maintenance, the behavior of defects is monitored during the operation of the turbine rotor or during rotational tests during regular inspections during service, where stress is applied, that is, in dynamic conditions, and the harmfulness of the defects is evaluated. It was hoped that the evaluation method would be published in January.

二の動的状態における欠陥の評価法として、欠陥からの
音響放出(以下、八Eという)をへEセンサーで検出す
るAE法を適用した欠陥の監視法あるいは有害欠陥の評
価法が提案されている(例えば特開昭59−19332
9)。
As a method for evaluating defects in the second dynamic state, a method for monitoring defects or evaluating harmful defects has been proposed that applies the AE method to detect acoustic emissions from defects (hereinafter referred to as 8E) using an E sensor. (For example, Japanese Patent Application Laid-Open No. 59-19332
9).

この方法は第6図に示すように、タービンロータ1のバ
ランスウェイト挿入溝1aの適宜箇所に送信器付きのA
Eセンサー2を複数個取り付け、定期検査時の動的釣合
試験に際してタービン0−タ1を定格速度または過速度
で高速回転さけた時のAE低信号検出し、これを信号処
理回路3で演算(ることにより、有害な欠陥からの亀裂
発生を監視するとともにタービンロータ材の健全性を評
価するものである。
In this method, as shown in FIG.
Multiple E sensors 2 are installed to detect low AE signals when the turbine 0-1 is rotated at rated speed or overspeed during a dynamic balance test during periodic inspections, and this is calculated by the signal processing circuit 3. (By doing so, it is possible to monitor the occurrence of cracks due to harmful defects and to evaluate the integrity of the turbine rotor material.)

しかしながら、この方法は次のような欠点を有しIいる
。第1に、タービンロータを高速回転させながらAE低
信号検出するため、有害な欠陥から亀裂が発生した場合
、それがQ速に進展し、0−タが飛散する危険性がある
という点である。もちろん動的釣合試験ではタービンロ
ータ材の脆性破壊を防止するため、供試タービンロータ
をそのロータ材の延性脆性遷移′/Q度以上に加熱した
上で回転上昇させる等の処置を施しているが、長詩間使
用されたタービンロー夕では経年的な脆化によって遷移
温度が上昇している場合があり、このような状況では通
常の加熱温度は脆性破壊を起こす温度域になる。また、
たとえ遷移温度以上に力1熱することによって脆性破壊
をせずに延性破壊Jる温度域にあったとしても、延性不
安定1tl[LP現↑によって、有害な欠陥から発生し
た亀裂が急速に大ぎな寸法まで進展し、ロータの飛散に
は到らないまでもロータとして補修不可能な状態に陥る
おそれがある。
However, this method has the following drawbacks. First, since low AE signals are detected while the turbine rotor is rotating at high speed, if a crack develops from a harmful defect, it will progress to Q speed and there is a risk that the zero rotor will fly off. . Of course, in the dynamic balance test, in order to prevent brittle fracture of the turbine rotor material, measures such as heating the test turbine rotor to a temperature above the ductile-brittle transition '/Q degree of the rotor material and increasing the rotation speed are taken. However, in turbine rotors that have been used for a long period of time, the transition temperature may have increased due to embrittlement over time, and in such situations, the normal heating temperature falls within the temperature range that causes brittle fracture. Also,
Even if the temperature is in a temperature range where heating force 1 above the transition temperature causes ductile fracture without brittle fracture, cracks generated from harmful defects can rapidly grow due to ductile instability 1tl [LP current ↑]. Even if the rotor does not fly off, there is a risk that the rotor will be in a state where it cannot be repaired.

第2に、回転中のAE低信号検出するため、情受部の摩
涼等に基因するノイズの発生が大きいと、欠陥からの亀
裂に伴う微弱な信号を分1!1tするのが困難であり、
そのため有害な欠陥の検出精度が著しく低下するという
欠点がある。
Second, since the AE low signal is detected during rotation, if there is a large amount of noise caused by the cooling of the sensing part, it is difficult to isolate the weak signal caused by cracks from defects. can be,
Therefore, there is a drawback that the detection accuracy of harmful defects is significantly reduced.

第3に、AFセンサーを回転体に取付けるため、AE低
信号FMテレメータ等を用いた無線搬送法によって信号
処理に置に導く必要がある。従来、FMテレメータはタ
ービン翼の振動応力等、数10に82以下の比較的低周
波域での信号搬送に広く使われており実績らあるが、A
E低信号ように数100KH2〜数MH7の高周波信号
を搬送するものは非常に9洒であり、しからS/N比、
周波数特性等の諸性性が格段に低下するため、信号検出
のIS頼性が低下するという欠点がある。
Thirdly, since the AF sensor is attached to a rotating body, it is necessary to guide the signal processing by a wireless transmission method using an AE low signal FM telemeter or the like. Conventionally, FM telemeters have been widely used and have a proven track record in transmitting signals in the relatively low frequency range of 82 or less, such as vibration stress on turbine blades.
Those that carry high frequency signals of several 100KH2 to several MH7, such as E-low signals, are very 9s, and the S/N ratio,
Since various properties such as frequency characteristics are significantly degraded, there is a drawback that IS reliability of signal detection is degraded.

〔発明の目的〕[Purpose of the invention]

本発明は背景技術にお【ノる上述のごとき欠点を除去す
べくなされたもので、タービンロータを静止させた状態
で、安全かつ高精度に有害な欠陥を検出し得るタービン
ロータの欠陥検出方法を提供することを目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks in the background art, and is a method for detecting defects in a turbine rotor that can safely and accurately detect harmful defects while the turbine rotor is stationary. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明のタービン0−夕の欠陥検出方法は、上述の目的
を達成するため、タービンロータのロータ内心部を冷!
jl L、、外周部を加熱することによりロータ中心部
に甲張応力分作を発生さIiながら、欠陥部から放出さ
れるAE倍信号タービンロータにW−付けた複数個のA
Et?ン÷ノーによって検出し、信号処理を行って有害
欠陥の有無と位置を判別ツることを特徴とするものであ
る。この時、ロータ中心部の応力分布は、温度検出器で
検出されるロータ内外面の温度差を制御することにより
、実機稼動状態におけると同笠の大きさに制御される。
In order to achieve the above-mentioned object, the method for detecting a defect in a turbine rotor according to the present invention cools the inner core of the turbine rotor.
jl L,, by heating the outer periphery, a tensile stress distribution is generated in the center of the rotor.
Et? It is characterized by detecting the presence of a harmful defect and determining its location by performing signal processing. At this time, the stress distribution at the center of the rotor is controlled to the same magnitude as in the actual operating state by controlling the temperature difference between the inner and outer surfaces of the rotor detected by a temperature detector.

、  このように、本発明は実機稼動状態を模擬した状
態でタービンロータ内の欠陥部の挙動を監視し・、有害
麿の評価および有害欠陥の検出を行うものである。
As described above, the present invention monitors the behavior of defective parts in the turbine rotor in a state simulating the operating state of an actual machine, and evaluates harmful defects and detects harmful defects.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図においで、タービンロータ1のロータ中心部に透
設された中心孔1bの両端には冷却用バイブ4a、4b
が連結されている。これらの冷却用バイブ4a、4bは
り〜ビンロータ1の中心孔1bを冷jJlするための冷
却油を運ぶしのであり、それらのII!! 帽側はオイ
ルポンプ5およσ熱交換器Cを介して連結され、閉ルー
プを構成している。
In FIG. 1, cooling vibes 4a, 4b are installed at both ends of a center hole 1b provided through the center of the rotor of the turbine rotor 1.
are connected. These cooling vibes 4a, 4b are used to carry cooling oil for cooling the center hole 1b of the bottle rotor 1, and these II! ! The cap side is connected via the oil pump 5 and the σ heat exchanger C, forming a closed loop.

熱交換器6には冷却水バイブロa、6bが接続され、熱
交換器6内の一次側を流れる冷IJ1油との間で熱交換
を行う二次側冷7Jl水が流れている。
Cooling water vibros a and 6b are connected to the heat exchanger 6, and secondary cold 7Jl water is flowing therethrough to exchange heat with cold IJ1 oil flowing on the primary side of the heat exchanger 6.

タービンロータ1の外側には高周波コイル7が分す;し
て巻かれており、それぞれの両端は高周波電源8に接続
されている。また、タービンロータの中心孔1bの表面
およびタービンロータの外周には熱雷対等からなる温度
検出器9が複数個ずつ取り付けられている。これらの温
度検出器9及び高周波電源8は温度コントローラ10に
接続されている。
A high frequency coil 7 is wound on the outside of the turbine rotor 1 in sections, and both ends of each coil are connected to a high frequency power source 8. Further, a plurality of temperature detectors 9 each made of a thermal lightning pair are attached to the surface of the center hole 1b of the turbine rotor and the outer periphery of the turbine rotor. These temperature detector 9 and high frequency power source 8 are connected to a temperature controller 10.

タービンロータ1の両端近傍にはAE信号検出用のAE
tン(、J−11,12が設置されている。
Near both ends of the turbine rotor 1 are AE for AE signal detection.
J-11 and J-12 are installed.

A E tンナーには2種類があり、1つは位置評定用
の共振型AEセンサーであり、他は広帯1aAEセンサ
ー12である。これらのAEセセンーーは複a個ずつ設
置されており、各はンリ−−11,12からのリード線
はAE信号解析装置13へ接続されている。
There are two types of AE sensors: one is a resonant AE sensor for position estimation, and the other is a broadband 1a AE sensor 12. A plurality of these AE sensors are installed, and the lead wires from the sensors 11 and 12 of each are connected to the AE signal analyzer 13.

上述のように構成したタービンロータの欠陥検出装置に
J3いて、オイルポンプ5がら送り出された冷却油は冷
却用バイブ4aから中心孔1b内を矢符14方向に流れ
、ロータ中心部を冷月1シた後、冷却用バイア4bを通
って熱交IIJ!器6に戻る。また熱交換器6では冷却
水バイブロaから供給される冷却水によって冷却油は約
20℃に冷甜され、オイルポンプ5で加圧され再びロー
タの中心孔1b内に送°うれる。このような冷却油の循
環によってロータ中心部は約20℃に保たれる。
In the turbine rotor defect detection device J3 configured as described above, the cooling oil sent out from the oil pump 5 flows from the cooling vibe 4a through the center hole 1b in the direction of arrow 14, and passes through the center of the rotor through the cold moon 1. After cooling, the heat exchanger IIJ! passes through the cooling via 4b! Return to vessel 6. In the heat exchanger 6, the cooling oil is cooled to about 20° C. by the cooling water supplied from the cooling water vibro a, pressurized by the oil pump 5, and sent into the center hole 1b of the rotor again. By circulating the cooling oil in this manner, the center of the rotor is maintained at about 20°C.

一方、高周波コイル7は高周波電Δ≦18から高周波電
流を供給され、誘尋加熱によってタービンロータ1を加
熱する。タービンロータの中心孔1b及び外周部の温度
Get温度検出器9によって検出され、その出力電圧は
温度コントローラ′10へ導かれる。温度コン!−ロー
ラ10はロータ中心部と外周部の温度差が復述する設定
値−「1になるように高周波を源8の電流を制御する。
On the other hand, the high frequency coil 7 is supplied with a high frequency current from the high frequency electric current Δ≦18, and heats the turbine rotor 1 by induction heating. The temperature of the center hole 1b and the outer circumference of the turbine rotor is detected by the Get temperature sensor 9, and its output voltage is guided to the temperature controller '10. Temperature control! - The roller 10 controls the current of the high frequency source 8 so that the temperature difference between the center and the outer circumference of the rotor becomes 1, which will be described in detail below.

第2図は加熱開始後におけるタービンロータ1内A面の
温度の経時変化を示したちので、15はロータ中心部の
温度変化を、16は外周部の温度変化の様子を示す。ロ
ータ中心部の温度はほぼ一定であるのに対し、外周部の
温度は加熱開始直後から上背を始め、温度差の設定値T
1まで上背する。外lp部温良が設定bllJ T 1
に達づるど加熱は中1トされ、外周部の4度は次第に低
下する。
FIG. 2 shows the change in temperature of the inner surface A of the turbine rotor 1 over time after the start of heating, so 15 shows the temperature change in the center of the rotor, and 16 shows the temperature change in the outer peripheral part. While the temperature at the center of the rotor is almost constant, the temperature at the outer periphery starts from the upper back immediately after heating starts, and the temperature difference is set at T
Back up to 1. Outside lp section Atsura set bllJ T 1
Once the temperature is reached, the heating is reduced to medium 1, and the temperature at the outer periphery gradually decreases to 4 degrees.

設定(il’l T 1は中心孔1bの表面の熱応力が
120%となるオーバスピード哨の遠心力によるタービ
ンロータ中心孔1bの入面応力と等しくなる115の温
度差であり、次のようにして決定される。
Setting (il'l T 1 is a temperature difference of 115 that is equal to the entrance stress of the turbine rotor center hole 1b due to the centrifugal force of the overspeed guard, which makes the thermal stress on the surface of the center hole 1b 120%, and is as follows. It is determined by

一般にロータ中心部の熱応力分布はロータ中心部と外周
部の温度差に依存し、温度差が大きいほど熱応力ら大き
くなる。
Generally, the thermal stress distribution at the rotor center depends on the temperature difference between the rotor center and the outer circumference, and the larger the temperature difference, the greater the thermal stress.

第3図の曲線17は実施例のタービンロータについてF
EM解析の結果得られたタービンロータ中心孔1b表面
の接線方向熱応力σと、ロータ中心部と外周部の温度差
との関係を示1ちので、温度差Tの増加に伴ってロータ
中心部表面の接線方向熱応力σ、)増加している。図中
のσ1は本実施例のタービンロータが120%オーバー
スピードで回転している時の遠心力によるロータ円周方
向の引張応力5)布の最大値であり、σ1に対応する値
としてロータ内外面の設定値T1が決定される。
Curve 17 in FIG. 3 is F for the turbine rotor of the example.
The relationship between the tangential thermal stress σ on the surface of the turbine rotor center hole 1b obtained as a result of EM analysis and the temperature difference between the rotor center and the outer circumference is shown below. The tangential thermal stress on the surface σ,) is increasing. σ1 in the figure is the maximum value of the tensile stress in the rotor circumferential direction due to centrifugal force when the turbine rotor of this example is rotating at 120% overspeed. A set value T1 for the outer surface is determined.

第・1図はこの時のロータ断面での接線方向の応711
 >)布を示したもので、18が熱応力分布、19が遠
心力による応力分布を示づ一0遠心力による応力分布1
9は中心孔1bの表面で最大値σ1を持!5、外周部に
向かって徐々に減少しているが、外周部表面におい了も
引張状態となっている。一方、だ・応力分布18は中心
孔1bの表面で最大値σ1を1.1ち、中心孔1b近傍
では遠心力にJ:る応力と同様に徐々に減少しているが
、外周部に近ずくにつ几て急濫に減少し、タービンロー
タの外周部近傍では1f縮応力になっている。
Figure 1 shows the tangential response 711 in the rotor cross section at this time.
>) Shows the cloth, 18 shows the thermal stress distribution, 19 shows the stress distribution due to centrifugal force, 10 shows the stress distribution due to centrifugal force 1
9 has the maximum value σ1 on the surface of the center hole 1b! 5. Although it gradually decreases toward the outer periphery, the odor on the outer periphery surface is also in a tensile state. On the other hand, the stress distribution 18 has a maximum value σ1 of 1.1 on the surface of the center hole 1b, and it gradually decreases near the center hole 1b, similar to the stress caused by centrifugal force, but near the outer periphery The stress gradually decreases and becomes 1f compressive stress near the outer periphery of the turbine rotor.

第5図はタービンロータ外周部の加熱を開始した以後の
中心孔1b表面の接線方向熱応力σの経時窒化を示り゛
もので、第2図と第3図の結果から導かれる。応力σは
加熱開始後上昇し、時間t1において最大応力σ1に達
し、以後はゆるやかに減少する。タービン[1−夕に設
置されたAEセンサー11.12は加熱を開始してから
tlまでの11り、AU信2;を検出して△11信号解
析装置13に送る。
FIG. 5 shows the nitridation of the tangential thermal stress σ on the surface of the center hole 1b over time after the heating of the outer circumference of the turbine rotor is started, which is derived from the results shown in FIGS. 2 and 3. The stress σ increases after the start of heating, reaches the maximum stress σ1 at time t1, and then gradually decreases. The AE sensor 11.12 installed at the turbine [1-t1] detects the AU signal 2 from the start of heating to tl and sends it to the Δ11 signal analyzer 13.

l\[化号解析装買13では、AE低信号増幅した後、
各センサー毎に次の解析を行う。まず共振型Δ[L?ン
+) −11からの信号については、供試ロータの左右
に設置したセンサー11からの信号の立−Lり開始時間
の差を読み取ることによって信号の発生位置を評定する
。また、広帯域AEセンナ−12からの信号については
、周波数解析及び15号エネルギーの解析を行い、それ
らの結果から有害な欠陥の位n及びその有害度が評価さ
れる。
l\[In the code analysis equipment 13, after amplifying the AE low signal,
Perform the following analysis for each sensor. First, resonance type Δ[L? Regarding the signal from +)-11, the position of the signal is evaluated by reading the difference in the start time of the rising and falling signals from the sensors 11 installed on the left and right sides of the test rotor. Further, the signal from the wideband AE sensor 12 is subjected to frequency analysis and No. 15 energy analysis, and from the results, the number n of harmful defects and their degree of harmfulness are evaluated.

次に実施例のり、°果を述べる。Next, the results of the examples will be described.

第4図に示づように、タービンロータの中心孔1b近傍
の応力は遠心力によるものと熱応力によるものとがほぼ
等しくなっている。従って、実へ稼動状態で破壊をもた
らす可能性のある中心孔1b表面近傍に存在する欠陥に
ついて、その有害度を実機稼動状態と同等な条件で評価
できる。しかし熱応力はタービンロータの外周部では圧
縮になっているので、たとえ中心孔1b近傍の欠陥を起
工”、(とじて脆性破壊が発生したとしても、亀裂は圧
縮応力の部分で進展を停止するので、ロータ全体が破1
0することはなく、安全である。またロータ中心部を常
温に保ったまま応力を負荷するので、欠陥の有害度を回
転試験時よりも厳しい条件下で評:I+ cきる。さら
にハ、E信号は無線を使わずに直接ハ、E信S)解栢装
置13に伝達できるので、粘度の高い信号処理および解
析が可能となる。まtご、ロータを静止させた状態で3
1測するのて・回転にともなう擦れ等の霜名の梵(1が
なく、微細な信号も検出でさ、高精度の欠陥検出が可能
である。
As shown in FIG. 4, the stresses near the center hole 1b of the turbine rotor are caused by centrifugal force and by thermal stress, which are almost equal. Therefore, the degree of harmfulness of defects existing in the vicinity of the surface of the center hole 1b, which may cause damage to the machine in the operating state, can be evaluated under conditions equivalent to those in the actual machine operating state. However, the thermal stress is compressive at the outer periphery of the turbine rotor, so even if a brittle fracture occurs due to a defect near the center hole 1b, the crack will stop growing at the compressive stress area. Therefore, the entire rotor is damaged.
It will never go to 0 and is safe. In addition, since stress is applied while keeping the center of the rotor at room temperature, the degree of damage caused by defects can be evaluated under harsher conditions than during the rotation test. Furthermore, since the E signal can be directly transmitted to the cracking device 13 without using radio, highly viscous signal processing and analysis becomes possible. 3 with the rotor stationary
It is possible to detect defects with high accuracy by detecting minute signals without any defects such as scratches caused by rotation.

なお、木発す)の伯の実施例として、例えば中心孔の冷
!Jl媒体としては曲以外のものを用いてもJ、く、ま
たタービンロータの外周部を加熱する方法としては高温
蒸気等を用いても効果は同様である。
In addition, as an example of Haku of wood origin, for example, the cold of the center hole! The same effect can be obtained even if a medium other than a tune is used as the Jl medium, and high temperature steam or the like is used as a method of heating the outer circumference of the turbine rotor.

また欠陥の有害度を評価する手法として上述の実施例で
は周波数解析を採用しているが、AEイベン1−発生率
など材料に適した他の手法を用いでらよい。
Further, although frequency analysis is employed in the above embodiment as a method for evaluating the degree of harmfulness of defects, other methods suitable for the material, such as AE event 1-incidence rate, may be used.

〔発明の効果) 以、I−述べたJζうに本発明によれば、実機稼動状態
と開基の応力を負荷した状態を静止状態において実現で
き、有害な欠陥を高精度でしかも安全に検出することが
できる。
[Effects of the Invention] According to the present invention, it is possible to realize the operating state of the actual machine and the state where the stress of the open base is applied in the stationary state, and to detect harmful defects with high precision and safely. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方?ムの実施例を示す説明図、第2図
はタービンロータの内外面温度の粁「!1変化を示1グ
ラフ、第3図は本実施例のタービンロータ中心孔におけ
る最大応力とロータ内外面の温度差との関係を示すグラ
フ、第4図はロータ断面における応力分布を示ずグラフ
、第5図は中心孔の内面応力の経時変化を示すグラフ、
第6図は従来のタービンロータの欠陥検出方法を説明す
る説明図である。 1・・・タービンロータ、1b・・・中心孔、2.11
゜12 ・・・Δ111ンサー、4a、4b・・・冷2
JI川パフ1゛フ、5・・・オイ゛ルポンブ、6・・・
熱交換器、l・・・、α周波コイル、8・・・高周波電
源、9・・・A度検出器、10・・・温1身コン1〜ロ
ーラ、13・・・AEIΔg解析装置。 出願人代理人  佐 藤  −雄 第2図 0  ロータ中心部と外周部の温度差T婉 3 図
Is Figure 1 the one of the present invention? Fig. 2 is an explanatory diagram showing an embodiment of the turbine rotor. Fig. 2 is a graph showing the change in the temperature of the inner and outer surfaces of the turbine rotor. A graph showing the relationship with temperature difference, FIG. 4 is a graph that does not show the stress distribution in the rotor cross section, and FIG. 5 is a graph showing the change in internal stress of the center hole over time.
FIG. 6 is an explanatory diagram illustrating a conventional turbine rotor defect detection method. 1... Turbine rotor, 1b... Center hole, 2.11
゜12...Δ111 sensor, 4a, 4b...cold 2
JI river puff 1゛puff, 5... oil pump, 6...
Heat exchanger, l..., alpha frequency coil, 8... high frequency power supply, 9... A degree detector, 10... temperature controller 1 to roller, 13... AEIΔg analyzer. Applicant's representative Mr. Sato Figure 2 0 Temperature difference between the rotor center and outer circumference T 3 Figure 3

Claims (1)

【特許請求の範囲】 1 タービンロータの中心孔を冷却すると共にタービン
ロータの外周部を加熱することによってロータ中心部の
近傍に引張応力を発生させ、この状態で欠陥部から放出
される音響放出信号(AE信号)を前記タービンロータ
に取付けた複数個のAEセンサーによって検出し、得ら
れたAE信号をAE信号解析装置によって解析してター
ビンロータの欠陥を検出することを特徴とするタービン
ロータの欠陥検出方法。 2 タービンロータの中心孔と外周部の得度を検出し、
これらの温度差が一定値となるよう温度コントローラか
ら高周波電源に制御信号を出力することを特徴とする特
許請求の範囲第1項記載のタービンロータの欠陥検出方
法。 3 タービンロータの中心孔の両端間に、オイルポンプ
と熱交換器を介挿した冷却用パイプを連結し、前記中心
孔内に冷却媒体を流すことを特徴とする特許請求の範囲
第1項記載のタービンロータの欠陥検出方法。 4 タービンロータの外周部に複数個に分割された高周
波コイルを配置し、これらに高周波電源から高周波電流
を流すことを特徴とする特許請求の範囲第1項記載のタ
ービンロータの欠陥検出方法。
[Claims] 1. A tensile stress is generated near the center of the rotor by cooling the center hole of the turbine rotor and heating the outer periphery of the turbine rotor, and in this state, an acoustic emission signal is emitted from the defective part. (AE signal) is detected by a plurality of AE sensors attached to the turbine rotor, and the obtained AE signal is analyzed by an AE signal analyzer to detect a defect in the turbine rotor. Detection method. 2 Detect the gain of the center hole and outer circumference of the turbine rotor,
A method for detecting defects in a turbine rotor according to claim 1, characterized in that a control signal is output from a temperature controller to a high frequency power source so that the temperature difference between these temperatures becomes a constant value. 3. A cooling pipe in which an oil pump and a heat exchanger are inserted is connected between both ends of the center hole of the turbine rotor, and a cooling medium is allowed to flow into the center hole. A method for detecting defects in turbine rotors. 4. A method for detecting defects in a turbine rotor according to claim 1, characterized in that a plurality of divided high-frequency coils are arranged on the outer periphery of the turbine rotor, and a high-frequency current is caused to flow through the divided high-frequency coils from a high-frequency power source.
JP60213071A 1985-09-26 1985-09-26 Defect detecting method for turbine rotor Pending JPS6271855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213071A JPS6271855A (en) 1985-09-26 1985-09-26 Defect detecting method for turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213071A JPS6271855A (en) 1985-09-26 1985-09-26 Defect detecting method for turbine rotor

Publications (1)

Publication Number Publication Date
JPS6271855A true JPS6271855A (en) 1987-04-02

Family

ID=16633058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213071A Pending JPS6271855A (en) 1985-09-26 1985-09-26 Defect detecting method for turbine rotor

Country Status (1)

Country Link
JP (1) JPS6271855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215936A (en) * 2007-03-01 2008-09-18 Tokyo Electric Power Co Inc:The Ultrasonic flaw detection method for blade of gas turbine
CN103698098A (en) * 2013-12-27 2014-04-02 天津航天瑞莱科技有限公司苏州分公司 Heat engine coupling combined environment testing method and system
JP2016513264A (en) * 2013-02-28 2016-05-12 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Method for detecting time-varying thermomechanical stresses and / or stress gradients through the wall thickness of metal objects

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215936A (en) * 2007-03-01 2008-09-18 Tokyo Electric Power Co Inc:The Ultrasonic flaw detection method for blade of gas turbine
JP2016513264A (en) * 2013-02-28 2016-05-12 アレヴァ ゲゼルシャフト ミット ベシュレンクテル ハフツングAreva GmbH Method for detecting time-varying thermomechanical stresses and / or stress gradients through the wall thickness of metal objects
US9903840B2 (en) 2013-02-28 2018-02-27 Areva Gmbh Method for detecting temporally varying thermomechanical stresses and/or stress gradients over the wall thickness of metal bodies
CN103698098A (en) * 2013-12-27 2014-04-02 天津航天瑞莱科技有限公司苏州分公司 Heat engine coupling combined environment testing method and system

Similar Documents

Publication Publication Date Title
CA2072029A1 (en) Turbine blade assessment system
CN104535648A (en) Method for detecting ultrasonic guided wave of turbine blades
EP2677297A1 (en) Method for ultrasonic fatigue testing at high temperature, and testing device
Lakshmi et al. Overview of NDT methods applied on an aero engine turbine rotor blade
JPS6271855A (en) Defect detecting method for turbine rotor
JP3639958B2 (en) Quantitative nondestructive evaluation method of cracks
CN106285797B (en) The supervising device and method of the inside manufacturing defect of inner casing, outer shell and valve casing
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JPS6345532B2 (en)
Urayama et al. Implementation of electromagnetic acoustic resonance in pipe inspection
JP2002277383A (en) Method of evaluating coating strength
Bashirov et al. Perfecting evaluation methods of energy equipment technical condition and resource based on electromagnetic-acoustic effect
Kryukov et al. Integrated quality control of the rotor discs of gas turbines of gas-compressor units by eddy-current and dye penetrant nondestructive testing
Sheikh et al. Invasive methods to diagnose stator winding and bearing defects of an induction motors
RU2386963C1 (en) Method of magnetic diagnostics of turbomachine blade made from alloyed steels
RU2664867C1 (en) Method of eddy current control
French Mechanical evaluation of gas-turbine blades in their actual centrifugal field: Dynamic blade-test method found to be a valuable tool in both fatigue and vibration testing of rotor blades
KR20220170700A (en) A mornitering system for steam turbine blade based on ai and operation metohd thereof
JPS59193329A (en) Testing device for dynamic balance of turbine rotor
RU2449256C1 (en) Control method of reconditioning of fatigue strength of parts
Popov et al. Diagnostic Damage Control of Shaft Trains in Turbine Units According to Torsional Vibration Parameters
JPS58195134A (en) Diagnosis system of remaining life of prime mover
New 1. General and reviews
Jimboh et al. Ferris Wheel Testing: Low Cycle Fatigue Test of Gas Turbine Engine Discs
Nichols A state-of-the-art review of continuous monitoring and surveillance techniques in relation to reactor pressure circuit integrity: Commission of the European Communities, EUR-13409-EN, 50 pp.(1991)