JPS6271841A - Oxygen analyzing method - Google Patents
Oxygen analyzing methodInfo
- Publication number
- JPS6271841A JPS6271841A JP60211116A JP21111685A JPS6271841A JP S6271841 A JPS6271841 A JP S6271841A JP 60211116 A JP60211116 A JP 60211116A JP 21111685 A JP21111685 A JP 21111685A JP S6271841 A JPS6271841 A JP S6271841A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- sample
- current
- flow path
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 131
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 131
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims description 6
- 239000007789 gas Substances 0.000 claims abstract description 71
- 230000005611 electricity Effects 0.000 claims abstract description 11
- 239000012159 carrier gas Substances 0.000 claims abstract description 10
- 238000004458 analytical method Methods 0.000 claims description 14
- 239000007784 solid electrolyte Substances 0.000 claims description 13
- 238000005259 measurement Methods 0.000 abstract description 19
- 239000003792 electrolyte Substances 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract 1
- 238000004868 gas analysis Methods 0.000 abstract 1
- 238000004904 shortening Methods 0.000 abstract 1
- 239000002253 acid Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000001304 sample melting Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 101710110315 Bacchus Proteins 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、電気化学的酸素ポンプを用いた酸素分析装置
による酸素分析方法の改良に関りる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in an oxygen analysis method using an oxygen analyzer using an electrochemical oxygen pump.
[従来の技術]
最近、金属や合金、またはそれらの化合1カ、あるいは
ヒレン、デルル等の半金1A等に含まれる酸素量を1.
高精度でかつ絶対値測定することがTり能な?Ii L
/いタイプの酸素分析装置が開発された(大塚伸也、幸
塚善作著、 −[ransacLion or[11
0J apan I n5titutc of
M eLals 。[Prior Art] Recently, the amount of oxygen contained in metals, alloys, combinations thereof, or half metals such as Hiren and Deluru has been reduced to 1.
Is it possible to measure absolute values with high precision? Ii L
/ type of oxygen analyzer has been developed (Shinya Otsuka, Zensaku Kozuka, -[ransacLion or[11
0J apan I n5titutc of
M eLals.
Vol−25,No 、9.639頁〜648Ci、1
984年9月発Lr )。Vol-25, No, 9.639 pages ~ 648 Ci, 1
Lr issued September 984).
このM県分析′!A同は、−1−ヤリX?ガスを循1℃
さ゛ぜる:!1ガス流路に、固体電解質を用いた電気化
学的酸素ポンプを介在せしめ、該酸素ポンプに一定の直
流電圧を印加することにより、閉ガス流路内から酸素を
1ノF出して閉ガス流路内の酸素分圧を十分に低い一定
値に保つことがτきるようにしたものである。This M prefecture analysis'! A is -1-YariX? Circulate gas at 1℃
Surge:! An electrochemical oxygen pump using a solid electrolyte is interposed in one gas flow path, and by applying a constant DC voltage to the oxygen pump, 1 NOF of oxygen is discharged from the closed gas flow path to create a closed gas flow. This system is designed to maintain the oxygen partial pressure in the passage at a sufficiently low constant value.
この酸素分圧状態を用いて、試料の酸素分析はつぎのよ
うに行われる。まずalli t?前には、キ17す1
アガス中の[が酸素ポンプにより排出され、閉ガス流路
内は1分に低い酸素分圧に保たれる。このどき酸素ポン
プにJ3いては、固体電解質を介して閉ガス流路外へ排
出される酸素量と糸外から洩れ込む酸素間とが略平衡状
態に達し、第9図に示すように、酸素ポンプ(二は略一
定のベース電流31が流れる。Using this oxygen partial pressure state, oxygen analysis of the sample is performed as follows. First of all, alli t? Ki17s1 in front
[ in the agas is discharged by an oxygen pump, and the inside of the closed gas flow path is maintained at a low oxygen partial pressure per minute. At this time, in the oxygen pump J3, the amount of oxygen discharged to the outside of the closed gas flow path via the solid electrolyte and the amount of oxygen leaking from outside the thread have reached a nearly equilibrium state, and as shown in FIG. In the pump (2), a substantially constant base current 31 flows.
イの状態C閉ガス流路内にJFlが導入される。導入さ
れた試料から放出された酸R(線心の高い試料にあって
は溶解させることにより酸素が迅速に放出される。)は
、キャリヤガスによって酸素ポンプまで運ばれ、酸素ポ
ンプにより閉ガス流路外に排出8れる。このとさ、酸素
ポンプには、試r1からの放出酸素のIJI出に要する
電流とベース電流との相である/A出耐酸N:iJl出
旧fLj流32が流れる。In state A, JFl is introduced into the closed gas flow path. The acid R released from the introduced sample (in the case of high-core samples, oxygen is rapidly released by dissolution) is carried by the carrier gas to the oxygen pump, where it is transferred to the closed gas stream. Ejected onto the street. At this time, the /A output acid resistance N:iJl output old fLj current 32, which is the phase of the current required for IJI output of the released oxygen from the test r1 and the base current, flows through the oxygen pump.
放出酸素の+Jl出が終了すると、閉ガス流路内は再び
十分に低い酸素分圧状態に保たれ、酸素ポンプには再び
略一定のベース電流33が流れる。When +Jl of released oxygen is finished, the inside of the closed gas flow path is again maintained at a sufficiently low oxygen partial pressure state, and a substantially constant base current 33 flows through the oxygen pump again.
そして、放出酸i排出時電流32から、ベース電流31
.33の値を差し引くことにより、づなわら、第9図の
斜線領1ft34の面積を求めることにより、放出酸素
1ノし出に要したPa素ポンプの電気量が求められ、こ
の電気量に塁いて、試料中の酸素量が迅速かつ高粘度で
絶対値測定される。Then, from the discharge current 32 of released acid i, the base current 31
.. By subtracting the value of 33, and by finding the area of the shaded area 1ft34 in Figure 9, the amount of electricity of the Pa element pump required to produce one discharged oxygen can be found, and based on this amount of electricity, , the amount of oxygen in the sample is measured in absolute value quickly and at high viscosity.
[発明が解決しようとする問題点]
上記の測定方法においては、高粘度で酸素間を分析する
ためには、試21からの放出酸素排出に要し・た分の電
流、すなわら第9図の斜線領域34が正確レニ求められ
な(Jればならないが、そのためには、ベース電流31
およびベース電流33が、一定値の電流でル)ることが
好ましい。[Problems to be Solved by the Invention] In the above measurement method, in order to analyze oxygen at high viscosity, the current required for exhausting the released oxygen from Test 21, that is, the current The shaded area 34 in the figure cannot be accurately calculated (J), but for that purpose, the base current 31
It is preferable that the base current 33 is a constant value current.
ところが、酸素ポンプによる酸素掛出価と閉ガス流路内
への酸素の洩れ込み吊をほぼ完全I:: 5P衡状態に
し、ベース電流31.33をほぼ完全な一定電流とする
には、艮II、1間持たなければならず、測主に時間を
薮するという問題がある。However, in order to make the oxygen supply price by the oxygen pump and the leakage of oxygen into the closed gas flow path almost perfectly balanced, and to make the base current 31.33 a nearly perfect constant current, it takes a lot of effort. II. There is a problem in that it has to last for 1 hour, which wastes time on the surveyor.
また、閉ガス流路内に大気の洩れ込みがある場合、大気
中のH2O等の間が時間的にゆるvlかに変化する可能
性があるので、閉ガス流路内への洩れ込み酸素間が変化
づろ可能性がある。すると、iJl出M木吊と洩れ込み
酸素間とがはば平行状態にある領域のベース電流31と
ベー、7電流33の値か異なることになり、第9図のg
l線領域34を如何に求めるかによって測定精度が異な
る3、中に、べ−ノミ流31とベース電流33とを甲純
平均し、その(直を放出酸素111出時電流32から差
し引くだ【)では、放出酸素排出中のベース市J≧を通
(ワに求めていない可能性が大であり、それだり試料中
の酸素FAA定精度に悪影費を及ぼづおそれがある。In addition, if there is air leakage into the closed gas flow path, the amount of H2O, etc. in the atmosphere may change gradually over time, so the amount of oxygen leaking into the closed gas flow path may change slowly over time. is likely to change. Then, the values of the base current 31 and the base current 33 in the region where the iJl output M tree suspension and the leaked oxygen are in a parallel state will be different, and the value of g in Fig. 9 will be different.
The measurement accuracy differs depending on how the l-ray region 34 is determined3. Among these, the vane chisel flow 31 and the base current 33 are averaged, and the (direct) is subtracted from the output current 32 of the released oxygen 111. ), there is a high possibility that the base city J≧ of the released oxygen is not required (Wa), and this may adversely affect the accuracy of determining the oxygen FAA in the sample.
本発明は、上記のような面角Qk:看L1シ、酸素ポン
プのベース1゛ケ流が一定の値に達しないうらにも高粘
度の測定が可能であり、かつ測定前のベース電流と測定
終了1;l+のベース電流とが異なっていてし、試nか
らの放出酸素排出に要した電気機を正確に求めることを
l」的とする1゜
[問題点を解決づ゛るためのf段]
この目的に沿う本発明の酸素分析方法は、固体電解質を
用いた電気化学的酸素ポンプが介在する閉ガス流路内に
キ1νすVガスを循環さけ、前記酸素ポンプに一定の直
流電圧を印カ11シて前記キi・す17ガスと114記
固体雷解買との界面における酸素分圧を常時一定に保ち
、まずキャリ八7ガス中の酸素4前記酸水ポンプにより
閉ガス流路外に排出して閉ガス流路内を十分に低い酸素
分圧にし、つき“に閉ガス流路内に試オ゛31を導入し
て試料中の酸素を閉ガス流路、内に放出させ、キtνす
■ガスによって運ばれる前記試料からの放出酸素を前記
酸素ポンプにより閉ガス流路外に471出して閉ガス流
路内を再び十分に低い酸素分圧にし、On記放出M木の
閑ガス流路外への11出中に酸素ポンプに流れる放出酸
素1出時電流から、前記十分に低い酸素分圧時にPa素
ポンプに流れるベース電流を差引くことによリ、前記放
出酸素の閉ガス流路外l\の↑)1出に要した電気量を
求め、該電気品から試料中の醒素吊を求める酸素分析方
法において 前記ベース電流を、r、η記試料導入前の
時間軸に対する電ut曲線と、前記放出酸素+!1出終
了口)の時間軸に対りる゛心情曲線とを滑らかに接続す
る近似電流曲線として求める方法から成っている。The present invention makes it possible to measure high viscosity even when the surface angle Qk: L1 as described above does not reach a certain value at the base of the oxygen pump. End of measurement 1: The base current of l+ is different, and the objective is to accurately determine the electric motor required for exhausting the released oxygen from test n.1゜[To solve the problem] f stage] The oxygen analysis method of the present invention in accordance with this purpose circulates the V gas in a closed gas flow path in which an electrochemical oxygen pump using a solid electrolyte is interposed, and supplies a constant direct current to the oxygen pump. A voltage is applied 11 to keep the oxygen partial pressure at the interface between the 17 gas and the solid lightning 114 constant at all times, and first the oxygen 4 in the carrier 87 gas is closed using the acid water pump. The oxygen in the sample is discharged to the outside of the flow path to bring the oxygen partial pressure inside the closed gas flow path to a sufficiently low level. The released oxygen from the sample carried by the gas is discharged to the outside of the closed gas flow path by the oxygen pump to bring the inside of the closed gas flow path to a sufficiently low oxygen partial pressure again. By subtracting the base current flowing to the Pa element pump when the oxygen partial pressure is sufficiently low from the discharge oxygen current flowing to the oxygen pump during discharge to the outside of the wood empty gas flow path, In an oxygen analysis method in which the amount of electricity required to output oxygen outside the closed gas flow path (↑) and the amount of arousal in the sample from the electrical equipment is determined, the base current is calculated by r, η before introducing the sample. This method consists of obtaining an approximate current curve that smoothly connects the current curve with respect to the time axis of and the sentiment curve with respect to the time axis of the above-mentioned released oxygen +!1 exit/end port).
放出酸素り1出時電流曲線前後のベース電流を1妄続す
る滑らかな近似電流曲線は、たとえば、−ALB
で表わされる曲線によって近似される。ここで、i :
酸素ポンプを流れる電流
t:時間
Δ、B:へ−スミ流同志が滑らかに接続づるよう決めら
れる定数
である。A smooth approximate current curve that connects base currents before and after the released oxygen current curve is approximated by, for example, a curve represented by -ALB. Here, i:
Current flowing through the oxygen pump t: time Δ, B: constant determined so that the He-Sumi flow connects smoothly.
このような酸素分析方法においては、実際には・上流波
形として現われてこない放出P&& IIL出時前後の
ベース電流を接続Jる曲線が、演0処III+装置等に
よりWIらかな近似曲線として51ξめられる。このδ
;らかな曲線は、もし仮にこの間で試料からの放出酸素
が排出されなか・)だとした場合の、lli!2素78
ンブベース電流の1移状態を表わす曲線として求められ
る。試r1からの放出酸系分析前のベース電流がよIど
(P、衡状態(こ;7していない曲線の特性であっても
、かつ分析(変のベース電流がz1′だ完全に平1jl
I臥懇に達していない曲線の特性であっても、この両特
性曲線間が滑らかに曲線で接続されるので、1)本の放
出酸素IJF出中にJ5けるベース電流の!!柊状態は
ほぼ正確に近似される。In such an oxygen analysis method, the curve connecting the base currents before and after the emission of P&&IIL, which does not actually appear as an upstream waveform, is plotted at 51ξ as a smooth approximation curve using It will be done. This δ
;The smooth curve shows the lli! if the oxygen released from the sample is not exhausted during this period. 2 elements 78
It is obtained as a curve representing one transition state of the base current. Even if the base current before analysis of the released acid system from sample r1 is completely flat (P, equilibrium state), and the base current before analysis is completely flat (z1'), 1jl
Even if the characteristics of the curve have not reached I, the two characteristic curves are smoothly connected by a curve, so 1) the base current of J5 during the release of oxygen IJF! ! The Hiiragi state is approximated almost exactly.
この正確に近似されたベース電流1h竹に対し、実際に
波形として現われる放出!111素排出1に¥電流が積
分されるのであるから、その積分値は放出酸素の排出に
要した電気品として正確に求められる。For this accurately approximated base current of 1 h, the emission that actually appears as a waveform! Since the current is integrated into the 111 elemental discharge 1, the integral value can be accurately determined as the electric component required to discharge the released oxygen.
したがって、ベース電流がまだ十分に平衡状態に達して
いない状態で試filのM水量測定を11;1始したと
しても、十分に正確な測定(直が得られる。j。Therefore, even if you start measuring the amount of M water in a test film when the base current has not yet fully reached equilibrium, a sufficiently accurate measurement can be obtained.
た、測定前と測定終了11.1のベース電流値が異なっ
ていたとしても、その間のベース電流准移状態が正確に
近似されるので、測定粘度が向上される。Furthermore, even if the base current values before measurement and at the end of measurement 11.1 are different, the base current transition state between them is accurately approximated, so that the measured viscosity is improved.
(実施例)
以下に本発明の望ましい実施例を図面を参照して説明す
る。(Embodiments) Preferred embodiments of the present invention will be described below with reference to the drawings.
第1図および第2図は、本発明に係る方法を実施するた
めの酸素分析装置を示している。1 and 2 show an oxygen analyzer for carrying out the method according to the invention.
第1図は酸素分析装置の全体構成を示しており、各方向
切換弁は試料の醗索最分析時の状態を示している。FIG. 1 shows the overall configuration of the oxygen analyzer, and each directional control valve shows the state at the time of sample re-analysis.
第1図において、太線で示しtIl路が、試r1の耐素
醋分析時のギVすA7がスが循環される閉ガス流路1を
示している。各方向切換弁2.3.4は、木実施例では
4方弁から成っており、試Hの酸系t6分析簡には図に
示1ように閉ガス流路1内のキャリヤガスを太線矢印A
の方向に流し、晟初1!lガス流路1内のガスをキャリ
A7万支で置換りる際には実線矢印Bの方向に流し、試
料交換時には破線矢rD Cの方向にガスを流す。In FIG. 1, the tIl path indicated by a thick line indicates the closed gas flow path 1 through which the gas A7 is circulated during the sample r1 solubility analysis. Each directional control valve 2.3.4 consists of a four-way valve in the wooden example, and for the acid system t6 analysis of Test H, the carrier gas in the closed gas flow path 1 is connected to the thick line as shown in the figure. Arrow A
Flowing in the direction of, the first 1 of the year! When replacing the gas in the gas flow path 1 with the carrier A70,000, it flows in the direction of the solid line arrow B, and when replacing the sample, the gas flows in the direction of the broken line arrow rDC.
閉ガス流路1には、測定時のキャリヤガスの循環方向Δ
にみて、v令νす〜lガスを循環さける循1寞ポンプ5
、金属、合金、またはそれらの化合物。The closed gas flow path 1 has a carrier gas circulation direction Δ during measurement.
As shown in Figure 5, the circulation pump 5 avoids circulating the gas.
, metals, alloys, or their compounds.
あろはセレン、デルル等のY金属から成る試わ16を閉
ガス流路1内に導入する試料導入手段7、試料671t
ら放出されキp 1117ガスによって運ばれてぎた酸
素を:]ガス流路1外に排出リ−る酸素ポンプ8、が直
列に介在されている。A sample introducing means 7 for introducing a sample 16 made of Y metal such as Aroha selenium and Deluru into the closed gas flow path 1, and a sample 671t.
An oxygen pump 8 is interposed in series to discharge the oxygen released from the gas and carried by the gas to the outside of the gas flow path 1.
循環ポンプ5の上流側には、循環ポンプ5によって循環
される↑Vクリヤスの流用(流速)を1111定可能な
流量:i]9が設()られている。また、酸ホボンブ8
と循環ポンプ5との間に(ま、キ鬼!りバッカスを閑ガ
ス流路1内に尋人づる↑セリ11刀ス]9人ロ10h<
喀続さり、てJ3つ、フCルタ11、方向切換jT 2
を介してキャリ曳7ガスがカムされるようになってい、
る。この閉がス流路1を1−・すi!ガスで置換する際
には、方向切換弁2.3.4は矢[]目3のように切換
えられるが、その経路の終端部には減圧吸引口12が接
続されて113す、キャリヤガス供給によって追い出さ
れてきた閉ガス流路1内のガスが、フィルタ13、吸引
ポンプ14を介して系外に1ノ1出される。On the upstream side of the circulation pump 5, a flow rate: i]9 is provided that can set the diversion (flow rate) of the ↑V clear gas circulated by the circulation pump 5. Also, acidhobonbu 8
and the circulation pump 5 (Oh, you're a demon! I'm going to put Bacchus in the empty gas flow path 1 ↑ Auction 11 swords) 9 people 10 hours <
Continuing to cough, 3 TeJ, 11 filters, 2 direction switches
The carry towing 7 gas is cammed through the
Ru. This closure connects flow path 1 to 1-・sui! When replacing with gas, the directional control valve 2.3.4 is switched as shown by arrow 3, and the vacuum suction port 12 is connected to the end of the path 113 to supply carrier gas. The gas in the closed gas flow path 1 that has been expelled by the pump is discharged to the outside of the system via the filter 13 and the suction pump 14.
試料導入手段7は、人気に対して密閉可能な容器状に十
°4成されており、試料6を・装置し回動等に1つ試i
Fi (3を下方に落下さける試料受tプ15が設Φ)
られマいる。試料導入手段7の下部には、試料溶′e炉
16が設()られている。試料溶解炉16は、試料受【
プ15から落下されてきた試料6を、加熱装ゴ′7によ
る加熱にJ:つて溶解さぜ、試料Cから酸素を放出させ
てキセリャガスの流れにのせる。The sample introduction means 7 is formed in the shape of a container that can be sealed tightly, and the sample 6 is placed in the device and rotated for one trial.
Fi (sample receptacle 15 is installed to avoid dropping 3 downward)
I'm bored. A sample melting furnace 16 is provided below the sample introduction means 7. The sample melting furnace 16 has a sample receiving [
The sample 6 dropped from the pipe 15 is melted by heating with a heating device 7, and the oxygen is released from the sample C, which is placed on the flow of xeryl gas.
ただし、ガリウムのごとき常温に近い融点を右するらの
の場合には、とくに加熱しないでも測定でさる場合があ
る。1711熱装首17と試料尋人手段7 。However, in the case of materials such as gallium, which have a melting point close to room temperature, the measurement may fail even without heating. 1711 Heat necking 17 and sample interrogator means 7.
との間には、加熱装置17側から試料導入手段7測への
伝熱を抑制ケるとと6に、試料溶解炉16からの金属蒸
気等を凝縮さ往て下流側への流出を抑111づる冷却手
段18が設けられている。冷Jぶ手段18;よ、殻求冷
却済に応じて、図示のごとぎ冷加ファン、又は水冷く冷
rI!、)ジ1?ケット、フィンにJzる自然放熱等の
手段に溝底される。In addition to suppressing heat transfer from the heating device 17 side to the sample introduction means 7, there is also a device between the heating device 17 side and the sample introduction device 7, which condenses metal vapor etc. from the sample melting furnace 16 and prevents it from flowing downstream. 111 cooling means 18 are provided. Cooling means 18: Depending on the shell cooling requirement, use a cooling fan as shown in the figure or water cooling. ,) Ji1? Grooves are used as a means of natural heat dissipation through jackets and fins.
酸素ポンプ8(シ、加熱炉19と、この加熱炉19内に
収容された、第2図に示すような円筒状の固1^゛市解
?120を備えている。この固体゛電解?120(j、
ジルコニアに安定化剤としてカルシア、マグネシア、イ
ッ]・リア/、Tどの酸化物を固溶させたしので、酸系
イAン仏導竹を有している。もつとし・、責なる2秤類
の酸化物が固溶していてもよい。The oxygen pump 8 is equipped with a heating furnace 19 and a cylindrical solid electrolyte 120 housed in the heating furnace 19 as shown in FIG. (j,
Since zirconia is solid-dissolved with oxides such as calcia, magnesia, oxide, and T as a stabilizer, it has acid-based oxides. Oxides of the two types of oxides, motos and molasses, may be dissolved in solid solution.
まl、:、トリアにイツトリアを固溶させてなる固体電
解質を使用することもできる。、L記固体市解質20の
内部には、シリカむどの耐熱材料からなり、かつ内部を
減圧したカプセル状に形成された整流筒21が入れられ
ている。It is also possible to use a solid electrolyte formed by dissolving itria in thoria. A rectifying tube 21 made of a heat-resistant material such as silica and formed into a capsule shape with a reduced pressure inside is placed inside the solid state solution 20.
固体″lIf解質20の内外両面には、多孔質電極22
.23が設けられている。内側の電極22の一部は、固
体電解質20の長手方向両端に向かい帯1大に延び、さ
らにその端部を折り返して固体電解t′x 20の外面
の一部まで延び1いる。これら多孔質電極22.23は
、固体電解質20の表面に白金ペーストなどを塗布し、
焼き付【Jることによって形成されたしのでる。Porous electrodes 22 are provided on both the inner and outer surfaces of the solid "lIf solute 20.
.. 23 are provided. A portion of the inner electrode 22 extends toward both ends of the solid electrolyte 20 in the longitudinal direction, and further extends to a portion of the outer surface of the solid electrolyte t'x 20 by folding back its end. These porous electrodes 22 and 23 are made by applying platinum paste or the like to the surface of the solid electrolyte 20.
It is formed by burning.
」ニ記電神22には、リード線24.25が、また電極
23にはリード線26.27がそれぞれ接続されている
。1組のり一部I!!24.26間には可変自流電源(
図示せf)が接続され、また、その可変直流電源と直列
に、電流計(図示せず)が接続さねている。一方、リー
ド線25.27間には電圧計(図示ぜヂ)が接続されて
いる。Lead wires 24 and 25 are connected to the electric wire 22, and lead wires 26 and 27 are connected to the electrode 23, respectively. 1 set of glue part I! ! Between 24 and 26 is a variable free current power supply (
f) (not shown) is connected, and an ammeter (not shown) is connected in series with the variable DC power supply. On the other hand, a voltmeter (shown in the figure) is connected between the lead wires 25 and 27.
この酸素ポンプ8の機能は、概路次のようになっている
。リード線24.26を介して固体電解質20の両側に
一定の直流電圧を印加すると、固441Ui解質20に
は一方側から他方側に向()て電気化学的ボデンシtフ
ルが発生し、これを利用して(!1ガス流路1内からl
li糸が排出される。測定面には、一定の直流電圧印加
によりギpす17ガス中から酸素が閉ガス流路1外に排
出されるが、外部から洩れ込む酸素、固体電解質20自
体からの放出酸んにより、やがて平衡状態に近<<Kす
、リード線24.26を流れる電流iは十分に低いベー
ス電流値となる。この状態で、試F16が導入され、試
料6中からの放出e素が酸素ポンプE3に運ばれ、閉ガ
ス流路1外に排出される。このとき、電流iGま■7上
り、酸素を1)1出し終ると、再びベース電流に戻る。The function of this oxygen pump 8 is roughly as follows. When a constant DC voltage is applied to both sides of the solid electrolyte 20 via the lead wires 24 and 26, an electrochemical bodency is generated in the solid 441Ui electrolyte 20 from one side to the other. (!1 From inside gas flow path 1)
The li thread is discharged. By applying a constant DC voltage to the measurement surface, oxygen is discharged from the gas 17 to the outside of the closed gas flow path 1, but eventually due to oxygen leaking from the outside and acid released from the solid electrolyte 20 itself. When the equilibrium state is near <<K, the current i flowing through the lead wires 24 and 26 has a sufficiently low base current value. In this state, the sample F16 is introduced, and e-element released from the sample 6 is carried to the oxygen pump E3 and discharged to the outside of the closed gas flow path 1. At this time, the current iG rises by 7, and once the oxygen has been output 1), it returns to the base current again.
この電流変化を電流atで検知し、酸素排出に要した電
気1uを求めることにより、試料6の質怪との関係から
その中の酸素量を知ることがぐぎる。なお、リード線2
5.27に接続する電圧計は、酸素ポンプ8の起電力を
常時読み取れるようにしたものである。By detecting this current change using the current at and determining the 1 u of electricity required to discharge oxygen, it is possible to determine the amount of oxygen in the sample 6 in relation to its quality. In addition, lead wire 2
The voltmeter connected to 5.27 is designed to constantly read the electromotive force of the oxygen pump 8.
なJ3、−V述の試II Gからの放出酸素を運ぶ一1
′電・リヤガスとしては、アルゴンガス等の不活性ガス
が用いられ、還元性ガスとしての水素を一定部含むキ!
すX7ガスとすることが望ましい。このように水素を含
有さμることにより、試$316中の酸素が水素と反応
して安定なHzO万スとして放出さ゛れる。この1)2
0ガスは、酸素ポンプ8に運ばれ、固体電解一覧2Qの
内面で電気化学的に分解されて再び水素どなり、そのと
き発生した酸素が前述の酸素ポンプ8の機能により閉ガ
ス流路1外に排出される。J3, -V-described test II
``Inert gas such as argon gas is used as the electric/rear gas, and it contains a certain amount of hydrogen as a reducing gas.
It is desirable to use X7 gas. By containing hydrogen in this manner, the oxygen in the sample reacts with hydrogen and is released as a stable HzO gas. This 1)2
The 0 gas is carried to the oxygen pump 8 and is electrochemically decomposed on the inner surface of the solid electrolyte 2Q to become hydrogen again, and the oxygen generated at that time is transferred to the outside of the closed gas flow path 1 by the function of the oxygen pump 8 mentioned above. be discharged.
[記のような構成を右する装置を用いて、本発明の方法
は次のように実施される。[The method of the present invention is carried out as follows using an apparatus having the configuration as described above.
まず、試料6を閉ガス流路1にあるいは試料溶解炉16
に導入する前に、り、3図に承りように、酸素ポンプ8
を流れるベース電流11のデータが市る11.1間収集
され、115間軸[に対づるベース電流11の特性曲線
が、たとえば適当な演口処叩1!!i置に入力される。First, the sample 6 is placed in the closed gas flow path 1 or in the sample melting furnace 16.
Before installing the oxygen pump 8, as shown in Figure 3,
The data of the base current 11 flowing through the 11.1 axis is collected for a period of 11.1, and the characteristic curve of the base current 11 with respect to the 115 axis [1! ! It is input in the i position.
二のデータ収集壕に、試料6が試料溶解炉16等を二導
入され、試料6bsら閉ガス流路1中に酸素が放出♂れ
る。放出酸素はキt/リレガスによって酸素ポンプ8に
運ばれ、酸素ポンプ8により閉ガス流路1外tz二排出
される。この排出中には、電流1は第4図のように立ト
がり、第5図に示すようにやがてピークを迎え、その少
なだらかに立下っていく電流波形i0となる。そして、
この放出酸素排出部電流10は、やがて平衡状態に近い
電流12になる。電流11から12までの放出酸素IJ
I出時電流iGは、波形データとして収集される。The sample 6 is introduced into the second data collection trench through the sample melting furnace 16, and oxygen is released from the sample 6bs into the closed gas flow path 1. The released oxygen is carried by the gas to the oxygen pump 8, and is discharged out of the closed gas flow path 1 by the oxygen pump 8. During this discharge, the current 1 rises as shown in FIG. 4, reaches a peak as shown in FIG. 5, and then gradually falls to a current waveform i0. and,
This released oxygen exhaust current 10 eventually becomes a current 12 close to an equilibrium state. Released oxygen IJ from current 11 to 12
The I output current iG is collected as waveform data.
つぎに、放出酸素υ[出路r時のベース電流12の活性
曲線が、ある時間収集される。Next, the activation curve of the base current 12 during released oxygen υ[output r is collected for a certain period of time.
そして、第6図に示づように、ベース電流11の特性曲
線と、ベース電流I2の特性曲線とを清らかに接続りろ
近0メ雷流曲線i3が求められる。Then, as shown in FIG. 6, a lightning current curve i3 is obtained by clearly connecting the characteristic curve of the base current 11 and the characteristic curve of the base current I2.
この13は、!ことえば、
1=へ【B
の式によって求めら杓、定数Δ、Bが1.1tijlメ
電流曲線i3が!1.i 2の特性曲線と滑らかに接続
ぐぎるように定められる。ここでE3=1ならば、近似
電流曲線i 31よ直線として求められる。This 13 is! For example, 1=to[B is calculated by the formula, constant Δ, B is 1.1tijl, and the current curve i3 is! 1. It is determined so that it smoothly connects with the characteristic curve of i2. Here, if E3=1, the approximate current curve i31 is determined as a straight line.
この近似rh電流曲線3は、実際には電流波形とし−C
表われない想像的な特性曲線として求められるものであ
るが、仮にi 1.i 2間で放出酸素のiJI出が行
われなかったであれば得られたであろうベース電流の遷
移特例曲線として求められる乙のである。すなわら、試
料6からの放出[す1出には寄与しない電流成分として
求められるムのである。This approximate rh current curve 3 is actually a current waveform of −C
This is required as an imaginary characteristic curve that does not appear, but if i 1. This is obtained as a transition special curve of the base current that would have been obtained if the iJI output of released oxygen had not occurred between i and 2. In other words, it is determined as a current component that does not contribute to the emission from the sample 6.
このようにして求められた近似電流曲線1〕に対し、放
出酸素1月出時電流10が積分され、第5図に示す斜線
領域Pの面積が求められる。この面積は、試料6からの
放出酸素のiJI出に要した分のみの電気量を表わずも
のである。この電気量から、試料5中の酸素量が分析さ
れる。With respect to the approximate current curve 1 obtained in this manner, the discharged oxygen current 10 is integrated, and the area of the shaded region P shown in FIG. 5 is obtained. This area does not represent the amount of electricity required for iJI of released oxygen from the sample 6. The amount of oxygen in the sample 5 is analyzed from this amount of electricity.
近似電流曲線13は、滑らかに特性曲線11゜12と接
続するように定められるので、11から12へのベース
電流の遷移が、実際の遷移に近い正確な状態で把握され
る。したがって、たとえば第7図、第8図に示すように
、放出酸素測定時Sの直前にお()るベース電流相性1
1がまだ十分な平衡状態に達してない状態であっても、
あるいは、測定前後のベース電流i +、 i 2の値
が相当大きく異なっていてら、その間のベース電流の遷
移状態が近似曲線13によってほぼ正確に近似され、斜
線領域P a 、 !〕bから放出酸メi IJ+出に
要したt只ωが正確に求めらシする。Since the approximate current curve 13 is determined so as to smoothly connect with the characteristic curves 11 and 12, the transition of the base current from 11 to 12 can be grasped in an accurate state close to the actual transition. Therefore, as shown in FIGS. 7 and 8, for example, the base current phase 1 immediately before S when measuring released oxygen is
Even if 1 has not yet reached a sufficient equilibrium state,
Alternatively, if the values of the base currents i + and i 2 before and after the measurement are considerably different, the transition state of the base current between them is approximately accurately approximated by the approximate curve 13, and the shaded area P a , ! ] The amount of acid released from b (i, IJ+, t, ω, required for release) can be accurately determined.
[発明の効果]
以上説明したように、本発明の酸素分析方法によるとぎ
Cよ、試料からの放出酸素排出時の酸素ポンプにおける
ベース電流を、その測定前後の電流曲線を;nら/3X
に接続づ゛る近似電流曲線にて正確に近憎し、この近似
電流!III線と実際の放出酸素排出時の電流波形との
差から放出酸素IJI出に要した電気量を求めるように
したので、測定前後の酸素ポンプのベース電流が十分に
″IL衡状開状態しでいない場合にも正確な測定を行う
ことが可能となり、測定時間を大幅に短縮Jることがで
きるという効果が得られる。[Effects of the Invention] As explained above, according to the oxygen analysis method of the present invention, the base current in the oxygen pump during exhaustion of released oxygen from the sample, and the current curves before and after the measurement;
Accurately approximate the approximate current curve connected to this approximate current! Since the amount of electricity required to output the released oxygen IJI was determined from the difference between line III and the current waveform during actual discharge of released oxygen, the base current of the oxygen pump before and after the measurement was sufficient to ensure that the IL equilibrium was open. Accurate measurement can be performed even when the measurement time is not available, and the measurement time can be significantly shortened.
また、閉ガス流路内への洩れ込み大気の性状変UJ ”
?により、測定前後のベース゛上流レベルに開きが生じ
た場合にも、試料からの放出PIi素排出に要した電気
t■を正確に把握することができ、測定精度の向上をは
かることがでさるという効果も1!Iられる。In addition, leakage into the closed gas flow path may cause changes in the properties of the atmosphere.
? Therefore, even if there is a difference between the upstream level of the base before and after the measurement, it is possible to accurately determine the electricity t required to discharge the PIi elements released from the sample, and it is possible to improve measurement accuracy. The effect is also 1! I get caught.
第1図は本発明の一実施例に係る方法を実施するための
1間素分析装置の全体構成図、第2図は第1図の装置の
酸素ポンプ部の拡大断面図、
第3図は試料導入前の酸素ポンプの電流特性図、第4図
は試料からの放出酸素JJI出聞出直m直後素ポンプの
電流特性図、
第5図は試料からの放出酸素IJI出終了時までの酸2
hボンゾの7を流1ζ1廿図、
第0図)、ζj1似電流曲線77)特性図、第7図、第
83図はベース、を流が」l衡状態に達していない揚台
の測定状態を示1酸県ボシプの電流本1竹 図 、
第9図はベース電流が十分に平衡状態に達している場合
の測定状態を示1酸素1ぐンプの電流特性図。
である。
1・・・・・・閉ガス流路
2、J゛1.4・・・・・・方向切換弁5・・・・・循
環ポンプ
6・・・・・−試料
7・・・・・・試料導入1段
8・・・・・・貨素ポンプ
9・・・・・・流h1計
10・・・・・・キセリA7ガス導入口12・・・・・
・減It吸引l」
16・・・・・試料溶解炉
19・・・・・・加熱炉
20・・・・・・固体7iH解v1
21・・・・・・整流筒
22.23・・・・・・電極
24.25.26.27・・・・・・リード線1・・・
・・・酸素ポンプの電流
il、 i2・・・・・・ベース電流
10・・・・・・放出M素排出時電流
i3・・・・・・近似電流曲線
第2図
第9図
第7図
を
第8図FIG. 1 is an overall configuration diagram of a one-time chemical analyzer for carrying out a method according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the oxygen pump section of the device shown in FIG. 1, and FIG. Figure 4 shows the current characteristics of the oxygen pump before the sample is introduced. Figure 4 shows the current characteristics of the oxygen pump immediately after the oxygen released from the sample. 2
Figures 7 and 83 are the base, and the measuring state of the lifting platform where the current has not reached the equilibrium state. Figure 9 shows the measurement state when the base current has sufficiently reached an equilibrium state, and is a current characteristic diagram of 1 oxygen 1 gun. It is. 1...Closed gas flow path 2, J゛1.4...Directional switching valve 5...Circulation pump 6...-Sample 7... Sample introduction stage 1 8...Cargo pump 9...Flow h1 Total 10...Kisseri A7 Gas inlet 12...
・Reduced It suction l" 16... Sample melting furnace 19... Heating furnace 20... Solid 7iH solution v1 21... Rectifier tube 22.23... ... Electrode 24.25.26.27 ... Lead wire 1 ...
...Oxygen pump current il, i2... Base current 10... Current when ejecting M element i3... Approximate current curve Fig. 2 Fig. 9 Fig. 7 Figure 8
Claims (1)
する閉ガス流路内にキャリヤガスを循環させ、前記酸素
ポンプに一定の直流電圧を印加して前記キャリヤガスと
前記固体電解質との界面における酸素分圧を常時一定に
保ち、まずキャリヤガス中の酸素を前記酸素ポンプによ
り閉ガス流路外に排出して閉ガス流路内を十分に低い酸
素分圧にし、つぎに閉ガス流路内に試料を導入して試料
中の酸素を閉ガス流路内に放出させ、キャリヤガスによ
って運ばれる前記試料からの放出酸素を前記酸素ポンプ
により閉ガス流路外に排出して閉ガス流路内を再び十分
に低い酸素分圧にし、前記放出酸素の閉ガス流路外への
排出中に酸素ポンプに流れる放出酸素排出時電流から、
前記十分に低い酸素分圧時に酸素ポンプに流れるベース
電流を差引くことにより、前記放出酸素の閉ガス流路外
への排出に要した電気量を求め、該電気量から試料中の
酸素量を求める酸素分析方法において、前記ベース電流
を、前記試料導入前の時間軸に対する電流曲線と、前記
放出酸素排出終了時の時間軸に対する電流曲線とを滑ら
かに接続する近似電流曲線として求めることを特徴とす
る酸素分析方法。(1) A carrier gas is circulated in a closed gas flow path in which an electrochemical oxygen pump using a solid electrolyte is interposed, and a constant DC voltage is applied to the oxygen pump to form an interface between the carrier gas and the solid electrolyte. The oxygen partial pressure in the carrier gas is kept constant at all times, and the oxygen in the carrier gas is first discharged to the outside of the closed gas flow path by the oxygen pump to bring the inside of the closed gas flow path to a sufficiently low oxygen partial pressure, and then the oxygen partial pressure in the closed gas flow path is A sample is introduced into the closed gas flow path to release the oxygen in the sample into the closed gas flow path, and the released oxygen from the sample carried by the carrier gas is discharged to the outside of the closed gas flow path by the oxygen pump to create a closed gas flow path. From the current flowing through the oxygen pump during discharge of the released oxygen to the outside of the closed gas flow path,
By subtracting the base current flowing through the oxygen pump when the oxygen partial pressure is sufficiently low, the amount of electricity required to discharge the released oxygen to the outside of the closed gas flow path is determined, and from this amount of electricity, the amount of oxygen in the sample is calculated. In the method for oxygen analysis, the base current is determined as an approximate current curve that smoothly connects a current curve with respect to the time axis before the introduction of the sample and a current curve with respect to the time axis at the end of the released oxygen discharge. Oxygen analysis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60211116A JPS6271841A (en) | 1985-09-26 | 1985-09-26 | Oxygen analyzing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60211116A JPS6271841A (en) | 1985-09-26 | 1985-09-26 | Oxygen analyzing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6271841A true JPS6271841A (en) | 1987-04-02 |
Family
ID=16600666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60211116A Pending JPS6271841A (en) | 1985-09-26 | 1985-09-26 | Oxygen analyzing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6271841A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5440347A (en) * | 1977-09-07 | 1979-03-29 | Hitachi Ltd | Coolant liquid injector |
JPS60187854A (en) * | 1984-03-07 | 1985-09-25 | Shinya Otsuka | Oxygen concentration measuring apparatus |
-
1985
- 1985-09-26 JP JP60211116A patent/JPS6271841A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5440347A (en) * | 1977-09-07 | 1979-03-29 | Hitachi Ltd | Coolant liquid injector |
JPS60187854A (en) * | 1984-03-07 | 1985-09-25 | Shinya Otsuka | Oxygen concentration measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yajima et al. | Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries | |
CN105319253B (en) | A sensor and measurement method for measuring hydrogen content in molten metal | |
WO2018056419A1 (en) | Elemental analysis device and elemental analysis method | |
CN110320476A (en) | The analogue battery equipment of gas is produced in situ detection liquid state batteries | |
Fassel et al. | Emission spectrometric determination of oxygen in titanium and titanium alloys | |
Otsuka et al. | Activities of oxygen in liquid thallium and indium from electrochemical measurements | |
JPS6271841A (en) | Oxygen analyzing method | |
JPH0417387B2 (en) | ||
Klinedinst et al. | The determination of the standard Gibbs energy of formation of β-gallium sesquioxide from emf measurements using an yttria-doped thoria electrolyte | |
US3843489A (en) | Method of determining surface area and meter therefor | |
JPS62138745A (en) | Method for regenerating oxygen pump electrode of oxygen analyzing instrument | |
Hasham et al. | Deoxidation of Molten Steel Using a Short‐Circuited Solid Oxide Electrochemical Cell | |
JPS6271839A (en) | Oxygen analyzer | |
Kurchania et al. | Oxygen potential in molten tin and Gibbs energy of formation of SnO2 employing an oxygen sensor | |
JPH0513575B2 (en) | ||
JPH0224344B2 (en) | ||
JPH0798308A (en) | Combustion elemental analyzer | |
JPS626523Y2 (en) | ||
JP2004294131A (en) | Throwing type oxygen concentration measuring apparatus in molten metal | |
JPH0426708B2 (en) | ||
Yao et al. | A closed-system potentiostatic technique employing a solid electrolyte for the investigation of thermal stability of praseodymium oxides | |
Otsuka et al. | Activities of Oxygen in Liquid Cu–In and Cu–Sn Alloys determined by a Modified Coulometric Titration Method | |
CN118731139A (en) | Liquid metal oxygen sensor, hot evaporation experimental device and use method thereof | |
JP2010139305A (en) | Solid electrolyte type method of controlling oxygen partial pressure | |
JPH0450980B2 (en) |