JPS626523Y2 - - Google Patents

Info

Publication number
JPS626523Y2
JPS626523Y2 JP11231581U JP11231581U JPS626523Y2 JP S626523 Y2 JPS626523 Y2 JP S626523Y2 JP 11231581 U JP11231581 U JP 11231581U JP 11231581 U JP11231581 U JP 11231581U JP S626523 Y2 JPS626523 Y2 JP S626523Y2
Authority
JP
Japan
Prior art keywords
mercury
molecular
heat
metal
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11231581U
Other languages
Japanese (ja)
Other versions
JPS5819250U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11231581U priority Critical patent/JPS5819250U/en
Publication of JPS5819250U publication Critical patent/JPS5819250U/en
Application granted granted Critical
Publication of JPS626523Y2 publication Critical patent/JPS626523Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 微量の水銀を検出するためには一般に原子吸光
分析法が用いられる。すなわち試料が気体の場合
はその気体を水銀捕集部に送り込んで、金属水銀
を一旦アマルガムとして捕集し、そのアマルガム
を加熱分解して遊離した金属水銀を吸光セルに送
り込んで水銀のスペクトル線の減衰を観測する。
また試料が液体、固体あるいは化合物を形成した
分子状の水銀の場合は、これを加熱して蒸発また
は分解させるか燃焼させて原子状の金属水銀を得
たのち上述のようにアマルガムとして捕集してい
た。このように従来は化合物に含まれる水銀を検
出する場合に、その化合物を分解したのちアマル
ガムとして捕集していたから、試料中に原子状の
金属水銀と分子状の化合物水銀とが混在する場合
にそれらを分別して検出することができなかつ
た。本考案はこのような欠点を除去し、簡単な構
成によつて分子状水銀と金属水銀とを分別して検
出し得る原子吸光分析装置を提供するものであ
る。
[Detailed description of the invention] Atomic absorption spectrometry is generally used to detect trace amounts of mercury. In other words, if the sample is a gas, the gas is sent to the mercury collection section to collect metallic mercury as an amalgam, and the amalgam is thermally decomposed and the released metallic mercury is sent to an absorption cell to detect the spectral lines of mercury. Observe the decay.
If the sample is liquid, solid, or molecular mercury that has formed a compound, it is heated to evaporate, decompose, or burnt to obtain atomic metallic mercury, which is then collected as an amalgam as described above. was. Conventionally, when detecting mercury contained in a compound, the compound was decomposed and then collected as an amalgam, so when atomic metal mercury and molecular compound mercury coexist in a sample, it is difficult to detect them. It was not possible to separate and detect. The present invention eliminates these drawbacks and provides an atomic absorption spectrometer that can separate and detect molecular mercury and metallic mercury with a simple configuration.

第1図は本考案の実施例で、分子状水銀捕集部
1は石英のような耐熱管に例えばけいそう土のよ
なうな耐熱多孔質材の粉末を充填して、上記耐熱
管の外側に電熱線を巻回して加熱手段2を設けた
もので、耐熱多孔質材の粉末は金属被膜を形成さ
れていない。この分子状水銀捕集部1の気体流入
口を電磁三方切換弁3によつて水銀を検出しよう
とする気体の取入口4および除湿器5に連結し、
活性炭フイルタ6を介して上記除湿器の空気取入
口を大気中に開放してある。また金属水銀の捕集
部7は前述のような耐熱多孔質材の粉末に金の被
膜を形成して、これを石英等の耐熱管に充填し、
耐熱管の外側に電熱線を巻回して加熱手段8を設
けたものである。この金属水銀捕集部7の気体流
入口を前記分子状水銀捕集部1の気体流出口に連
結してそれらを直列に接続し、電磁三方切換弁9
によつて上記金属水銀捕集部7の気体流出口をス
ペクトル線吸収セル10の気体流入口と流出口と
に連結し、かつ水銀のような有害物質を吸収する
ためのフイルタ11を介してセル10の流出口を
ポンプ12の吸入口に連結してある。このポンプ
12の排出口にサンプリング用ニードル弁13と
測定用ニードル弁14並びに電磁三方切換弁15
を介して流量計16を連結し、該流量計の気体排
出口を大気中に開放してある。
FIG. 1 shows an embodiment of the present invention, in which a molecular mercury collection unit 1 is constructed by filling a heat-resistant tube such as quartz with powder of a heat-resistant porous material such as diatomaceous earth, and The heating means 2 is provided by winding a heating wire around the heating wire, and the powder of the heat-resistant porous material is not coated with a metal film. The gas inlet of this molecular mercury collection unit 1 is connected to the gas intake 4 for which mercury is to be detected and the dehumidifier 5 by an electromagnetic three-way switching valve 3,
The air intake port of the dehumidifier is opened to the atmosphere through an activated carbon filter 6. In addition, the metal mercury collection unit 7 forms a gold coating on powder of the heat-resistant porous material as described above, and fills a heat-resistant tube such as quartz with this.
A heating means 8 is provided by winding a heating wire around the outside of a heat-resistant tube. The gas inlet of this metal mercury trapping section 7 is connected to the gas outlet of the molecular mercury trapping section 1, and they are connected in series, and the electromagnetic three-way switching valve 9
The gas outlet of the metal mercury collection section 7 is connected to the gas inlet and outlet of the spectral line absorption cell 10, and the cell is connected through a filter 11 for absorbing harmful substances such as mercury. The outlet of 10 is connected to the inlet of pump 12. A sampling needle valve 13, a measuring needle valve 14, and an electromagnetic three-way switching valve 15 are connected to the discharge port of this pump 12.
A flow meter 16 is connected through the flow meter, and the gas outlet of the flow meter is opened to the atmosphere.

上述の装置において、まず弁3によつて水銀を
検出しようとする気体の取入口4を捕集部1に連
結し、また弁9によつて捕集部7の流出口をフイ
ルタ11に連結すると共に切換弁15によつてニ
ードル弁13を流量計16に連結する。すなわち
この状態では第2図aのような流路が形成され
て、取入口4から吸入された気体試料が矢印のよ
うに捕集部1および7を通つて流通し、その流量
はニードル弁13によつて適当な値に設定され
る。従つて上述の状態を所望の時間だけ継続する
ことによつて、捕集部1,7を流通する気体の総
量が規制される。かつ気体中に水銀化合物よりな
る分子状水銀と水銀原子よりなる金属水銀とが存
在する場合に、分子状水銀は捕集部1の多孔質材
にほぼ完全に吸着し、また金属水銀はこの多孔質
材に殆んど吸着することなく捕集部7に送り込ま
れてその多孔質材に被着した金とアマルガムを形
成する。すなわち分子状の水銀は捕集部1に、ま
た金属水銀は捕集部7につて捕捉される。
In the above-mentioned apparatus, first, the intake port 4 of the gas whose mercury is to be detected is connected to the collection section 1 by the valve 3, and the outlet of the collection section 7 is connected to the filter 11 by the valve 9. At the same time, the needle valve 13 is connected to the flow meter 16 by the switching valve 15. That is, in this state, a flow path as shown in FIG. is set to an appropriate value by Therefore, by continuing the above-mentioned state for a desired period of time, the total amount of gas flowing through the collection sections 1 and 7 is regulated. When molecular mercury made of a mercury compound and metallic mercury made of mercury atoms are present in the gas, the molecular mercury is almost completely adsorbed to the porous material of the collection section 1, and the metallic mercury is absorbed into the porous material. The gold is fed into the collecting section 7 without being adsorbed to the porous material, and forms amalgam with gold that adheres to the porous material. That is, molecular mercury is captured in the collection section 1, and metallic mercury is captured in the collection section 7.

次に弁3および15を切換えて第2図bのよう
に捕集部1の流入口を除湿器5に連結すると共に
ニードル弁14を流量計16に連結する。従つて
フイルタ6および除湿器5を介して清浄な空気が
矢印のように捕集部1,7を流通して、これらの
内部あるいはフイルタ11、ポンプ12等に残留
している試料の気体を排出する。この操作を施し
た後に弁9を切換えて第2図cのように捕集部7
の気体流出口とフイルタ11との間にスペクトル
線吸収セル10を挿入して、捕集部1,7を通つ
た空気をセル10に流通させると共にニードル弁
14によつてその流量を予め適当に調整してお
く。
Next, the valves 3 and 15 are switched to connect the inlet of the collecting section 1 to the dehumidifier 5 and the needle valve 14 to the flow meter 16 as shown in FIG. 2b. Therefore, clean air flows through the collection parts 1 and 7 as shown by the arrows through the filter 6 and the dehumidifier 5, and exhausts the sample gas remaining inside these parts or in the filter 11, pump 12, etc. do. After performing this operation, the valve 9 is switched and the collection part 7 is opened as shown in Fig. 2c.
A spectral line absorption cell 10 is inserted between the gas outlet of the filter 11 and the filter 11, and the air that has passed through the collection parts 1 and 7 is made to flow through the cell 10, and the flow rate is adjusted in advance to an appropriate level using the needle valve 14. Adjust it.

上述の操作を経たのち加熱手段8を電源に接続
して金属水銀捕集部7の温度を例えば600℃程度
まで急速に上昇させる。この加熱によつて捕集部
7のアマルガムが分解するから、該捕集部にアマ
ルガムとして捕捉された金属水銀が遊離して吸入
された空気と共にセル10を流通する。従つて原
子吸光分析によつて試料の気体中に含まれていた
金属水銀が検出される。その測定値は急速に極大
値に達し、アマルガムが完全に分解し終ると零に
復帰するが、例えばこの曲線の積分値によつて金
属水銀の量を知ることが出来る。次に上記捕集部
7を高温度に保持した状態で更に加熱手段2を電
源に接続して、分子状水銀捕集部1を例えば600
℃程度まで急速に加熱する。この温度上昇によつ
て捕集部1の多孔質材に吸着した化合物の分子状
水銀が遊離して、キヤリヤの空気と共に捕集部7
に送り込まれる。従つて遊離した分子状水銀の一
部は捕集部1内で分解するが、分解することなく
捕集部7に送り込まれた分子状水銀はここに於い
て完全に分解して原子状の金属水銀となる。その
金属水銀がセル10に送り込まれるから、前述の
ように原子吸光分析によつて、その量を測定する
ことができる。またこの測定が終了したとき加熱
手段2,8の電源を遮断し、かつ必要に応じては
捕集部1および7をフアンで冷却することにより
直ちに次の測定操作に入ることができる。
After the above-described operations are completed, the heating means 8 is connected to a power source and the temperature of the metal mercury collecting section 7 is rapidly raised to, for example, about 600°C. As the amalgam in the collection section 7 is decomposed by this heating, the metallic mercury captured as amalgam in the collection section is liberated and flows through the cell 10 together with the inhaled air. Therefore, metal mercury contained in the sample gas is detected by atomic absorption spectrometry. The measured value quickly reaches a maximum value and returns to zero when the amalgam is completely decomposed, but the amount of metallic mercury can be determined, for example, from the integral value of this curve. Next, the heating means 2 is further connected to the power source while the collecting section 7 is kept at a high temperature, and the molecular mercury collecting section 1 is
Heat rapidly to about ℃. Due to this temperature rise, molecular mercury, which is a compound adsorbed on the porous material of the collection section 1, is liberated, and together with the carrier air, the molecular mercury is released into the collection section 7.
sent to. Therefore, a part of the liberated molecular mercury is decomposed in the collection section 1, but the molecular mercury sent to the collection section 7 without being decomposed is completely decomposed here and converted into atomic metal. It becomes mercury. Since the metallic mercury is sent into the cell 10, its amount can be measured by atomic absorption spectrometry as described above. Further, when this measurement is completed, the power to the heating means 2 and 8 is cut off, and if necessary, the collection sections 1 and 7 are cooled with a fan, so that the next measurement operation can be started immediately.

以上実施例について説明したように本考案は水
銀とアマルガムを形成するような金属を被着しな
い耐熱多孔質材を充填した分子状水銀の捕集部と
アマルガムを形成する金を被着した多孔質材より
なる金属水銀の捕集部とをこの順序で直列に接続
して、その気体流出口にスペクトル線吸収セルを
連結したもので、前述のように気体中に含まれる
金属水銀と分子状水銀とを分離してそれらの含有
量を別個に測定することができる。すなわち上述
のような2種の捕集部を直列に接続して、試料の
気体を流すと、分子状水銀は前段の捕集部におけ
る多孔質材にほぼ完全に吸着するが、金属水銀は
殆んど吸着することなく後段の捕集部に送り込ま
れてアマルガムを形成する。従つて後段の捕集部
を分子状水銀の分解炉として兼用することによ
り、前述のように分子状水銀と金属水銀とを分別
して検出し得るものである。
As explained above in the embodiments, the present invention consists of a molecular mercury collection section filled with a heat-resistant porous material that is not coated with any metal that would form an amalgam with mercury, and a porous layer that is coated with gold that forms an amalgam. A collection part for metallic mercury made of a material is connected in series in this order, and a spectral line absorption cell is connected to the gas outlet.As mentioned above, the metallic mercury and molecular mercury contained in the gas It is possible to separate them and measure their contents separately. In other words, when the two types of collection sections described above are connected in series and sample gas is passed through them, molecular mercury is almost completely adsorbed to the porous material in the previous collection section, but metallic mercury is almost completely adsorbed. It is sent to the subsequent collection section without being adsorbed and forms an amalgam. Therefore, by using the latter collecting section as a decomposition furnace for molecular mercury, it is possible to separate and detect molecular mercury and metallic mercury as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の構成を示した図、第2
図は第1図の装置における使用時の各状態を示し
た図である。なお図において、1は分子状水銀捕
集部、7は金属水銀捕集部、2,8は加熱手段、
10はスペクトル線吸収セル、3,9,15は電
磁三方切換弁、12はポンプ、13,14はニー
ドル弁、6,11はフイルタ、4は試料取入口、
5は除湿器、16は流量計である。
Figure 1 is a diagram showing the configuration of an embodiment of the present invention, Figure 2 is a diagram showing the configuration of an embodiment of the present invention.
The figures are diagrams showing various states of the apparatus shown in Fig. 1 during use. In the figure, 1 is a molecular mercury collection section, 7 is a metal mercury collection section, 2 and 8 are heating means,
10 is a spectral line absorption cell; 3, 9, and 15 are electromagnetic three-way switching valves; 12 is a pump; 13 and 14 are needle valves; 6 and 11 are filters; 4 is a sample intake port;
5 is a dehumidifier, and 16 is a flow meter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 耐熱多孔質材に金属を被着することなく耐熱管
に充填してかつ上記多孔質材に吸着した分子状水
銀を遊離させるための加熱手段を設けた分子状水
銀捕集部と、耐熱多孔質材に金を被着して耐熱管
に充填しかつ上記金とアマルガムを形成した金属
水銀を再び遊離させると共に分子状水銀を分解し
て金属水銀を得るための加熱手段を設けた金属水
銀捕集部と、を直列に接続して上記金属水銀捕集
部の気体排出口に水銀のスペクトル線吸収セルを
連結した分子状水銀と金属水銀との分別検出装
置。
A molecular mercury collection unit provided with a heating means for filling a heat-resistant tube without adhering metal to the heat-resistant porous material and liberating molecular mercury adsorbed on the porous material, and a heat-resistant porous material. Metal mercury collection in which a heat-resistant tube is filled with gold coated on a material, and a heating means is provided to liberate the metal mercury that has formed an amalgam with the gold again, and to decompose molecular mercury to obtain metal mercury. An apparatus for separating and detecting molecular mercury and metallic mercury, comprising: a mercury mercury collecting section connected in series with a mercury spectral line absorption cell connected to a gas outlet of the metallic mercury collecting section.
JP11231581U 1981-07-30 1981-07-30 Separation detection device for molecular mercury and metallic mercury Granted JPS5819250U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231581U JPS5819250U (en) 1981-07-30 1981-07-30 Separation detection device for molecular mercury and metallic mercury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231581U JPS5819250U (en) 1981-07-30 1981-07-30 Separation detection device for molecular mercury and metallic mercury

Publications (2)

Publication Number Publication Date
JPS5819250U JPS5819250U (en) 1983-02-05
JPS626523Y2 true JPS626523Y2 (en) 1987-02-14

Family

ID=29906648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231581U Granted JPS5819250U (en) 1981-07-30 1981-07-30 Separation detection device for molecular mercury and metallic mercury

Country Status (1)

Country Link
JP (1) JPS5819250U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540995B2 (en) * 2000-09-08 2004-07-07 財団法人電力中央研究所 Method and apparatus for continuous separation analysis of metallic mercury and water-soluble mercury in gas
JP2010122160A (en) * 2008-11-21 2010-06-03 Nippon Instrument Kk Mercury analyzing apparatus and method therefor
JP5210854B2 (en) * 2008-12-24 2013-06-12 日本インスツルメンツ株式会社 Mercury analyzer and mercury analysis method

Also Published As

Publication number Publication date
JPS5819250U (en) 1983-02-05

Similar Documents

Publication Publication Date Title
US3933431A (en) Method and apparatus for sampling atmospheric mercury
US4023929A (en) Process for determining traces of mercury in liquids
JP2019120702A (en) Sample collection absorber, heat desorption cavity device, sample collection device, and analyzer
JPS626523Y2 (en)
JP2003130860A (en) Automatic volatile substance analyzer
Chan et al. Automated determination of mercury at ultra trace level in waters by gold amalgam preconcentration and cold vapour atomic fluorescence spectrometry
CN206074528U (en) A kind of particulate matter organic chemical components on-line measurement system
CN211553882U (en) Filter rod additive heat migration volume measuring device
JPS58501787A (en) Method and apparatus for continuous automatic air analysis
US20030000318A1 (en) Apparatus for sampling & analysis of thermally-labile species and a method relating thereto
CN106546587A (en) A kind of water sample trace lead quick detection kit
JP2000234990A (en) Device for analyzing trace volatile gas constituent
WO2023093203A1 (en) Monitoring device and monitoring method for atmospheric mercury in different states
CN109459337A (en) VOCs ingredient on-line analysis and equipment in Atmospheric particulates
Leipziger Isotope Dilution Analyses by Spark Source Mass Spectrography.
CN209460085U (en) VOCs ingredient on-line analysis equipment in Atmospheric particulates
RU2006137791A (en) METHOD FOR MEASURING THE SPECTRUM OF DIMENSIONS OF AEROSOL PARTICLE CONDENSATION CORES AND A DEVICE FOR ITS IMPLEMENTATION
JPS625641Y2 (en)
JP3651525B2 (en) Gas sampling device
US3867098A (en) Gas analyzer detector
JPS5512475A (en) Sampler for volatile component in liquid
CN109212134A (en) The number of dropouts of component and the evaluation method of bleed rate are lost in a kind of gas and solid phase catalyzing agent
JPH04151536A (en) Gas sampling device
Matsuda et al. Simultaneous analysis of gaseous and particulate sulfur in the atmosphere by X-ray fluorescence spectrometry
JPS6113958Y2 (en)