JP5210854B2 - Mercury analyzer and mercury analysis method - Google Patents

Mercury analyzer and mercury analysis method Download PDF

Info

Publication number
JP5210854B2
JP5210854B2 JP2008327602A JP2008327602A JP5210854B2 JP 5210854 B2 JP5210854 B2 JP 5210854B2 JP 2008327602 A JP2008327602 A JP 2008327602A JP 2008327602 A JP2008327602 A JP 2008327602A JP 5210854 B2 JP5210854 B2 JP 5210854B2
Authority
JP
Japan
Prior art keywords
mercury
solution sample
bubbler
carrier gas
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008327602A
Other languages
Japanese (ja)
Other versions
JP2010151499A (en
JP2010151499A5 (en
Inventor
兼 松原
浩幸 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Instruments Corp
Original Assignee
Nippon Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Instruments Corp filed Critical Nippon Instruments Corp
Priority to JP2008327602A priority Critical patent/JP5210854B2/en
Publication of JP2010151499A publication Critical patent/JP2010151499A/en
Publication of JP2010151499A5 publication Critical patent/JP2010151499A5/ja
Application granted granted Critical
Publication of JP5210854B2 publication Critical patent/JP5210854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、還元気化法による水銀分析装置および水銀分析方法に関する。   The present invention relates to a mercury analyzer by a reduction vaporization method and a mercury analysis method.

従来から還元気化法による水銀分析は、長年にわたり環境分析や品質管理分析などで広く使用されている。河川水などの分析では、特許文献1の図10に示す還元気化法を用いた原子吸光方式の水銀分析装置が使用されており、還元剤などの試薬とともに還元容器に入れられた溶液試料に空気ポンプから送られた空気により、試料溶液がバブラーによりバブリングされ、試料中に存在する酸化水銀が還元剤により還元され、気化水銀となり、吸収セルに導入されて測定される。図10に示された空気ポンプと還元容器の間には、水銀除去ユニットがあり、内部に充填された水銀除去剤によって空気ポンプから送られた空気から水銀を除去して水銀を含まない清浄な空気を供給している。   Conventionally, mercury analysis by reductive vaporization has been widely used in environmental analysis and quality control analysis for many years. In the analysis of river water and the like, an atomic absorption mercury analyzer using the reductive vaporization method shown in FIG. 10 of Patent Document 1 is used, and air is applied to a solution sample placed in a reduction container together with a reagent such as a reducing agent. The sample solution is bubbled by the bubbler by the air sent from the pump, and the mercury oxide present in the sample is reduced by the reducing agent to become vaporized mercury, which is introduced into the absorption cell and measured. Between the air pump and the reduction vessel shown in FIG. 10, there is a mercury removal unit, which removes mercury from the air sent from the air pump by a mercury removal agent filled inside, and is clean without mercury. Air is supplied.

還元気化法による、原子吸光方式と異なる原子蛍光方式の水銀分析装置として、図5に示すような装置がある。この水銀分析装置100は、溶液試料S中の水銀を還元気化する還元容器21と、還元容器21内の溶液試料Sをバブリングするバブラー3と、バブラー3に水銀除去フィルタ43によって水銀が除去された清浄なキャリアガスGを流すキャリアガス制御手段4と、還元容器21内で還元気化された溶液試料S中の水銀を捕集する水銀捕集管6と、水銀が捕集された水銀捕集管6を加熱して水銀を気化させる加熱気化装置7と、加熱気化装置7によって気化された水銀を測定する水銀測定器5と、キャリアガス制御手段4、加熱気化装置7および水銀測定器5を制御する制御装置102とを備えている。   There is an apparatus as shown in FIG. 5 as an atomic fluorescence type mercury analyzer different from the atomic absorption type by the reductive vaporization method. The mercury analyzer 100 includes a reduction vessel 21 for reducing and vaporizing mercury in the solution sample S, a bubbler 3 for bubbling the solution sample S in the reduction vessel 21, and mercury removed from the bubbler 3 by a mercury removal filter 43. Carrier gas control means 4 for flowing clean carrier gas G, mercury collecting tube 6 for collecting mercury in solution sample S reduced and vaporized in reducing vessel 21, and mercury collecting tube for collecting mercury 6 controls the vaporizing device 7 for vaporizing mercury by heating 6, the mercury measuring device 5 for measuring the mercury vaporized by the heating vaporizing device 7, the carrier gas control means 4, the heating vaporizing device 7 and the mercury measuring device 5. And a control device 102.

還元容器21内の溶液試料SにポンプP1、ポンプP2によって塩化第一錫溶液25および硫酸26をそれぞれ添加した後、アルゴンボンベ41から供給されるキャリアガスGであるアルゴンガスGをマスフローコントローラ4で流量制御し、水銀除去フィルタ43によって水銀を除去した清浄なアルゴンガスG(長破線)によって溶液試料Sをバブリングし、溶液試料S中の水銀を還元気化させる。気化した水銀は硫酸等のミストを捕らえるミストキャッチャー8を通して水銀捕集管6内の捕集剤に捕集される。原子蛍光方式の水銀測定器5を備える水銀分析装置100は空気中の酸素、水分を含んだキャリアガスGで測定すると感度が著しく低下するため、還元動作終了後にガス切り替え弁Vをバイパス流路88に切り換えて、水銀を除去した清浄なアルゴンガスGで還元容器21以外の水銀捕集管6、水銀測定器5内のフローセル(図示なし)およびそれらに接続された流路を短破線で示すようにパージした後、水銀捕集管6を加熱気化装置7で加熱することで水銀捕集管6内の金アマルガム状態の水銀を気化して水銀測定器5に送り測定する。
特開2008−102068
After the stannous chloride solution 25 and the sulfuric acid 26 are added to the solution sample S in the reduction vessel 21 by the pumps P1 and P2, respectively, the argon gas G, which is the carrier gas G supplied from the argon cylinder 41, is added by the mass flow controller 4. The flow rate is controlled, and the solution sample S is bubbled with clean argon gas G (long broken line) from which mercury is removed by the mercury removal filter 43, and the mercury in the solution sample S is reduced and vaporized. The vaporized mercury is collected by a collecting agent in the mercury collecting tube 6 through a mist catcher 8 that captures mist such as sulfuric acid. The mercury analyzer 100 equipped with the atomic fluorescence mercury measuring instrument 5 has a markedly reduced sensitivity when measured with a carrier gas G containing oxygen and moisture in the air. The mercury collecting pipe 6 other than the reduction vessel 21 with the clean argon gas G from which mercury has been removed, the flow cell (not shown) in the mercury measuring instrument 5, and the flow path connected to them are shown by short broken lines. Then, the mercury collection tube 6 is heated by the heating vaporizer 7 to vaporize the mercury in the mercury amalgam state in the mercury collection tube 6 and sent to the mercury measuring device 5 for measurement.
JP2008-102068

上記の原子吸光方式および原子蛍光方式の水銀分析装置では、溶液試料を還元容器内で還元気化させる時はキャップによって還元容器の口を抑えて密封し、バブラーから出るキャリアガスの泡で攪拌することでサンプル中の水銀をキャリアガスによってフローセルまたは捕集管に送る。ところが、原子吸光方式の水銀分析装置では、清浄な空気で吸収セルや還元容器内などの流路のパージが行われず、また、原子蛍光方式の水銀分析装置では、短破線で示したパージラインのパージ時には、還元容器内はパージされていない、そのため還元容器内には測定環境下の空気がそのまま残存しており、還元容器内の空気中の水銀も一緒に測定してしまうことになる。例えば、大気雰囲気である測定室内などの測定環境下の空気中の水銀濃度は20ng/m3程度であり、還元容器内の空気の量が20mLとすると、水銀量は0.4pgとなりpgオーダーの測定をする際には無視できない値となり、水銀の極微量分析の精度を低下させていた。特に、原子蛍光方式の水銀分析装置は高感度であるため、その影響は大きい。また、原子吸光方式の水銀分析装置でも影響は少ないものの、問題となる。 In the atomic absorption method and atomic fluorescence method mercury analyzers described above, when the solution sample is reduced and vaporized in the reduction vessel, the cap of the reduction vessel is sealed with a cap, and the solution sample is stirred with the carrier gas bubbles coming out of the bubbler. The mercury in the sample is sent to the flow cell or collection tube by the carrier gas. However, the atomic absorption mercury analyzer does not purge the flow path of the absorption cell or the reduction vessel with clean air, and the atomic fluorescence mercury analyzer does not purge the purge line indicated by the short broken line. At the time of purging, the inside of the reduction container is not purged. Therefore, the air in the measurement environment remains as it is in the reduction container, and the mercury in the air in the reduction container is also measured together. For example, if the mercury concentration in the air in a measurement environment such as a measurement chamber that is an atmospheric atmosphere is about 20 ng / m 3 , and the amount of air in the reduction vessel is 20 mL, the mercury amount is 0.4 pg, which is in the order of pg. It was a value that could not be ignored when measuring, and the accuracy of trace analysis of mercury was reduced. In particular, the atomic fluorescence mercury analyzer is highly sensitive, so the influence is great. In addition, an atomic absorption mercury analyzer is problematic, although it has little effect.

本発明は前記従来の問題に鑑みてなされたもので、溶液試料中の水銀を還元気化する前に還元容器内に残存する測定環境下の空気を排出することによって水銀分析の精度を向上させることを目的とする。   The present invention has been made in view of the above-described conventional problems, and improves the accuracy of mercury analysis by discharging air in a measurement environment remaining in a reduction container before reducing and vaporizing mercury in a solution sample. With the goal.

前記目的を達成するために、本発明の第1構成にかかる水銀分析装置は、溶液試料中の水銀を還元気化する還元容器と、前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、前記キャップを上下に駆動させるキャップ駆動手段と、前記還元容器内で還元気化された溶液試料中の水銀を測定する水銀測定器と、前記バブラーおよび前記水銀測定器に流すキャリアガスの供給量を制御するキャリアガス制御手段と、前記還元容器内の溶液試料を還元気化する前に、前記キャップ駆動手段を制御して前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置させ、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、前記水銀測定器によって溶液試料中の水銀を定量させる制御装置とを備える。   In order to achieve the above object, a mercury analyzer according to the first configuration of the present invention includes a reduction container for reducing and vaporizing mercury in a solution sample, and a cap for holding a bubbler for bubbling the solution sample in the reduction container. A cap driving means for driving the cap up and down, a mercury measuring device for measuring mercury in the solution sample reduced and vaporized in the reducing vessel, and a supply amount of carrier gas to be supplied to the bubbler and the mercury measuring device. The carrier gas control means for controlling, and the bubbler is disposed at a position close to the liquid surface of the solution sample in the reduction container by controlling the cap driving means before reducing and vaporizing the solution sample in the reduction container And after purging the inside of the reduction vessel by flowing a carrier gas from the carrier gas control means to the bubbler, the mercury meter measures the water in the solution sample. And a control device for quantifying.

本発明の第1構成にかかる水銀分析装置によれば、還元容器内の溶液試料を還元気化する前に、還元容器内の溶液試料の液面上にバブラーを配置して、バブラーに清浄なキャリアガスを流して還元容器内をパージして、還元容器内に残存する測定環境下の空気を排出することによって水銀分析の精度を向上させることができる。   According to the mercury analyzer of the first configuration of the present invention, before the solution sample in the reduction vessel is reduced and vaporized, a bubbler is disposed on the liquid surface of the solution sample in the reduction vessel, and the bubbler is a clean carrier. The accuracy of mercury analysis can be improved by flowing gas to purge the inside of the reduction container and exhausting the air in the measurement environment remaining in the reduction container.

本発明の第2構成にかかる水銀分析装置は、溶液試料中の水銀を還元気化する還元容器と、前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、前記キャップを上下に駆動させるキャップ駆動手段と、前記還元容器内で還元気化された溶液試料中の水銀を捕集する水銀捕集管と、水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、前記加熱気化装置で加熱気化された水銀を測定する水銀測定器と、前記バブラーおよび前記水銀測定器に流すキャリアガスの供給量を制御するキャリアガス制御手段と、前記還元容器内の溶液試料を還元気化する前に、前記キャップ駆動手段を制御して前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置させ、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、前記水銀測定器によって溶液試料中の水銀を定量させる制御装置とを備える。   A mercury analyzer according to a second configuration of the present invention includes a reduction container for reducing and vaporizing mercury in a solution sample, a cap for holding a bubbler for bubbling the solution sample in the reduction container, and driving the cap up and down. Cap driving means, a mercury collecting tube for collecting mercury in the solution sample reduced and vaporized in the reducing vessel, and heating vaporization for heating the mercury collecting tube for collecting mercury to vaporize mercury An apparatus, a mercury measuring device for measuring mercury vaporized and heated by the heating and vaporizing device, a carrier gas control means for controlling a supply amount of a carrier gas flowing to the bubbler and the mercury measuring device, and a solution in the reducing vessel Before reducing and vaporizing the sample, the cap driving means is controlled so that the bubbler is disposed at a position close to the liquid surface of the solution sample in the reduction vessel, and the carrier is moved to the carrier. After purging the reduction vessel by flowing a carrier gas from the gas control means, and a control device for quantifying the mercury in the solution sample by the mercury measuring instrument.

本発明の第2構成にかかる水銀分析装置は、第1構成にかかる水銀分析装置に対して水銀捕集管および加熱気化装置を付加したものであり、第1構成にかかる水銀分析装置と同様の効果を奏することができる。   The mercury analyzer according to the second configuration of the present invention is obtained by adding a mercury collecting tube and a heating vaporizer to the mercury analyzer according to the first configuration, and is similar to the mercury analyzer according to the first configuration. There is an effect.

本発明の第2構成にかかる水銀分析装置において、前記キャリアガス制御手段からのキャリアガスを前記バブラーに流す還元流路と前記バブラーを迂回させるバイパス流路とに切替えるガス切り替え弁を有し、前記還元流路は前記バブラーの下流側にキャリアガスの水分を捕集するミストキャッチャーを有し、前記バイパス流路は前記ガス切り替え弁の下流側に前記水銀捕集管を有しており、前記ミストキャッチャーの下流側である、前記水銀捕集管の上流側において、前記還元流路と前記バイパス流路とが接続されていることが好ましい。この構成により、バイパス流路のパージ時にキャリアガスがミストキャチャーを通らないので、ミストキャチャー中の水分がアルゴンガスや空気などのキャリアガス中に混入せず、より高精度な水銀分析を行うことができる。   In the mercury analyzer according to the second configuration of the present invention, the mercury analyzer includes a gas switching valve that switches between a reduction flow path for flowing the carrier gas from the carrier gas control means to the bubbler and a bypass flow path for bypassing the bubbler, The reduction channel has a mist catcher that collects the moisture of the carrier gas on the downstream side of the bubbler, and the bypass channel has the mercury collecting tube on the downstream side of the gas switching valve. It is preferable that the reduction channel and the bypass channel are connected on the upstream side of the mercury collecting pipe, which is the downstream side of the catcher. With this configuration, since the carrier gas does not pass through the mist catcher during the purge of the bypass flow path, moisture in the mist catcher is not mixed into the carrier gas such as argon gas or air, and more accurate mercury analysis can be performed. it can.

本発明の水銀分析装置において、水銀測定器が原子蛍光方式であることが好ましい。この構成により、原子吸光方式の水銀分析装置よりも高感度の水銀分析を行うことができる。   In the mercury analyzer of the present invention, the mercury measuring device is preferably an atomic fluorescence method. With this configuration, mercury analysis can be performed with higher sensitivity than an atomic absorption mercury analyzer.

本発明の第1の水銀分析方法は、溶液試料中の水銀を還元気化する還元容器と、前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、前記還元容器内で還元気化された溶液試料中の水銀を測定する水銀測定器と、前記バブラーおよび前記水銀測定器にキャリアガスを流す供給量を制御するキャリアガス制御手段とを準備し、前記還元容器内の溶液試料を還元気化する前に、前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置して、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、溶液試料中の水銀を定量する。   According to the first mercury analysis method of the present invention, a reduction vessel for reducing and vaporizing mercury in a solution sample, a cap for holding a bubbler for bubbling the solution sample in the reduction vessel, and reduction vaporization in the reduction vessel A mercury measuring device for measuring mercury in a solution sample, and a carrier gas control means for controlling a supply amount of a carrier gas flowing through the bubbler and the mercury measuring device are prepared, and the solution sample in the reducing vessel is reduced and vaporized. Before, the bubbler is disposed at a position close to the liquid surface of the solution sample in the reduction container, and the inside of the reduction container is purged by flowing a carrier gas from the carrier gas control means to the bubbler. Quantify the mercury in the sample.

本発明の第1の水銀分析方法によれば、第1構成にかかる水銀分析装置と同様の効果を奏する。   According to the first mercury analysis method of the present invention, the same effects as those of the mercury analyzer according to the first configuration are achieved.

本発明の第2の水銀分析方法は、溶液試料中の水銀を還元気化する還元容器と、前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、前記還元容器内で還元気化された溶液試料中の水銀を捕集する水銀捕集管と、水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、前記加熱気化装置で加熱気化された水銀を測定する水銀測定器と、前記バブラーおよび前記水銀測定器にキャリアガスを流す供給量を制御するキャリアガス制御手段とを準備して、前記還元容器内の溶液試料を還元気化する前に、前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置して、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、溶液試料中の水銀を定量する。   According to the second mercury analysis method of the present invention, a reduction vessel for reducing and vaporizing mercury in a solution sample, a cap for holding a bubbler for bubbling the solution sample in the reduction vessel, and reduction vaporization in the reduction vessel A mercury collecting tube for collecting mercury in a solution sample, a heating vaporizer for heating the mercury collecting tube in which mercury is collected to vaporize mercury, and mercury vaporized by heating with the heating vaporizer Preparing a mercury measuring device and a carrier gas control means for controlling a supply amount of a carrier gas flowing through the bubbler and the mercury measuring device, and reducing the solution sample in the reducing vessel before reducing and vaporizing The bubbler is disposed at a position close to the liquid surface of the solution sample in the container, and after purging the inside of the reduction container by flowing a carrier gas from the carrier gas control means to the bubbler, To quantify the mercury.

本発明の第2の水銀分析方法によれば、第2構成にかかる水銀分析装置と同様の効果を奏する。   According to the second mercury analysis method of the present invention, the same effect as that of the mercury analyzer according to the second configuration can be obtained.

本発明の方法において、水銀測定器が原子蛍光方式であることが好ましい。この構成により、原子吸光方式の水銀測定器を用いるよりも、より高感度の水銀分析を行うことができる。   In the method of the present invention, the mercury measuring device is preferably an atomic fluorescence method. With this configuration, mercury analysis can be performed with higher sensitivity than using an atomic absorption mercury measuring instrument.

以下、本発明の第1実施形態である水銀分析装置について説明する。この水銀分析装置1は、溶液試料S中の水銀の含有量を定量する。図1に示すように、水銀分析装置1は、溶液試料S中の水銀を還元気化する還元容器21と、還元容器21内の溶液試料Sをバブリングするバブラー3を保持するキャップ22と、キャップ22を上下に駆動させるキャップ駆動手段23と、溶液試料S中の水銀を還元する試薬を還元容器21に注入する試薬注入部20と、バブラー3に水銀除去フィルタ43によって水銀が除去された清浄なキャリアガスGであるアルゴンガスGを流す供給量を制御するキャリアガス制御手段4と、キャリアガス制御手段4からのキャリアガスGがバブラー3に流れる還元流路82とバブラー3を迂回させるバイパス流路83とに切替えるガス切り替え弁Vと、還元容器21内で還元気化された溶液試料S中の水銀を測定する原子蛍光方式の水銀測定器5と、還元容器21内の溶液試料Sを還元気化する前に、キャップ駆動手段23を制御して還元容器21内の溶液試料Sの液面上に近接した位置にバブラー3を配置させ、バブラー3にキャリアガス制御手段4よりキャリアガスGを流して還元容器21内をパージした後に、水銀測定器5によって溶液試料S中の水銀を定量させる制御装置2とを備える。水銀測定器5で測定された水銀は水銀測定器5の下流側に備えられた活性炭フィルタのようなフィルタ手段9によって吸着除去される。   Hereinafter, a mercury analyzer according to the first embodiment of the present invention will be described. The mercury analyzer 1 quantifies the mercury content in the solution sample S. As shown in FIG. 1, the mercury analyzer 1 includes a reduction container 21 for reducing and vaporizing mercury in a solution sample S, a cap 22 for holding a bubbler 3 for bubbling the solution sample S in the reduction container 21, and a cap 22. The cap driving means 23 for driving the plate up and down, the reagent injection unit 20 for injecting a reagent for reducing mercury in the solution sample S into the reduction container 21, and the clean carrier from which mercury is removed by the mercury removal filter 43 in the bubbler 3 Carrier gas control means 4 for controlling the amount of supply of argon gas G as gas G, a reduction flow path 82 through which the carrier gas G from the carrier gas control means 4 flows to the bubbler 3, and a bypass flow path 83 for bypassing the bubbler 3. A gas switching valve V for switching to and an atomic fluorescence mercury measuring instrument 5 for measuring mercury in the solution sample S reduced and vaporized in the reduction vessel 21; Before reducing and vaporizing the solution sample S in the reduction vessel 21, the cap driving means 23 is controlled to place the bubbler 3 at a position close to the liquid surface of the solution sample S in the reduction vessel 21, and the bubbler 3 has a carrier. A control device 2 is provided that allows the mercury in the solution sample S to be quantified by the mercury measuring device 5 after flowing the carrier gas G from the gas control means 4 to purge the inside of the reduction vessel 21. Mercury measured by the mercury measuring instrument 5 is adsorbed and removed by a filter means 9 such as an activated carbon filter provided on the downstream side of the mercury measuring instrument 5.

還元容器21は、例えば18mL(ミリリットル)容量の試験管形状であり、キャップ22は、還元容器21中の溶液試料Sをバブリングするバブラー3と試薬を注入するための注入チューブを保持して還元容器21の上部を上方から密封する。複数の還元容器21が試料ステージ(図示なし)上に載置され、その複数の還元容器21中の溶液試料Sを順次測定するため、および溶液試料Sを還元気化する前に還元容器21中を清浄なアルゴンガスGでパージするために、制御装置2によってキャップ駆動手段23が制御されキャップ22が上下方向に駆動制御される。   The reduction container 21 has, for example, a 18 mL (milliliter) capacity test tube shape, and the cap 22 holds a bubbler 3 for bubbling the solution sample S in the reduction container 21 and an injection tube for injecting the reagent. The upper part of 21 is sealed from above. A plurality of reduction containers 21 are placed on a sample stage (not shown), and the solution samples S in the plurality of reduction containers 21 are sequentially measured and before the solution samples S are reduced and vaporized. In order to purge with clean argon gas G, the cap driving means 23 is controlled by the control device 2 and the cap 22 is driven and controlled in the vertical direction.

キャリアガス制御手段4は、アルゴンガスGの供給源であるアルゴンボンベ41から供給されたアルゴンガスGの供給量を制御する、例えばマスフローコントローラ4を備えている。試薬注入部20は、試薬、すなわち、還元剤である塩化第一錫溶液25および硫酸26のそれぞれを還元容器21に注入チューブ内を通って送入するポンプP1、P2を有している。キャリアガス制御手段4およびポンプP1、P2は制御装置2によって制御される。   The carrier gas control means 4 includes, for example, a mass flow controller 4 that controls the supply amount of the argon gas G supplied from an argon cylinder 41 that is a supply source of the argon gas G. The reagent injection unit 20 includes pumps P1 and P2 that send the reagents, that is, the stannous chloride solution 25 and the sulfuric acid 26, which are reducing agents, into the reduction vessel 21 through the injection tube. The carrier gas control means 4 and the pumps P1 and P2 are controlled by the control device 2.

還元流路82は上流側から順に、ガス切り替え弁V、水銀除去フィルタ43、バブラー3、還元容器21、キャリアガスGの水分を捕集するミストキャッチャー8、水銀測定器5を通り、水銀測定器5の上流側で、ミストキャッチャー8の下流側で還元流路82と接続している。バブラー3を迂回するバイパス流路83は上流側から順に、ガス切り替え弁V、水銀除去フィルタ45、水銀測定器5を通り、水銀測定器5の上流側で、水銀除去フィルタ45の下流側で還元流路82と接続している。ガス切り替え弁Vの開閉は制御装置2によって制御されている。水銀除去フィルタ43、45には水銀を捕集する充填剤として、例えば金属水銀と反応してアマルガムを生成する金や銀などの粒状体やウール状細線としたもの、多孔質担体の表面に金や銀などをコーティングしたものなどが用いられる。   The reduction channel 82 passes through the gas switching valve V, the mercury removal filter 43, the bubbler 3, the reduction vessel 21, the mist catcher 8 that collects the moisture of the carrier gas G, and the mercury measuring device 5 in order from the upstream side. 5 is connected to the reduction flow path 82 on the downstream side of the mist catcher 8. The bypass flow path 83 that bypasses the bubbler 3 passes through the gas switching valve V, the mercury removal filter 45, and the mercury measuring device 5 in order from the upstream side, and is reduced upstream of the mercury measuring device 5 and downstream of the mercury removing filter 45. The flow path 82 is connected. The opening and closing of the gas switching valve V is controlled by the control device 2. For the mercury removal filters 43 and 45, as a filler for collecting mercury, for example, a granular material such as gold or silver which reacts with metallic mercury to produce amalgam or a woolen fine wire, or gold on the surface of the porous carrier. A material coated with silver or the like is used.

次に、本実施形態の水銀分析装置1の動作について説明する。原子蛍光方式の水銀測定器5では、空気、水分等が流路中に混入した状態で測定すると感度が著しく低下するため、清浄なアルゴンガスGが用いられる。そのため、測定開始前に制御装置2によって制御されるガス切り替え弁Vによって還元流路82が閉止され、バイパス流路83が開放され、例えば流量が0.2L/min.(リットル/分)の清浄なアルゴンガスGによって水銀測定器5内のフローセル(図示なし)などの流路が、例えば10秒間パージされる。   Next, operation | movement of the mercury analyzer 1 of this embodiment is demonstrated. In the atomic fluorescence mercury measuring instrument 5, when the measurement is performed in a state where air, moisture or the like is mixed in the flow path, the sensitivity is remarkably lowered, and therefore a clean argon gas G is used. Therefore, the reduction flow path 82 is closed and the bypass flow path 83 is opened by the gas switching valve V controlled by the control device 2 before the measurement is started, for example, the flow rate is 0.2 L / min. A flow path such as a flow cell (not shown) in the mercury measuring instrument 5 is purged with, for example, 10 liters of clean argon gas G for 10 seconds.

次に図2に示すように、キャップ22が制御装置2によって制御されるキャップ駆動手段23によって上方に持ち上げられ、バブラー3の先端が還元容器21内の5mLの溶液試料Sの液面上、例えば2〜3mmに保持され、ガス切り替え弁Vによってバイパス流路83が閉止され、還元流路82が開放された状態で、バブラー3の先端から、例えば流量が0.2L/min.にマスフローコントローラ4によって制御された清浄なアルゴンガスGが流されて還元容器21内が、例えば10秒間パージされた後、パージを終了する。   Next, as shown in FIG. 2, the cap 22 is lifted upward by the cap driving means 23 controlled by the control device 2, and the tip of the bubbler 3 is on the liquid surface of the 5 mL solution sample S in the reduction container 21, for example, In the state where the bypass flow path 83 is closed by the gas switching valve V and the reduction flow path 82 is opened, for example, the flow rate is 0.2 L / min. Then, the clean argon gas G controlled by the mass flow controller 4 is flowed to purge the inside of the reduction vessel 21 for 10 seconds, for example, and then the purge is finished.

次に、図1に示すようにキャップ22がキャップ駆動手段23によって下方に下げられ、バブラー3の先端が溶液試料Sの液中に入りながら還元容器21の上部がキャップ22によって上方から密封される。この状態で還元容器21内の溶液試料Sに制御装置2によって制御されるポンプP1、ポンプP2によって塩化第一錫溶液25が0.5mL、硫酸溶液26が0.3mLそれぞれ注入され、キャリアガス制御手段4から流量が0.2L/min.のアルゴンガスGがバブラー3に流され、溶液試料Sがバブラー3によってバブリングされる。このバブリングにより、溶液試料S中の水銀が注入された塩化第一錫溶液25との還元反応によって気化され、気化した水銀が硫酸等のミストを捕らえるミストキャッチャー8を有する還元流路82を通って水銀測定器5に送入され、水銀測定器5で測定されて溶液試料S中の水銀が定量される。上記の一連の動作は制御装置2によって自動制御されている。   Next, as shown in FIG. 1, the cap 22 is lowered downward by the cap driving means 23, and the upper portion of the reduction container 21 is sealed from above by the cap 22 while the tip of the bubbler 3 enters the solution sample S. . In this state, 0.5 mL of the stannous chloride solution 25 and 0.3 mL of the sulfuric acid solution 26 are respectively injected into the solution sample S in the reduction vessel 21 by the pump P1 and the pump P2 controlled by the controller 2. The flow rate from the means 4 is 0.2 L / min. Of argon gas G is caused to flow through the bubbler 3, and the solution sample S is bubbled by the bubbler 3. By this bubbling, the mercury in the solution sample S is vaporized by a reduction reaction with the stannous chloride solution 25 into which the mercury has been injected, and the vaporized mercury passes through a reduction channel 82 having a mist catcher 8 that captures mist such as sulfuric acid. The mercury is sent to the mercury measuring instrument 5 and measured by the mercury measuring instrument 5 to quantify the mercury in the solution sample S. The above series of operations is automatically controlled by the control device 2.

このように、本発明の水銀分析装置1によれば、還元容器2内の溶液試料Sを還元気化する前に、還元容器21内の溶液試料Sの液面上にバブラー3を配置して、バブラー3に清浄なキャリアガスGを流して還元容器21内をパージして、還元容器21内に残存する測定環境下の空気を排出して測定することができる。   Thus, according to the mercury analyzer 1 of the present invention, before the solution sample S in the reduction container 2 is reduced and vaporized, the bubbler 3 is disposed on the liquid surface of the solution sample S in the reduction container 21, A clean carrier gas G is allowed to flow through the bubbler 3 to purge the inside of the reduction container 21, and the air in the measurement environment remaining in the reduction container 21 can be discharged and measured.

還元容器21内の溶液試料Sを還元気化する前に、還元容器21内をパージする水銀分析方法については、上記のように自動で行ってもよく、または手動で行ってもよい。   The mercury analysis method for purging the inside of the reducing vessel 21 before reducing and vaporizing the solution sample S in the reducing vessel 21 may be performed automatically as described above or manually.

本発明の第2実施形態である水銀分析装置について説明する。図3に示すように、水銀分析装置10の、還元容器21、キャップ22、バブラー3、キャップ駆動手段23、水銀除去フィルタ43、キャリアガス制御手段4、試薬注入部20、水銀測定器5およびフィルタ手段9は第1の実施形態と同様の構成を有し、キャリアガス制御手段4からのキャリアガスGがバブラー3に流れる還元流路84とバブラー3を迂回させるバイパス流路85とに切替えるガス切り替え弁Vと、還元容器21内で還元気化された溶液試料S中の水銀を捕集する水銀捕集管6と、水銀が捕集された水銀捕集管6を加熱して水銀を気化させる加熱気化装置7と、加熱気化装置7によって加熱気化された水銀を測定する原子蛍光方式の水銀測定器5と、還元容器21内の溶液試料Sを還元気化する前に、キャップ駆動手段23を制御して還元容器21内の溶液試料Sの液面上に近接した位置にバブラー3を配置させ、バブラー3にキャリアガス制御手段4よりキャリアガスGを流して還元容器21内をパージした後に、水銀測定器5によって溶液試料S中の水銀を定量させる制御装置12とを備えている。   A mercury analyzer according to a second embodiment of the present invention will be described. As shown in FIG. 3, the reduction container 21, the cap 22, the bubbler 3, the cap driving means 23, the mercury removal filter 43, the carrier gas control means 4, the reagent injection unit 20, the mercury measuring instrument 5, and the filter of the mercury analyzer 10. The means 9 has the same configuration as that of the first embodiment, and the gas switching is performed so that the carrier gas G from the carrier gas control means 4 is switched to the reduction flow path 84 through which the bubbler 3 flows and the bypass flow path 85 that bypasses the bubbler 3. Heating for heating the valve V, the mercury collecting tube 6 for collecting mercury in the solution sample S reduced and vaporized in the reducing vessel 21, and the mercury collecting tube 6 for collecting mercury to vaporize mercury. Before the reductive vaporization of the solution sample S in the reduction vessel 21, the cap driving means 2, the vaporizer 7, the atomic fluorescence type mercury measuring device 5 for measuring the mercury vaporized by the heating vaporizer 7. The bubbler 3 is arranged at a position close to the liquid surface of the solution sample S in the reduction container 21 and the inside of the reduction container 21 is purged by flowing the carrier gas G from the carrier gas control means 4 to the bubbler 3. And a control device 12 for quantifying mercury in the solution sample S by the mercury measuring device 5.

還元流路84は上流側から順に、ガス切り替え弁V、水銀除去フィルタ43、バブラー3、還元容器21、ミストキャッチャー8、水銀捕集管6、水銀測定器5を通り、水銀捕集管6の上流側で、ミストキャッチャー8の下流側でバイパス流路85と接続している。バイパス流路85は上流側から順に、ガス切り替え弁V、水銀除去フィルタ45、水銀捕集管6、水銀測定器5を通り、水銀捕集管6の上流側で、水銀除去フィルタ45の下流側で還元流路84と接続している。   The reduction flow path 84 passes through the gas switching valve V, the mercury removal filter 43, the bubbler 3, the reduction vessel 21, the mist catcher 8, the mercury collection pipe 6, and the mercury measuring instrument 5 in order from the upstream side, On the upstream side, it is connected to the bypass flow path 85 on the downstream side of the mist catcher 8. The bypass flow path 85 passes through the gas switching valve V, the mercury removal filter 45, the mercury collection pipe 6, and the mercury measuring device 5 in order from the upstream side, and is upstream of the mercury collection pipe 6 and downstream of the mercury removal filter 45. And connected to the reduction flow path 84.

水銀捕集管6には水銀を捕集する充填剤として、例えば金属水銀と反応してアマルガムを生成する金や銀などの粒状体やウール状細線、金や銀などを表面にコーティングした多孔質担体、または海砂などが用いられる。加熱気化装置7は、水銀を捕集する水銀捕集管6を加熱炉内に収容しており、水銀捕集管6を加熱して捕集された水銀を気化させる。   As a filler for collecting mercury, the mercury collecting tube 6 is a porous material whose surface is coated with a granular material such as gold or silver, wool-like fine wire, gold or silver, etc., which reacts with metallic mercury to produce amalgam. A carrier or sea sand is used. The heating vaporizer 7 accommodates a mercury collection tube 6 that collects mercury in a heating furnace, and heats the mercury collection tube 6 to vaporize the collected mercury.

第2実施形態の水銀分析装置10は、第1実施形態の場合と同様に動作するが、還元気化された試料溶液S中の水銀が水銀捕集管6に捕集された後、測定される点において相違する。第1実施形態と同様に水銀測定器5が原子蛍光方式であるので、測定開始前にガス切り替え弁Vによって還元流路84が閉止され、バイパス流路85が開放され、水銀捕集管6、水銀測定器5内のフローセル(図示なし)などの流路が、アルゴンガスGによってパージされる。   The mercury analyzer 10 according to the second embodiment operates in the same manner as in the first embodiment, but is measured after the mercury in the reduced vaporized sample solution S is collected in the mercury collecting tube 6. The point is different. Since the mercury measuring instrument 5 is of the atomic fluorescence method as in the first embodiment, the reduction flow path 84 is closed by the gas switching valve V before the measurement is started, the bypass flow path 85 is opened, and the mercury collecting pipe 6, A flow path such as a flow cell (not shown) in the mercury measuring instrument 5 is purged by the argon gas G.

次に、第1実施形態の図2で示した動作と同様に、制御装置12によってキャップ駆動手段23が制御されてキャップ22が上方に持ち上げられ、バブラー3の先端が溶液試料Sの液面上、例えば2〜3mmに保持され、制御装置12によって制御されるガス切り替え弁Vによってバイパス流路85が閉止され、還元流路84が開放された状態で、清浄なアルゴンガスGが流されて還元容器21内がパージされる。   Next, similarly to the operation shown in FIG. 2 of the first embodiment, the cap driving means 23 is controlled by the control device 12 to lift the cap 22 upward, and the tip of the bubbler 3 is on the liquid surface of the solution sample S. For example, clean argon gas G is flowed and reduced in a state where the bypass flow path 85 is closed by the gas switching valve V held by 2 to 3 mm and controlled by the control device 12 and the reduction flow path 84 is opened. The inside of the container 21 is purged.

次に、図3に示すようにキャップ22がキャップ駆動手段23によって下方に下げられ、バブラー3の先端が溶液試料Sの液中に入りながら還元容器21の上部がキャップ22によって上方から密封される。第1実施形態と同様にして溶液試料S中の水銀が還元気化され、バブリングによって気化された水銀はミストキャッチャー8を通り、水銀捕集管6に入り水銀が捕集される。このとき、水銀捕集管6は制御装置12によって制御される加熱気化装置7によって150〜200°に加熱されており、還元気化された水銀以外のガスを捕集しないようにしている。   Next, as shown in FIG. 3, the cap 22 is lowered downward by the cap driving means 23, and the upper portion of the reduction container 21 is sealed from above by the cap 22 while the tip of the bubbler 3 enters the solution sample S. . In the same manner as in the first embodiment, mercury in the solution sample S is reduced and vaporized, and the mercury vaporized by bubbling passes through the mist catcher 8 and enters the mercury collecting tube 6 to collect mercury. At this time, the mercury collecting tube 6 is heated to 150 to 200 ° by the heating and vaporizing device 7 controlled by the control device 12 so as not to collect any gas other than the reduced vaporized mercury.

次に、ガス切り替え弁Vによって還元流路84が閉止され、バイパス流路85が開放され、流量が例えば0.2L/min.の清浄なアルゴンガスGによって水銀測定器5内のフローセル(図示なし)などの流路が、例えば10秒間パージされる。   Next, the reduction flow path 84 is closed by the gas switching valve V, the bypass flow path 85 is opened, and the flow rate is, for example, 0.2 L / min. A flow path such as a flow cell (not shown) in the mercury measuring device 5 is purged by the clean argon gas G for 10 seconds, for example.

次に、ガス切り替え弁Vがバイパス流路85を解放し還元流路84を閉鎖している状態で、加熱気化装置7の加熱炉内の水銀捕集管6を600〜800℃に加熱して加熱気化された水銀を、制御装置12で制御されるキャリアガス制御手段4によってアルゴンガスGを、例えば流量が0.07L/min.の流量になるように調節して水銀測定器5に導入して溶液試料S中の水銀が定量される。上記の一連の動作は制御装置12によって自動制御されている。   Next, in a state where the gas switching valve V opens the bypass flow path 85 and closes the reduction flow path 84, the mercury collecting pipe 6 in the heating furnace of the heating vaporizer 7 is heated to 600 to 800 ° C. The heated and vaporized mercury is converted into argon gas G by the carrier gas control means 4 controlled by the control device 12, for example, at a flow rate of 0.07 L / min. The mercury in the solution sample S is quantified by introducing the mercury into the mercury measuring device 5 by adjusting the flow rate so that The above series of operations is automatically controlled by the control device 12.

このように、水銀分析装置10によれば、第1実施形態の水銀分析装置1と同様の効果を奏することができる。   Thus, according to the mercury analyzer 10, the same effect as the mercury analyzer 1 of the first embodiment can be obtained.

還元容器21内の溶液試料Sを還元気化する前に、還元容器21内をパージした後に、還元気化させた水銀を水銀捕集管に捕集し、加熱気化する水銀分析方法については、上記のように自動で行ってもよく、または手動で行ってもよい。   Prior to reducing and vaporizing the solution sample S in the reducing vessel 21, after purging the reducing vessel 21, the mercury that has been reduced and vaporized is collected in a mercury collecting tube and heated and vaporized. It may be done automatically or manually.

第2実施形態の水銀分析装置を用いて還元容器21内をアルゴンガスGでパージする時
間と還元容器21内に残留する水銀量との関係について実験を行った。この実験では、還
元容器21に測定環境下の空気のみを入れた状態にし、そこに水銀が除去された清浄なア
ルゴンガスGを所定の時間流して還元容器21内をパージした後、水銀捕集管6に還元容
器21中に残存している空気中の水銀を捕集して、加熱気化装置7で加熱気化させて定量
しました。パージ時間はそれぞれ0、2、4、6、8、10、12秒間であり、このパー
ジ時間を横軸に、それぞれのパージ時間に応じた水銀の定量値を縦軸にしたプロット図を図4に示す。
An experiment was conducted on the relationship between the time for purging the inside of the reduction vessel 21 with the argon gas G and the amount of mercury remaining in the reduction vessel 21 using the mercury analyzer of the second embodiment. In this experiment, only the air in the measurement environment is put in the reduction vessel 21, and the inside of the reduction vessel 21 is purged by flowing a clean argon gas G from which mercury is removed for a predetermined time, and then mercury is collected. Mercury in the air remaining in the reduction vessel 21 was collected in the tube 6 and quantified by heating and vaporizing with the heating vaporizer 7. The purge times are 0, 2, 4, 6, 8, 10, and 12 seconds, respectively. A plot of the purge time on the horizontal axis and the quantitative value of mercury corresponding to each purge time on the vertical axis is shown in FIG. Shown in

この結果からパージガスのアルゴンガスGの流量は還元気化時と同じ流量が0.2L/min.であると、18mL容量の還元容器21は10秒間で十分にアルゴンガスGに置換されていることが分かる。18mL容量の還元容器21では、10秒間のパージでパージガスが流されないときの環境測定下の空気中の水銀量である約0.4pgが還元容器21内から排出されたことになる。極微量の水銀分析をする場合は、清浄なアルゴンガスの置換工程を入れることで測定環境下での空気中水銀濃度のバラツキによる測定バラツキを解消することができる。また、測定のブランク値を下げることができる。   From this result, the flow rate of the purge gas argon gas G is 0.2 L / min. It can be seen that the 18 mL capacity reducing vessel 21 is sufficiently replaced with argon gas G in 10 seconds. In the 18 mL capacity reducing container 21, about 0.4 pg which is the amount of mercury in the air under the environmental measurement when the purge gas is not flowed by the purge for 10 seconds is discharged from the reducing container 21. When analyzing a very small amount of mercury, it is possible to eliminate measurement variations due to variations in the mercury concentration in the air in the measurement environment by inserting a clean argon gas replacement step. Moreover, the blank value of the measurement can be lowered.

第2実施形態の水銀分析装置10と図5に示す従来の水銀分析装置100とを用いてバ
イパス流路85、バイパス流路88をアルゴンガスGでパージする時間と測定時の水銀測定器5の信号強度との関係について実験を行った。従来の水銀分析装置100の還元流路87は、上流側から順に、ガス切り替え弁V、水銀除去フィルタ43、バブラー3、還元容器21、ミストキャッチャー8、水銀捕集管6、水銀測定器5を通り、バブラー3の下流側で、ミストキャッチャー8の上流側でバイパス流路88と接続され、バイパス流路88は上流側から順に、ガス切り替え弁V、水銀除去フィルタ45、ミストキャッチャー8、水銀捕集管6、水銀測定器5を通り、ミストキャッチャー8の上流側で、水銀除去フィルタ45の下流側で還元流路87に接続されている。このように、水銀分析装置10(図3)では、バイパス流路85にキャリアガスGが流れる時にはミストキャッチャー8を通過しないが、水銀分析装置100(図5)では、バイパス流路88にキャリアガスGが流れる時にはミストキャッチャー8を通過する。
Using the mercury analyzer 10 of the second embodiment and the conventional mercury analyzer 100 shown in FIG. 5, the time for purging the bypass passage 85 and the bypass passage 88 with the argon gas G and the mercury measuring device 5 at the time of measurement. Experiments were conducted on the relationship with signal strength. The reduction flow path 87 of the conventional mercury analyzer 100 includes a gas switching valve V, a mercury removal filter 43, a bubbler 3, a reduction vessel 21, a mist catcher 8, a mercury collecting pipe 6, and a mercury measuring device 5 in order from the upstream side. As shown in FIG. 2, the gas flow control valve V, the mercury removal filter 45, the mist catcher 8, the mercury catcher 8 are sequentially connected from the upstream side to the bypass flow path 88 on the downstream side of the bubbler 3 and on the upstream side of the mist catcher 8. It passes through the collecting pipe 6 and the mercury measuring device 5, and is connected to the reduction channel 87 upstream of the mist catcher 8 and downstream of the mercury removal filter 45. As described above, in the mercury analyzer 10 (FIG. 3), the carrier gas G does not pass through the mist catcher 8 when the carrier gas G flows in the bypass flow path 85, but in the mercury analysis apparatus 100 (FIG. 5), the carrier gas flows in the bypass flow path 88. When G flows, it passes through the mist catcher 8.

この実験では、水銀分析装置10、100のそれぞれの水銀捕集管6に同じ水銀量を捕集させて、加熱気化装置7で加熱し、それぞれのバイパス流路85、バイパス流路88を流量が0.2L/min.のアルゴンガスGでパージしながらそれぞれの水銀測定器5の信号強度を測定した。パージ時間を横軸に信号強度を縦軸にして、本発明の水銀分析装置10の信号強度を正方形のマークで、従来の水銀分析装置100の信号強度をひし形のマークで表したプロット図を図6に示す。   In this experiment, the same amount of mercury is collected in the respective mercury collecting tubes 6 of the mercury analyzers 10 and 100 and heated by the heating vaporizer 7, and the flow rates of the bypass passage 85 and the bypass passage 88 are increased. 0.2 L / min. The signal intensity of each mercury measuring device 5 was measured while purging with argon gas G. A plot diagram in which the signal intensity of the mercury analyzer 10 of the present invention is represented by a square mark and the signal intensity of the conventional mercury analyzer 100 is represented by a rhombus mark, with the purge time as the horizontal axis and the signal intensity as the vertical axis. It is shown in FIG.

この結果から、本発明の水銀分析装置10の信号強度はほとんど変化がなく安定しているが、従来の水銀分析装置100では測定直後は強度が低く、10秒以上経過後になって強度が安定になっている。従来の装置では測定時にバイパス流路88にキャリアガスGが流れ、ミストキャッチャー8を通過するため、ミストキャッチャー8に捕集された水分がキャリアガスGによって運ばれて流路配管内に付着し、その水分によって測定感度が低下する。一方、本発明の水銀分析装置では、測定時にキャリアガスGがミストキャッチャー8を通過せずに水銀捕集管6に接続されているので、ミストキャッチャー8からの水分の影響を受けずに短期間で信号強度を安定させることができる。このことは、測定開始前および水銀捕集管6に捕集後のキャリアガスGによるパージ時間を短縮できることを意味しており、これによりトータルの分析時間が短縮でき、効率よく水銀分析ができる。   From this result, the signal intensity of the mercury analyzer 10 of the present invention is stable with almost no change, but the intensity of the conventional mercury analyzer 100 is low immediately after measurement, and the intensity is stable after 10 seconds or more. It has become. In the conventional apparatus, the carrier gas G flows through the bypass flow path 88 during measurement and passes through the mist catcher 8, so that moisture collected by the mist catcher 8 is carried by the carrier gas G and adheres to the flow path piping. The measurement sensitivity decreases due to the moisture. On the other hand, in the mercury analyzer of the present invention, the carrier gas G is connected to the mercury collecting pipe 6 without passing through the mist catcher 8 at the time of measurement. Can stabilize the signal intensity. This means that the purge time by the carrier gas G before the start of measurement and after being collected in the mercury collection tube 6 can be shortened, whereby the total analysis time can be shortened and mercury analysis can be performed efficiently.

上記の第1および第2実施形態では、原子蛍光方式の水銀測定器5について説明したが、本発明においては原子吸光方式の水銀測定器5であってもよい。原子吸光方式の水銀測定器を備える水銀分析装置の場合には、水銀を除去した清浄な空気で、同様に還元容器21内をパージすることによって環境測定下の空気中の水銀量が還元容器21内から排出される。   In the first and second embodiments, the atomic fluorescence type mercury measuring device 5 has been described. However, in the present invention, the atomic absorption type mercury measuring device 5 may be used. In the case of a mercury analyzer equipped with an atomic absorption mercury measuring instrument, the amount of mercury in the air under environmental measurement is reduced by purging the inside of the reduction vessel 21 with clean air from which mercury has been removed. It is discharged from the inside.

本発明の第1実施形態の水銀分析装置の概略図である。It is the schematic of the mercury analyzer of 1st Embodiment of this invention. 同水銀分析装置のパージ時の概略図である。It is the schematic at the time of the purge of the mercury analyzer. 本発明の第2実施形態の水銀分析装置の概略図である。It is the schematic of the mercury analyzer of 2nd Embodiment of this invention. パージ時間と還元容器中に残留する水銀量との関係を示すプロット図である。It is a plot figure which shows the relationship between purge time and the amount of mercury which remains in a reduction | restoration container. 従来の水銀分析装置の概略図である。It is the schematic of the conventional mercury analyzer. パージ時間と信号強度との関係を示すプロット図である。It is a plot figure which shows the relationship between purge time and signal strength.

符号の説明Explanation of symbols

1 10 100 水銀分析装置
2 12 102 制御装置
3 バブラー
4 キャリアガス制御手段
5 水銀測定器
6 水銀捕集管
7 加熱気化装置
8 ミストキャッチャー
21 還元容器
22 キャップ
23 キャップ駆動手段
82 84 87 還元流路
83 85 88 バイパス流路
G キャリアガス
S 試料
V ガス切り替え弁
1 10 100 Mercury analyzer 2 12 102 Control device 3 Bubbler 4 Carrier gas control means 5 Mercury meter 6 Mercury collection tube 7 Heating vaporizer 8 Mist catcher 21 Reduction container 22 Cap 23 Cap drive means 82 84 87 Reduction flow path 83 85 88 Bypass channel G Carrier gas S Sample V Gas switching valve

Claims (7)

溶液試料中の水銀を還元気化する還元容器と、
前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、
前記キャップを上下に駆動させるキャップ駆動手段と、
前記還元容器内で還元気化された溶液試料中の水銀を測定する水銀測定器と、
前記バブラーおよび前記水銀測定器に流すキャリアガスの供給量を制御するキャリアガス制御手段と、
前記還元容器内の溶液試料を還元気化する前に、前記キャップ駆動手段を制御して前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置させ、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、前記水銀測定器によって溶液試料中の水銀を定量させる制御装置とを備えた水銀分析装置。
A reduction vessel for reducing and vaporizing mercury in the solution sample;
A cap for holding a bubbler for bubbling the solution sample in the reducing vessel;
Cap driving means for driving the cap up and down;
A mercury measuring device for measuring mercury in the solution sample reduced and vaporized in the reducing vessel;
A carrier gas control means for controlling a supply amount of a carrier gas flowing to the bubbler and the mercury measuring device;
Before reducing and vaporizing the solution sample in the reduction container, the cap driving means is controlled to place the bubbler at a position close to the liquid surface of the solution sample in the reduction container, and the carrier gas is placed in the bubbler. A mercury analyzer comprising: a control device for quantifying mercury in a solution sample by the mercury measuring device after flowing the carrier gas from the control means and purging the inside of the reduction container.
溶液試料中の水銀を還元気化する還元容器と、
前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、
前記キャップを上下に駆動させるキャップ駆動手段と、
前記還元容器内で還元気化された溶液試料中の水銀を捕集する水銀捕集管と、
水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、
前記加熱気化装置で加熱気化された水銀を測定する水銀測定器と、
前記バブラーおよび前記水銀測定器に流すキャリアガスの供給量を制御するキャリアガス制御手段と、
前記還元容器内の溶液試料を還元気化する前に、前記キャップ駆動手段を制御して前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置させ、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、前記水銀測定器によって溶液試料中の水銀を定量させる制御装置とを備えた水銀分析装置。
A reduction vessel for reducing and vaporizing mercury in the solution sample;
A cap for holding a bubbler for bubbling the solution sample in the reducing vessel;
Cap driving means for driving the cap up and down;
A mercury collecting tube for collecting mercury in the solution sample reduced and vaporized in the reducing vessel;
A heating and vaporizing apparatus for vaporizing mercury by heating the mercury collecting tube in which mercury is collected;
A mercury measuring device for measuring mercury heated and vaporized by the heating vaporizer;
A carrier gas control means for controlling a supply amount of a carrier gas flowing to the bubbler and the mercury measuring device;
Before reducing and vaporizing the solution sample in the reduction container, the cap driving means is controlled to place the bubbler at a position close to the liquid surface of the solution sample in the reduction container, and the carrier gas is placed in the bubbler. A mercury analyzer comprising: a control device for quantifying mercury in a solution sample by the mercury measuring device after flowing the carrier gas from the control means and purging the inside of the reduction container.
請求項2において、さらに
前記キャリアガス制御手段からのキャリアガスを前記バブラーに流す還元流路と前記バブラーを迂回させるバイパス流路とに切替えるガス切り替え弁を有し、
前記還元流路は前記バブラーの下流側にキャリアガスの水分を捕集するミストキャッチャーを有し、
前記バイパス流路は前記ガス切り替え弁の下流側に前記水銀捕集管を有しており、前記ミストキャッチャーの下流側である、前記水銀捕集管の上流側において、前記還元流路と前記バイパス流路とが接続されている水銀分析装置。
The gas switching valve according to claim 2, further comprising a switching channel for switching between a reduction channel for flowing the carrier gas from the carrier gas control means to the bubbler and a bypass channel for bypassing the bubbler,
The reduction flow path has a mist catcher that collects the moisture of the carrier gas on the downstream side of the bubbler,
The bypass flow path has the mercury collection pipe on the downstream side of the gas switching valve, and on the upstream side of the mercury collection pipe, which is the downstream side of the mist catcher, the reduction flow path and the bypass Mercury analyzer connected to the flow path.
請求項1〜3のいずれか一項において、
前記水銀測定器が原子蛍光方式である水銀分析装置。
In any one of Claims 1-3,
A mercury analyzer in which the mercury measuring instrument is an atomic fluorescence method.
溶液試料中の水銀を還元気化する還元容器と、
前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、
前記還元容器内で還元気化された溶液試料中の水銀を測定する水銀測定器と、
前記バブラーおよび前記水銀測定器に流すキャリアガスの供給量を制御するキャリアガス制御手段と、
を準備し、
前記還元容器内の溶液試料を還元気化する前に、前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置して、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、溶液試料中の水銀を定量する水銀分析方法。
A reduction vessel for reducing and vaporizing mercury in the solution sample;
A cap for holding a bubbler for bubbling the solution sample in the reducing vessel;
A mercury measuring device for measuring mercury in the solution sample reduced and vaporized in the reducing vessel;
A carrier gas control means for controlling a supply amount of a carrier gas flowing to the bubbler and the mercury measuring device;
Prepare
Before reducing and vaporizing the solution sample in the reduction vessel, the bubbler is disposed at a position close to the liquid surface of the solution sample in the reduction vessel, and carrier gas is caused to flow from the carrier gas control means to the bubbler. A mercury analysis method for quantitatively determining mercury in a solution sample after purging the inside of the reduction vessel.
溶液試料中の水銀を還元気化する還元容器と、
前記還元容器内の溶液試料をバブリングするバブラーを保持するキャップと、
前記還元容器内で還元気化された溶液試料中の水銀を捕集する水銀捕集管と、
水銀が捕集された前記水銀捕集管を加熱して水銀を気化させる加熱気化装置と、
前記加熱気化装置で加熱気化された水銀を測定する水銀測定器と、
前記バブラーおよび前記水銀測定器に流すキャリアガスの供給量を制御するキャリアガス制御手段と、
を準備して、
前記還元容器内の溶液試料を還元気化する前に、前記還元容器内の溶液試料の液面上に近接した位置に前記バブラーを配置して、前記バブラーに前記キャリアガス制御手段よりキャリアガスを流して前記還元容器内をパージした後に、溶液試料中の水銀を定量する水銀分析方法。
A reduction vessel for reducing and vaporizing mercury in the solution sample;
A cap for holding a bubbler for bubbling the solution sample in the reducing vessel;
A mercury collecting tube for collecting mercury in the solution sample reduced and vaporized in the reducing vessel;
A heating and vaporizing apparatus for vaporizing mercury by heating the mercury collecting tube in which mercury is collected;
A mercury measuring device for measuring mercury heated and vaporized by the heating vaporizer;
A carrier gas control means for controlling a supply amount of a carrier gas flowing to the bubbler and the mercury measuring device;
Prepare
Before reducing and vaporizing the solution sample in the reduction vessel, the bubbler is disposed at a position close to the liquid surface of the solution sample in the reduction vessel, and carrier gas is caused to flow from the carrier gas control means to the bubbler. A mercury analysis method for quantitatively determining mercury in a solution sample after purging the inside of the reduction vessel.
請求項5または6において、前記水銀測定器が原子蛍光方式である水銀分析方法。   7. The mercury analysis method according to claim 5, wherein the mercury measuring instrument is an atomic fluorescence method.
JP2008327602A 2008-12-24 2008-12-24 Mercury analyzer and mercury analysis method Active JP5210854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327602A JP5210854B2 (en) 2008-12-24 2008-12-24 Mercury analyzer and mercury analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327602A JP5210854B2 (en) 2008-12-24 2008-12-24 Mercury analyzer and mercury analysis method

Publications (3)

Publication Number Publication Date
JP2010151499A JP2010151499A (en) 2010-07-08
JP2010151499A5 JP2010151499A5 (en) 2011-12-08
JP5210854B2 true JP5210854B2 (en) 2013-06-12

Family

ID=42570783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327602A Active JP5210854B2 (en) 2008-12-24 2008-12-24 Mercury analyzer and mercury analysis method

Country Status (1)

Country Link
JP (1) JP5210854B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253168B (en) * 2011-04-21 2014-01-22 上海理工大学 Method and apparatus for producing mercury vapor with standard concentration
JP6124436B2 (en) * 2012-10-31 2017-05-10 京都電子工業株式会社 Mercury concentration measuring device
JP2015161636A (en) * 2014-02-28 2015-09-07 日本インスツルメンツ株式会社 Mercury atomic fluorescence spectrometer
US9423386B2 (en) * 2014-04-06 2016-08-23 John N. Driscoll Method for ion detection
JP6597043B2 (en) * 2015-08-19 2019-10-30 東亜ディーケーケー株式会社 Reactor unit, gasifier, pretreatment device and mercury meter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819250U (en) * 1981-07-30 1983-02-05 日本インスツルメンツ株式会社 Separation detection device for molecular mercury and metallic mercury
JP2508046B2 (en) * 1987-01-19 1996-06-19 株式会社島津製作所 Liquid sample introduction device
JP3159733B2 (en) * 1991-06-28 2001-04-23 大阪瓦斯株式会社 Bubbling device with movable plate
JPH06241990A (en) * 1993-02-19 1994-09-02 Sansou Seisakusho:Kk Method and device for measuring small amount of mercury
JP2006098400A (en) * 2004-08-31 2006-04-13 Nippon Instrument Kk Reduced evaporated mercury measuring device with automatic pretreatment mechanism
JP4758863B2 (en) * 2006-10-20 2011-08-31 日本インスツルメンツ株式会社 Mercury analyzer and mercury analysis method

Also Published As

Publication number Publication date
JP2010151499A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5210854B2 (en) Mercury analyzer and mercury analysis method
CN106706831A (en) Multifunctional on-line gas preparation and introduction system cold trap preenrichment device
JP2009053046A (en) Mercury-measuring device for measuring mercury in sample having hydrocarbon as main component
WO2013099724A1 (en) Mist-containing gas analysis device
JP5182257B2 (en) Total organic carbon measuring device
US5522915A (en) Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
US6216526B1 (en) Gas sampler for molten metal and method
WO2013094628A1 (en) Mist-containing gas analysis device
JP4157492B2 (en) Formaldehyde gas detector
JP4527110B2 (en) Analyzer having variable volume type ballast chamber and analysis method
US8420013B1 (en) Total organic carbon measurement apparatus
CN205844287U (en) Block-resistant type two-way sample introduction needle
CN108421280B (en) Sulfhydrylation organic-inorganic hybrid monolithic column and preparation method and application thereof
JP2010122160A (en) Mercury analyzing apparatus and method therefor
AU2001265989B2 (en) Method and device for measuring a component in a liquid sample
JP3910404B2 (en) Trace metal continuous measurement device and measurement method for semiconductor chemicals
CN203069542U (en) Online total organic carbon water quality analyzer
JP3840128B2 (en) Elemental analyzer and measuring method using this device
CN101718766A (en) Device for measuring breakthrough sulphur capacity and using method thereof
JPH05302920A (en) Carbon measuring apparatus
CN208043661U (en) A kind of gas-liquid separation waste discharge apparatus
JP2005337816A (en) Odor measuring method and odor measuring device
JP3492248B2 (en) Method for measuring trace helium in metals
CN108107161A (en) Evaluate the device of oxidation state mercury sorbing material performance
CN112986453B (en) Method and system for high-resolution determination of organic carbon isotopes in stalagmite

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5210854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250