JPS6271826A - Infrared optical fiber thermometer - Google Patents
Infrared optical fiber thermometerInfo
- Publication number
- JPS6271826A JPS6271826A JP60213354A JP21335485A JPS6271826A JP S6271826 A JPS6271826 A JP S6271826A JP 60213354 A JP60213354 A JP 60213354A JP 21335485 A JP21335485 A JP 21335485A JP S6271826 A JPS6271826 A JP S6271826A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- optical fiber
- infrared optical
- temperature
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 49
- 239000010409 thin film Substances 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 8
- 239000000835 fiber Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0818—Waveguides
- G01J5/0821—Optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0887—Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、被測定物の熱放射すなおち測定物から放射さ
′れる赤外線を検知し、係る被測定物の温度を測定する
赤列光ファイバ温度計に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a red array light that detects the thermal radiation of a measured object, that is, infrared rays emitted from the measured object, and measures the temperature of the measured object. Regarding fiber thermometers.
従来の赤外光ファイバ温度計は、赤外光ファイバと赤外
線センサとから構成されている。赤外光ファイバは赤外
線透過物質たとえばKH2−5、臭化タリウムなどで構
成され、ファイバの被測定物側先端面は、赤外透過レン
ズたとえばシリコンや反射防止膜で形成されている。こ
の反射防止膜を施す際には、赤外光ファイバ内を透過す
る赤外線の波長に応じて膜厚を変えている。A conventional infrared optical fiber thermometer is composed of an infrared optical fiber and an infrared sensor. The infrared optical fiber is made of an infrared transmitting material such as KH2-5, thallium bromide, etc., and the end face of the fiber facing the object to be measured is formed of an infrared transmitting lens such as silicon or an antireflection film. When applying this anti-reflection film, the film thickness is changed depending on the wavelength of infrared rays transmitted through the infrared optical fiber.
この赤外光ファイバ温度計では、赤外光ファイバに入射
する輻射エネルギーを赤外線センサで検知することによ
り被測定物の温度を計測する。−しかじ、赤外光ファイ
バの被測定物側先端面から入射する輻射エネルギーは、
被測定物の放射率によって変化する。そこで、放射率に
よって変化した輻射エネルギーを補正するために、電子
回路の増幅度又は減衰率を調整して測定値を補正する方
法がとられている。This infrared optical fiber thermometer measures the temperature of an object to be measured by detecting radiant energy incident on an infrared optical fiber with an infrared sensor. - However, the radiant energy that enters from the end face of the infrared optical fiber on the side to be measured is
Varies depending on the emissivity of the object to be measured. Therefore, in order to correct the radiant energy that has changed due to the emissivity, a method has been adopted in which the measured value is corrected by adjusting the amplification degree or attenuation rate of the electronic circuit.
しかし、従来の放射温度計同様、被測定物の放射率が明
らかでないと赤外光ファイバ温度計で被測物の温度を測
定しようとしても、放射率を補正することができない。However, like conventional radiation thermometers, if the emissivity of the object to be measured is not clear, the emissivity cannot be corrected even if an infrared optical fiber thermometer attempts to measure the temperature of the object.
そこで、特定の二つの波長を固定し、被測定物から出る
赤外線の2つの測定波長帯における放射輝度比を求めて
放射率補正を行なうようにする二色温度計を利用した被
測定物の温度の計測法も試みられている。しかし、係る
二色温度計では特定2波長を限定しているために、赤外
光ファイバに入射される放射束が減縮し、そのため比率
演算が不安定になり計測の感度が不十分になる。従って
、精度よく被測定物の温度の計測をおこなうことは困難
であった。Therefore, the temperature of the object to be measured using a two-color thermometer, which fixes two specific wavelengths and calculates the radiance ratio in the two measurement wavelength bands of the infrared rays emitted from the object to be measured, performs emissivity correction. Measurement methods have also been attempted. However, since such two-color thermometers limit two specific wavelengths, the radiant flux incident on the infrared optical fiber is reduced, resulting in unstable ratio calculation and insufficient measurement sensitivity. Therefore, it has been difficult to accurately measure the temperature of the object to be measured.
そこで、放射率補正の簡単化を図るため、赤外光ファイ
バ先端面に半球状の赤外線非透過体で構成された空洞黒
体である空洞鏡を設ける案も出されている。しかし係る
空洞鏡を有する光フアイバ温度計では、被測定物の温度
を計測する際に、赤外光ファイバ温度計をセットするこ
とが困難であること、および被測定物側先端面が半球状
の空洞鏡が設けられているために、ファイバケーブルに
無理な力がかかるなどの欠点がある。Therefore, in order to simplify the emissivity correction, a proposal has been made to provide a hollow mirror, which is a hollow black body made of a hemispherical infrared opaque material, on the end face of an infrared optical fiber. However, with such an optical fiber thermometer having a cavity mirror, it is difficult to set up the infrared optical fiber thermometer when measuring the temperature of an object to be measured, and the tip surface on the object side is hemispherical. Since the cavity mirror is provided, there are drawbacks such as excessive force being applied to the fiber cable.
上記のように従来の赤外光ファイバ温度計では、放射率
補正を不要ないし簡単化するうえで、測定精度の低下お
よび赤外光ファイバケーブルに無理な力がかかる等の欠
点が避けられなかった。このために被測定物の放射率補
正を必要とし、被測定物の温度測定には時間を費やし、
測定機器が複雑どなる虞れがあった。したがって、赤外
光ファイバ温度計で被測定物の温度を計測する場合は、
被測定物の放射率が明らかであることが必要となってい
た。As mentioned above, with conventional infrared optical fiber thermometers, although emissivity correction is unnecessary or simplified, disadvantages such as reduced measurement accuracy and excessive force being applied to the infrared optical fiber cable cannot be avoided. . For this reason, it is necessary to correct the emissivity of the measured object, and measuring the temperature of the measured object requires time.
There was a risk that the measuring equipment would become complicated. Therefore, when measuring the temperature of a measured object with an infrared optical fiber thermometer,
It was necessary that the emissivity of the object to be measured be known.
本発明は係る問題点を解決するため、被測定物の放射率
が不明であっても、被測定物の温度を精度よく計測する
ことができる赤外光ファイバ温度“計を提供することに
ある。In order to solve this problem, the present invention provides an infrared optical fiber temperature meter that can accurately measure the temperature of an object to be measured even if the emissivity of the object is unknown. .
[問題点を解決するための手段]
上記目的を達成するために、本発明は赤外光ファイバと
赤外線センサとを備えてなり、被測定物から放射される
赤外線を検知して当該被測定物の温度を測定する赤外光
ファイバ温度計であって、赤外光ファイバの測定側先端
面に薄膜黒体が設けられていることを特徴とするもので
ある。[Means for Solving the Problems] In order to achieve the above object, the present invention includes an infrared optical fiber and an infrared sensor, detects infrared rays emitted from an object to be measured, and detects the infrared rays emitted from the object to be measured. This is an infrared optical fiber thermometer for measuring the temperature of an infrared optical fiber, and is characterized in that a thin film black body is provided on the measurement side tip surface of the infrared optical fiber.
赤外光ファイバ先端面に設けられた薄膜黒体を被測定物
に接触させると、薄膜黒体と被接触物との間で温度平衡
が生ずる。すなわち、薄膜黒体は被測定物と同じ温度に
なり、薄膜黒体から被測定物の温度に相当する熱放射が
生ずる。この熱放射に基づき赤外線が赤外光ファイバ内
を通過し赤外線センサに至り、被測定物の温度が計測さ
れることになる。When a thin film black body provided at the tip of an infrared optical fiber is brought into contact with an object to be measured, temperature equilibrium occurs between the thin film black body and the object to be contacted. That is, the thin film black body has the same temperature as the object to be measured, and heat radiation corresponding to the temperature of the object to be measured is generated from the thin film black body. Based on this thermal radiation, infrared rays pass through an infrared optical fiber and reach an infrared sensor, and the temperature of the object to be measured is measured.
上記本発明の構成において、赤外光ファイバの測定側先
端面に形成される薄膜黒体は全黒をファイバに蒸着する
こと、黒色の塗料によること、樹脂によること等により
形成される。また係る薄膜黒体は熱容量の小さいもので
、被測定物に接触させることにより直ちに被測定物を同
温度にすることができる。In the configuration of the present invention described above, the thin film black body formed on the measurement side end surface of the infrared optical fiber is formed by vapor depositing all black on the fiber, by using black paint, by using resin, or the like. Further, such a thin film blackbody has a small heat capacity, and by bringing it into contact with a measured object, it can immediately bring the measured object to the same temperature.
次に本発明に係る赤外光ファイバ温度計の一実施例を添
付図面にしたがって詳説する。第1図に本発明の一実施
例たる赤外光ファイバ温度計の基本構成図を示す。図に
おいて、赤外光ファイバ1の被測定側先端面2は被測定
物4方向に向けられている。そして、被測定物4側の赤
外光ファイバ1の他端側には赤外線センサである赤外線
検出器3が接続されている6
次に第2図に赤外光ファイバ先端面の拡大構造図を示す
6図において、赤外光ファイバ1の先端面には、薄膜黒
体5が設けられている。この薄膜黒体5は極めて薄くた
とえば1ミクロンから2−ミクロンで構成され、かつ熱
容量の小さいものである。Next, an embodiment of the infrared optical fiber thermometer according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a basic configuration diagram of an infrared optical fiber thermometer which is an embodiment of the present invention. In the figure, the end face 2 of the infrared optical fiber 1 on the side to be measured is directed toward the object 4 to be measured. An infrared detector 3, which is an infrared sensor, is connected to the other end of the infrared optical fiber 1 on the side of the object to be measured 4. Next, Fig. 2 shows an enlarged structural diagram of the tip of the infrared optical fiber. In FIG. 6, a thin film black body 5 is provided on the tip end surface of the infrared optical fiber 1. This thin film black body 5 is extremely thin, for example, from 1 micron to 2 microns, and has a small heat capacity.
第3図に被測定物4中のある1点の温度を第1図および
第2図で説明した赤外線ファイバセンサが検出している
状態を図示する。図において、6は被測定物4内部の温
度を測定すべき被測定点である。 。FIG. 3 shows a state in which the infrared fiber sensor described in FIGS. 1 and 2 is detecting the temperature at one point in the object 4 to be measured. In the figure, 6 is a point to be measured at which the temperature inside the object to be measured 4 is to be measured. .
本実施例に係る赤外光ファイバ温度計の被測定物の温度
検出の仕組みは、赤外光ファイバの先端部2を被測定物
4中の被測定点6に接触させる。The mechanism for detecting the temperature of the object to be measured using the infrared optical fiber thermometer according to this embodiment is to bring the tip 2 of the infrared optical fiber into contact with a point 6 to be measured in the object 4 to be measured.
熱容量の極めて小さい薄膜黒体5は、瞬時に被測定点6
と同温度になり、その結果係る温度に相当する赤外線を
放射する。この赤外線は赤外光フフィバ1中を伝播し、
検出器3で係る赤外線を検出することにより被測定点6
の温度を計測する4さらに第3図で示すように測定点6
が被測定物内部に存在する場合、ファイバ先端を被測定
物4内部の被測定点6まで挿入し、薄膜黒体5を被測定
点6に接触させて温度を計測することが可能である。被
測定点6の温度測定を赤外光ファイバで行っているため
に、被測定点が測定物内部にある場合などは障害物を回
避できるなどの特徴を有する。また薄膜黒体が設けられ
ている赤外光ファイ°バの先端面は微小であるために、
被測定物中の微小な被測定点の温度を測定することが可
能となる。The thin film black body 5, which has an extremely small heat capacity, instantaneously connects the measurement point 6.
and as a result, it emits infrared radiation corresponding to that temperature. This infrared ray propagates through the infrared light fiber 1,
By detecting the infrared rays with the detector 3, the point to be measured 6 is detected.
Measure the temperature at 4 and then at measurement point 6 as shown in Figure 3.
exists inside the object to be measured, it is possible to insert the fiber tip to the point to be measured 6 inside the object to be measured 4, bring the thin film black body 5 into contact with the point to be measured 6, and measure the temperature. Since the temperature of the point to be measured 6 is measured using an infrared optical fiber, it has the advantage of being able to avoid obstacles when the point to be measured is inside the object to be measured. In addition, since the tip surface of an infrared optical fiber equipped with a thin film black body is minute,
It becomes possible to measure the temperature of a minute point to be measured in the object to be measured.
以上説明したように本発明に係る赤外光ファイバ温度計
によれば、赤外光ファイバ先端面に設けられている薄膜
黒体を被測定物中の被測定点と同温度にして温度計測を
おこなっているために、被測定物の放射率が不明であっ
ても精度よく被測定点の温度を計測することができる。As explained above, according to the infrared optical fiber thermometer according to the present invention, the temperature can be measured by setting the thin film black body provided on the tip surface of the infrared optical fiber to the same temperature as the point to be measured in the object to be measured. Because of this, the temperature at the point to be measured can be measured with high accuracy even if the emissivity of the object to be measured is unknown.
また、薄膜黒体は薄く構成され、かつ形状が赤外光ファ
イバ先端面どほぼ同じであるために、赤外光ファイバセ
ンサに無用の力がかかる等の負担が回避され、かつ赤外
光ファイバセンサの取り扱いも容易になる。In addition, since the thin film black body is thin and has a shape that is almost the same as the tip of the infrared optical fiber, it is possible to avoid burdens such as unnecessary force being applied to the infrared optical fiber sensor. Handling of the sensor also becomes easier.
第1図は本発明に係る赤外光ファイバ温度計の一実施例
を示す基本構成図、第2図は第1図に示す赤外光ファイ
バの先端部の断面構造を示す拡大図、第3図は被測定物
中に被測定点が存在する場合の第1図および第2図で示
す赤外光ファイバ温度計による温度計測を示す状態図で
ある。
1・・・赤外光ファイバ
2・・・赤外光ファイバ先端面、
3・・・検出器、
4・・・被測定物。
5・・・薄膜黒体。
6・・・被測定物内部の被測定点。FIG. 1 is a basic configuration diagram showing an embodiment of an infrared optical fiber thermometer according to the present invention, FIG. 2 is an enlarged view showing the cross-sectional structure of the tip of the infrared optical fiber shown in FIG. 1, and FIG. The figure is a state diagram showing temperature measurement by the infrared optical fiber thermometer shown in FIGS. 1 and 2 when there is a point to be measured in the object to be measured. DESCRIPTION OF SYMBOLS 1... Infrared optical fiber 2... Infrared optical fiber tip surface, 3... Detector, 4... Measured object. 5... Thin film blackbody. 6... Point to be measured inside the object to be measured.
Claims (1)
被測定物から放射される赤外線を検知して、当該被測定
物の温度を測定する赤外光ファイバ温度計において、前
記赤外光ファイバの測定側先端面に薄膜黒体が設けられ
ていることを特徴とする赤外光ファイバ温度計。(1) Equipped with an infrared optical fiber and an infrared sensor,
In an infrared optical fiber thermometer that measures the temperature of an object to be measured by detecting infrared rays emitted from the object, a thin film blackbody is provided on the measurement side tip surface of the infrared optical fiber. An infrared optical fiber thermometer featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60213354A JPS6271826A (en) | 1985-09-26 | 1985-09-26 | Infrared optical fiber thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60213354A JPS6271826A (en) | 1985-09-26 | 1985-09-26 | Infrared optical fiber thermometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6271826A true JPS6271826A (en) | 1987-04-02 |
Family
ID=16637776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60213354A Pending JPS6271826A (en) | 1985-09-26 | 1985-09-26 | Infrared optical fiber thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6271826A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7836773B2 (en) * | 2006-10-18 | 2010-11-23 | Fujikura Ltd. | Optical fiber thermometer and temperature-compensated optical fiber sensor |
-
1985
- 1985-09-26 JP JP60213354A patent/JPS6271826A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7836773B2 (en) * | 2006-10-18 | 2010-11-23 | Fujikura Ltd. | Optical fiber thermometer and temperature-compensated optical fiber sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4919542A (en) | Emissivity correction apparatus and method | |
US6751497B2 (en) | Infrared thermometer | |
JP2740206B2 (en) | Thermal radiation type low temperature measuring instrument | |
EP0425229A1 (en) | High temperature sensor | |
JPS6271826A (en) | Infrared optical fiber thermometer | |
US4061917A (en) | Bolometer | |
JP3209439B2 (en) | Self-calibrating pyranometer | |
JP3103338B2 (en) | Radiation thermometer | |
US20020116954A1 (en) | Apparatus and method of manufacturing optical waveguides | |
JPH01110225A (en) | Infrared radiation meter | |
JPS6255529A (en) | Radiation thermometer | |
Núñez-Cascajero et al. | Effect of the Fiber's Core Size on a Two Color Pyrometer | |
JPS63100340A (en) | Optical temperature sensor | |
JPH1137847A (en) | Narrow-field thermistor bolometer | |
JPS59225321A (en) | Optical fiber type radiation thermometer | |
KR100191209B1 (en) | Radiation-type light temperature sensor system using substance changing wavelength | |
JPS60198419A (en) | Calorimeter device for measuring transmission power of optical fiber | |
JPS60151524A (en) | Ambient temperature correcting method of fiber type radiation thermometer | |
JPS6138806B2 (en) | ||
CN111879413A (en) | Dual-wavelength active laser temperature measuring device based on photothermal effect | |
JPH09126889A (en) | Method and instrument for measuring temperature of semiconductor substrate | |
JPH0518048B2 (en) | ||
JPS5958325A (en) | Temperature detector | |
JPH08275925A (en) | Radiative clinical thermometer | |
RU2196306C2 (en) | Optical pyrometer |