JPS6271801A - Standard sample for measuring thickness of oxide layer of zirconium-base alloy member - Google Patents

Standard sample for measuring thickness of oxide layer of zirconium-base alloy member

Info

Publication number
JPS6271801A
JPS6271801A JP21105885A JP21105885A JPS6271801A JP S6271801 A JPS6271801 A JP S6271801A JP 21105885 A JP21105885 A JP 21105885A JP 21105885 A JP21105885 A JP 21105885A JP S6271801 A JPS6271801 A JP S6271801A
Authority
JP
Japan
Prior art keywords
zirconium
oxide layer
thickness
standard sample
alloy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21105885A
Other languages
Japanese (ja)
Inventor
Kanemitsu Sato
佐藤 金光
Junko Kawashima
川島 純子
Emiko Higashinakagaha
東中川 恵美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21105885A priority Critical patent/JPS6271801A/en
Publication of JPS6271801A publication Critical patent/JPS6271801A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a standard sample for measuring the thickness of the oxide layer of a zirconium-base alloy member having good calibration accuracy and long life by providing an insulating oxide layer to a prescribed film thickness on the surface of the zirconium-base alloy. CONSTITUTION:Zr alloys such as zircalloy-2, -4, Zr-2.5%Nb and Zr-1%Nb known generally as the alloy for atomic reactors are usable for the zirconium-base alloy member. Any insulator is usable for the insulating oxide layer and is exemplified by ceramic layers of zirconium oxide, aluminum oxide, etc. A sample to be measured is a Zr alloy and plural pieces are preferably provided by using the zirconium oxide and changing the film thicknesses in order to measure the thickness of the oxide layer thereof. Since the specified thickness of the oxide layer is reproduced with the long life and high accuracy in the above-mentioned manner, the calibration with the extremely high accuracy is made possible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉内で使用されたジルコニウム基合金部材
の表面に生じる酸化層の厚さを測定する軟 時、の【(用として用いられる標準試料に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention is based on a standard used for measuring the thickness of an oxidized layer formed on the surface of a zirconium-based alloy member used in a nuclear reactor. Regarding samples.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に沸騰水屋原子炉や加圧水屋原子炉等の原子炉にお
いて、チャンネルボックス、熱料被覆管1スペーサー等
の構造部材としてジルコニウム基合金が多く使用されて
いる。ジルコニウム基合金は中性子吸収断面積が小さく
、高温水中での耐食性が良好であり、しかも機械的特性
が炉内構造材料として好適であるなどの利点を有するも
のである。
Generally, in nuclear reactors such as boiling water reactors and pressurized water reactors, zirconium-based alloys are often used as structural members such as channel boxes and heating material cladding tube 1 spacers. Zirconium-based alloys have advantages such as a small neutron absorption cross section, good corrosion resistance in high-temperature water, and mechanical properties suitable as a material for reactor internal structure.

ジルコニウム基合金構造材料は炉内の苛酷な環境下にお
いて使用され1例えば沸騰水散原子炉の場合、温度28
9℃、圧カフ 1 kg/Crdの沸騰水中におかnて
、中性子の照射を受けるため、ジルコニウム基合金°の
表面には使用末期においてノジエラーコロージーンと呼
ばれる腐食反応により斑点状の灰白色腐食生成物が発生
することがある。この様な状態になると健全部分の厚さ
が減少し、機械的特性が劣化することが考えられる。こ
のため一定期間炉内で使用したジルコニウム基合金部材
を燃料貯蔵プールに移し、#1化層の厚さを測定するこ
とにより部材の健全性を判定している。
Zirconium-based alloy structural materials are used in harsh environments in reactors1, for example in boiling water reactors, temperatures of 28
Because it is exposed to neutron irradiation in boiling water at 9°C and a pressure cuff of 1 kg/Crd, the surface of the zirconium-based alloy produces speckled grayish-white corrosion due to a corrosion reaction called nosierer corrogene at the end of its use. things may occur. In such a state, the thickness of the healthy portion may decrease and the mechanical properties may deteriorate. For this reason, zirconium-based alloy members used in the reactor for a certain period of time are transferred to a fuel storage pool, and the health of the member is determined by measuring the thickness of the #1 layer.

このジルコニウム基合金部材の酸化層の厚さを測定する
方法としては、渦電流を応用し六非破壊検査が良く用い
られる。この装置の原理は次の通りである。
As a method for measuring the thickness of the oxidized layer of this zirconium-based alloy member, non-destructive testing using eddy current is often used. The principle of this device is as follows.

金属などの導′宸性材料に交流を流したコイルを近づけ
ると電磁誘導作用により材料には渦電流が生じる。材料
に発生する渦電流の強弱は材料とコイル間の距離によっ
て異な怜、コイルに生ずるインピーダンスはこの距離に
対応して変化する。
When a coil carrying an alternating current is brought close to a conductive material such as metal, eddy currents are generated in the material due to electromagnetic induction. The strength of the eddy current generated in the material varies depending on the distance between the material and the coil, and the impedance generated in the coil changes in accordance with this distance.

ここでジルコニウム基合金部材の酸化物が生じた表面に
コイルを接触させることにより、酸化物の厚みがコイル
と金属表面(この場合Zr基合金)との距離と等価とな
り、酸化物層の厚みに応じた出力が得られる。
By bringing the coil into contact with the surface of the zirconium-based alloy member on which the oxide has formed, the thickness of the oxide becomes equivalent to the distance between the coil and the metal surface (in this case, the Zr-based alloy), and the thickness of the oxide layer You can get output according to your needs.

従って、予め酸化層厚さが既知の試料すなわち標準試料
を用いて学化層の厚さと出力信号との較正曲線を求めて
おけば、酸化層厚さが未知な試料についても酸化層の厚
さを求めることができる。
Therefore, if a calibration curve between the chemical layer thickness and the output signal is obtained in advance using a sample with a known oxide layer thickness, that is, a standard sample, the oxide layer thickness can also be calculated for a sample with an unknown oxide layer thickness. can be found.

この渦IIRを原理とした測定においては厚さの較正を
正確に行なう事が重要であり、このためには精度の良い
標準試料が必要とされる。
In measurements based on this vortex IIR principle, it is important to calibrate the thickness accurately, and for this purpose a highly accurate standard sample is required.

標準試料としては、ジルコニウム基合金部材表面にプラ
スチックフィルム等の非導電性テープを貼ったものが簡
便であるため使用されるが、コイルの接触圧によって非
導電性テープが変化し較正に不正確さを生じる場合があ
る。さらにコイルの接触による非導電性テープの摩耗や
、燃料貯蔵プール中で非導電性テープが変質するという
問題がめった。
As a standard sample, a non-conductive tape such as a plastic film pasted on the surface of a zirconium-based alloy member is used because it is simple, but the non-conductive tape changes due to the contact pressure of the coil, resulting in inaccurate calibration. may occur. Furthermore, problems such as abrasion of the non-conductive tape due to contact with the coil and deterioration of the non-conductive tape in the fuel storage pool were common.

〔発明の目的〕[Purpose of the invention]

合金部材の酸化層厚さ測定用標準試料を提供することを
目的とする。
The purpose is to provide a standard sample for measuring the oxide layer thickness of alloy members.

〔発明の概要〕[Summary of the invention]

本発明は、ジルコ;ラム基合金の表面に所定の膜厚の絶
縁性酸化物層を設けたジルコニウム基合金部材の酸化層
厚さ測定用標準試料である。
The present invention is a standard sample for measuring the oxide layer thickness of a zirconium-based alloy member in which an insulating oxide layer of a predetermined thickness is provided on the surface of a zirconium-based alloy.

本発明におけるジルコニウム基合金部材はチャンネルボ
ックス、燃料被覆管、スペーサー等の原子炉の構造部材
として用いられるものであり、ジルコニウム基合金とし
ては一般に原子炉用として知られているジルカロイ−2
、−4、Zr−2,54Nb 。
The zirconium-based alloy member in the present invention is used as a structural member of a nuclear reactor such as a channel box, a fuel cladding tube, a spacer, etc., and the zirconium-based alloy is Zircaloy-2, which is generally known for use in nuclear reactors.
, -4, Zr-2,54Nb.

Zr−1%Nb等のZr合金を用釣ることができる。絶
縁性酸化物層としては絶縁体であれば良く1例えば酸化
ジルコニウム、酸化アルミニウム等のセラミック層が挙
げられる。被測定試料がZr合金であり、その酸化層厚
を測定するため、酸化ジルコニウムを用いることが好ま
しい。    −また絶縁性酸化物層は、j度良く較正
in+sを求めるため、膜厚を変えて複数個設けること
が好ましい。一般に使用末期の部材表面に生:成する酸
化層厚は200μm程度であるため、0〜20′θμm
程度の範囲で膜厚を変えれば良い。なおこの絶縁性酸化
物層表面の粗さは測定精度に影響するため、表面粗さは
5μm以下にすることが好プしい。
Zr alloys such as Zr-1%Nb can be used. The insulating oxide layer may be any insulator, and examples include ceramic layers such as zirconium oxide and aluminum oxide. Since the sample to be measured is a Zr alloy and its oxide layer thickness is to be measured, it is preferable to use zirconium oxide. - Furthermore, in order to obtain the calibration in+s with good accuracy, it is preferable to provide a plurality of insulating oxide layers with different thicknesses. Generally, the thickness of the oxidized layer that forms on the surface of a component at the end of its use is about 200 μm, so
The film thickness may be changed within a certain range. Note that since the roughness of the surface of this insulating oxide layer affects measurement accuracy, it is preferable that the surface roughness is 5 μm or less.

絶縁性酸化物層の形成手段としてはZrO2,Al2O
3等のプラズマ溶射、または酸化性雰囲気中で500〜
750℃程度の加熱による酸化によりZrO2膜を生さ
を出すため被測定対象の未照射部材を用いることが好ま
しい。
ZrO2, Al2O can be used as a means for forming the insulating oxide layer.
3 grade plasma spraying or 500~ in an oxidizing atmosphere
It is preferable to use an unirradiated member to be measured in order to form a ZrO2 film through oxidation by heating to about 750°C.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、測定子を正ができ
る。従って原子炉内の構造材の適正な良否判定が行なえ
る。
As explained above, according to the present invention, the measuring head can be adjusted correctly. Therefore, it is possible to appropriately determine the quality of structural materials within the nuclear reactor.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

未照射の呪用燃料被覆管(1)ジルカロイ−2製、外径
12.4ml、内厚0.91朋)を用いて、管外表面に
機械加工により、深さ30μ、50μ、75μ、100
μ。
Using an unirradiated cursed fuel cladding tube (1) made of Zircaloy-2, outer diameter 12.4ml, inner thickness 0.91mm), the outer surface of the tube is machined to depths of 30μ, 50μ, 75μ, 100μ.
μ.

150μの溝(2)を管全周に施こした(第1図(&)
。それぞれの溝の幅は30市で、溝と溝との間には長さ
20朋の溝加工を施こしていない部分が存在している。
A 150μ groove (2) was made around the entire circumference of the tube (Fig. 1 (&)
. The width of each groove is 30 mm, and there is a 20 mm long ungrooved portion between the grooves.

機械加工後の燃料被覆管の溝加工を施こした部分を、プ
ラズマ溶射により酸化ジルコニウムをコーティングして
、溝加工部に酸化ジルコニウム(3)を充填した。充填
した酸化ジルコニウムは溝の深さより幾分大きめにコー
ティングしく第1図(b))次いで酸化ジルコニラムノ
―の外表面を研、ml、溝加工を施こしていない部分と
同じ外径1.2.41mに仕上げた(第1図(C))。
The grooved portion of the fuel cladding tube after machining was coated with zirconium oxide by plasma spraying, and the grooved portion was filled with zirconium oxide (3). The filled zirconium oxide was coated to a depth slightly larger than the depth of the groove (Fig. 1(b)).Then, the outer surface of the zirconium oxide laminate was polished to a diameter of 1.2 mm, the same as the ungrooved portion. It was completed to a length of 41 m (Figure 1 (C)).

研摩後の酸化ジルコニウム層の表面粗さは0.5μmで
干嘴な面を有している。
The surface roughness of the zirconium oxide layer after polishing is 0.5 μm and has a smooth surface.

またそれぞれの酸化ジルコニウム層の厚さは、管の軸方
向および管の周方向に対し±2μ程度のバラツキの範囲
であった。
Further, the thickness of each zirconium oxide layer varied within a range of approximately ±2 μ in the axial direction and circumferential direction of the tube.

かくして得られた。標準試料を用いて溶料貯蔵プール中
において酸化層厚さ測定装置に取りつけ。
Thus obtained. Install the oxide layer thickness measurement device in the solvent storage pool using a standard sample.

数回の較正によって再現性のよい較正曲線を得ることが
できた。較正曲線を求める測定は酸化層厚さ測定装置の
測定子に較正電圧を入力し、測定子を標準試料に押しつ
け管の軸方向にスキャンすると、酸化層厚さに対応した
出力電圧が得られ、酸化層を形成していない部分の出力
電圧を差し引くことにより、較正曲線が求まる。酸化ジ
ルコニウム厚さと出力電圧は良い直線関係が成り立って
いた。また、測定子との接触や摩擦によって酸化ジルコ
ニウム層が変形したり摩耗「るということはなかった。
A calibration curve with good reproducibility could be obtained by several calibrations. To obtain a calibration curve, input the calibration voltage into the probe of the oxide layer thickness measuring device, press the probe against the standard sample, and scan in the axial direction of the tube to obtain the output voltage corresponding to the thickness of the oxide layer. A calibration curve is determined by subtracting the output voltage of the part where no oxide layer is formed. A good linear relationship was established between the zirconium oxide thickness and the output voltage. Furthermore, the zirconium oxide layer did not deform or wear out due to contact with the probe or friction.

更に長期間の燃料貯蔵プール中においてもまったく腐食
は発生することなく長期間に渡って標準試料として使用
できることがわかった。
Furthermore, it was found that even in a long-term fuel storage pool, no corrosion occurred and it could be used as a standard sample for a long period of time.

第1図に示した形状以外にも、 溝(2+をつけること
なく酸化物層(3)を形成したもの(第2図(a))、
酸化物/3 (2)間を連続させたもの(第2図(b)
 ) 、また溝(2jを形成し、酸化物層(3)を溝内
部と外部とで同程度の厚さとしたもの(第2図(C))
等、種々の構成が考えられる。
In addition to the shape shown in Figure 1, there are also grooves (in which the oxide layer (3) is formed without adding 2+ (Figure 2 (a)),
Oxide/3 (2) Continuous (Fig. 2 (b)
), and a groove (2j) is formed, and the oxide layer (3) has the same thickness inside and outside the groove (Fig. 2 (C)).
Various configurations are possible.

しかしながら製造の容易さ、較正の容易さ等から、第1
図(e)および第2図(c)の構成が好適と思われる。
However, due to ease of manufacturing and calibration, the first
The configurations shown in FIG. 2(e) and FIG. 2(c) are considered suitable.

特に各酸化物層を分離した構成をとることにより、スキ
ャン時に酸化物層を形成していない部分の出力電圧・r
確認しながら較正を行うことができるため無人測定の際
に特に好ましい構成である。
In particular, by adopting a configuration in which each oxide layer is separated, the output voltage r of the part where no oxide layer is formed during scanning
This is a particularly preferred configuration for unattended measurements, since calibration can be performed while checking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は燃料被覆管の概略断面図。 1・・・燃料被覆管 2・・・溝 3・・・酸化物層、酸化ジルコニウム 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 (α) (b) (C) 第  1  図 1 and 2 are schematic cross-sectional views of a fuel cladding tube. 1...Fuel cladding tube 2...Groove 3...Oxide layer, zirconium oxide Agent: Patent Attorney Noriyuki Chika Same Bamboo Flower Kikuo (α) (b) (C) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム基合金の表面に所定の膜厚の絶縁性
酸化物層を設けたことを特徴とするジルコニウム基合金
部材の酸化層厚さ測定用標準試料。
(1) A standard sample for measuring the oxide layer thickness of a zirconium-based alloy member, characterized in that an insulating oxide layer of a predetermined thickness is provided on the surface of the zirconium-based alloy.
(2)前記絶縁性酸化物層は膜厚を変えて複数個設けら
れていることを特徴とする特許請求の範囲第1項記載の
ジルコニウム基合金部材の酸化層厚さ測定用標準試料。 前記絶縁性酸化物層はセラミック粒子の溶射膜であるこ
とを特徴とする特許請求の範囲第1項記載のジルコニウ
ム基合金部材の酸化層厚さ測定用標準試料。
(2) The standard sample for measuring the oxide layer thickness of a zirconium-based alloy member according to claim 1, wherein a plurality of the insulating oxide layers are provided with different thicknesses. The standard sample for measuring the thickness of an oxide layer of a zirconium-based alloy member according to claim 1, wherein the insulating oxide layer is a sprayed film of ceramic particles.
JP21105885A 1985-09-26 1985-09-26 Standard sample for measuring thickness of oxide layer of zirconium-base alloy member Pending JPS6271801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21105885A JPS6271801A (en) 1985-09-26 1985-09-26 Standard sample for measuring thickness of oxide layer of zirconium-base alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21105885A JPS6271801A (en) 1985-09-26 1985-09-26 Standard sample for measuring thickness of oxide layer of zirconium-base alloy member

Publications (1)

Publication Number Publication Date
JPS6271801A true JPS6271801A (en) 1987-04-02

Family

ID=16599696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21105885A Pending JPS6271801A (en) 1985-09-26 1985-09-26 Standard sample for measuring thickness of oxide layer of zirconium-base alloy member

Country Status (1)

Country Link
JP (1) JPS6271801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003520A (en) * 2005-06-20 2007-01-11 Immobilien Ges Helmut Fischer Gmbh & Co Kg Calibration reference
JP2007139771A (en) * 2005-11-14 2007-06-07 Immobilien Ges Helmut Fischer Gmbh & Co Kg Calibration standard apparatus
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2010145233A (en) * 2008-12-18 2010-07-01 Global Nuclear Fuel-Japan Co Ltd Oxide film thickness measuring method
JP2016540882A (en) * 2013-05-28 2016-12-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Dynamically deposited compositionally graded Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or quasi-amorphous stainless steel with nuclear grade zirconium alloy microstructure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304471A (en) * 2000-03-28 2008-12-18 Toshiba Corp Film thickness measuring device, film thickness measuring method, and recording medium
JP2007003520A (en) * 2005-06-20 2007-01-11 Immobilien Ges Helmut Fischer Gmbh & Co Kg Calibration reference
JP2007139771A (en) * 2005-11-14 2007-06-07 Immobilien Ges Helmut Fischer Gmbh & Co Kg Calibration standard apparatus
JP2010145233A (en) * 2008-12-18 2010-07-01 Global Nuclear Fuel-Japan Co Ltd Oxide film thickness measuring method
JP2016540882A (en) * 2013-05-28 2016-12-28 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Dynamically deposited compositionally graded Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or quasi-amorphous stainless steel with nuclear grade zirconium alloy microstructure
US10060018B2 (en) 2013-05-28 2018-08-28 Westinghouse Electric Company Llc Kinetically applied gradated Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or semi-amorphous stainless steel with nuclear grade zirconium alloy metal structure

Similar Documents

Publication Publication Date Title
Ross et al. Heat transfer coefficient between UO 2 and Zircaloy-2
JPH0226721B2 (en)
Laurie et al. Ultrasonic high-temperature sensors: Past experiments and prospects for future use
EP1817601B1 (en) Method and apparatus for measuring hydrogen concentration in zirconium alloy components in the fuel pool of a nuclear power plant
JPS6271801A (en) Standard sample for measuring thickness of oxide layer of zirconium-base alloy member
US5122330A (en) Sensor for monitoring corrosion on a member in a nuclear reactor core
Hartmann et al. Measurement station for interim inspections of Lightbridge metallic fuel rods at the Halden Boiling Water Reactor
JPS59170706A (en) Method for measuring thickness of clad layer of neutron absorbing rod of zircaloy clad hafnium
Arrestad Fuel rod performance measurements and re-instrumentation capabilities at HALDEN project
JPS5967406A (en) Method and device for measuring thickness of lining of high-performance fuel sheath pipe
JPS6367506A (en) Method and instrument for measuring lining thickness of nuclear fuel coating tube
US11714009B2 (en) Ultrasonic sensors and methods of using the ultrasonic sensors
JPS58166203A (en) Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel
Yarkimbaev et al. Study of physical control methods for metric parameters of extended products in cable industry
Zhou et al. Study of Multi-parameters Separation for Oxide Film Thickness Measurement
Prestwood et al. NDT for irradiated reactor fuel pins by eddy currents and gamma scanning
Kim et al. A review on the development of the instrumentation technology for fuel irradiation test
JPH0343562B2 (en)
JPS59214794A (en) Method of measuring cladding thickness of composit type fuelcan
JPS6138403A (en) Measuring method of thickness of liner layer and thickness of zircalloy of liner coated pipe
Martin et al. Characterization of irradiated fuel rods using pulsed eddy current techniques
JPS58122404A (en) Measuring method of thickness of copper film on inside surface of clad pipe for nuclear fuel
JPH045323B2 (en)
Gundtoft et al. High-speed measurement of the internal diameter of tubes: a comparison of methods
Häfner Irradiation devices for the study of creep and swelling in ceramic fuels