JPS59214794A - Method of measuring cladding thickness of composit type fuelcan - Google Patents

Method of measuring cladding thickness of composit type fuelcan

Info

Publication number
JPS59214794A
JPS59214794A JP58087717A JP8771783A JPS59214794A JP S59214794 A JPS59214794 A JP S59214794A JP 58087717 A JP58087717 A JP 58087717A JP 8771783 A JP8771783 A JP 8771783A JP S59214794 A JPS59214794 A JP S59214794A
Authority
JP
Japan
Prior art keywords
thickness
cladding tube
pure zirconium
zirconium
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58087717A
Other languages
Japanese (ja)
Inventor
今橋 博道
正寿 稲垣
赤堀 公彦
佐々木 荘二
梅原 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58087717A priority Critical patent/JPS59214794A/en
Publication of JPS59214794A publication Critical patent/JPS59214794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複合型燃料被覆管に係り、%に被切厚さの測定
に好適な計測法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a composite fuel cladding tube, and to a measurement method suitable for measuring the cut thickness in percent.

〔発明の背景〕[Background of the invention]

現在、原子炉の核燃料を収容する燃料被覆宕は、(1)
耐食性が優れていること、(2)熱伝導性が良好なこと
、(3)靭性及び延性が高いこと、(4)中性子吸収断
面積が小さいことなどが要求され、ジルコニウム合金が
広く使用されている。
Currently, the fuel cladding that houses the nuclear fuel in a nuclear reactor is (1)
Zirconium alloys are widely used because they are required to have excellent corrosion resistance, (2) good thermal conductivity, (3) high toughness and ductility, and (4) small neutron absorption cross section. There is.

しかし、ジルコニウム合金の被覆管は、原子炉の定常条
件下では優秀な被覆管であるが、急速な負荷追従運転法
をとろうとすると、燃料ベレットから放出されるヨウ素
ガスによる腐食と、燃料ペレット自体の膨張によって生
じる応力の作用により応力腐食割れが発生し、破損をま
ねく。
However, although zirconium alloy cladding is an excellent cladding under steady-state conditions in a nuclear reactor, when rapid load-following operation is attempted, it suffers from corrosion due to iodine gas released from the fuel pellets and corrosion of the fuel pellets themselves. Stress corrosion cracking occurs due to the stress caused by the expansion of the steel, leading to damage.

近年、応力腐食割れを防止するために、ジルコニウム合
金の被覆管に純ジルコニウム層全内張した複合型被保管
が開発されている(特開昭54−59600号公報)。
In recent years, in order to prevent stress corrosion cracking, a composite type of storage in which a zirconium alloy cladding tube is entirely lined with a layer of pure zirconium has been developed (Japanese Patent Laid-Open Publication No. 54-59600).

純ジルコニウム層の厚さは被覆管肉厚の約5〜30qb
でおる。純ジルコニウムは、ジルコニウム合金(例えば
ジルカロイ−2)に比べて中性子照射中軟かさを維持し
、被覆管に発生する局部ひずみを減じ、応力腐食割れの
防止効果を有する。
The thickness of the pure zirconium layer is approximately 5 to 30 qb of the cladding tube wall thickness.
I'll go. Compared to zirconium alloys (for example, Zircaloy-2), pure zirconium maintains its softness during neutron irradiation, reduces local strain generated in the cladding, and has the effect of preventing stress corrosion cracking.

被覆管は径の大きなどレツ)k熱間押出、冷間圧処など
により、径の小さな、かつ薄肉のものに製造されるので
、被覆管全肉厚は、はぼ所望の厚さに出来ても、極〈薄
い純ジルコニウム層の厚さを所望の厚さに出来る保証は
必ずしもない。原子炉に用いられる燃料被覆管の信頼性
を考えれば、被覆管全数について全長にわたり純ジルコ
ニウム厚さを非破壊計測する技術は不可欠である。
Since the cladding tube is manufactured into a small diameter and thin walled tube by hot extrusion, cold pressing, etc., the total wall thickness of the cladding tube can be made to the desired thickness. However, there is no guarantee that the extremely thin pure zirconium layer can be made to the desired thickness. Considering the reliability of fuel cladding tubes used in nuclear reactors, a technology that non-destructively measures the pure zirconium thickness over the entire length of all cladding tubes is essential.

しかしながら、ジルコニウム合金と純ジルコニウムの物
理的性質はほぼ類似しており、従来の超音波寸法測定法
などによる測定ができない。現状では、被覆管の端部を
切断してその断面全顕微鏡観察などにより測定する方法
によらざるをえず、破壊的であり、また、多くの時間ケ
要している。
However, the physical properties of zirconium alloy and pure zirconium are almost similar, and cannot be measured by conventional ultrasonic dimension measurement methods. Currently, measurements must be taken by cutting the end of the cladding tube and observing the entire cross section under a microscope, which is destructive and takes a lot of time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、複合型被保管の純ジルコニウム厚さを
簡便でかつ精度よく非破壊的に測定する方法を提供する
にある。
An object of the present invention is to provide a method for measuring the thickness of pure zirconium of a composite type stored material simply, accurately, and non-destructively.

〔発明の概要〕[Summary of the invention]

第1図は複合型被保管の断面図を示したものである。1
はジルコニウム合金、2は純ジルコニウム層である。本
発明o1純ジルコニウムとジルコニウム合金の固南抵抗
比が1:2とやや差があることに注目し、渦流探傷法を
用い、被樟管外部から磁場変動金与え、管に生じる渦電
流の′大小を検知することにより、純ジルコニウム厚さ
を測定する方法である。渦電流法とは、交番磁界を与え
たコイルを金属に近ずけるとコイル自身のインピーダン
スが変化することを利用したものであQ、現在、管及び
棹等の傷、クラック、異物検出、膜厚測定などに広く使
用されている。
FIG. 1 shows a cross-sectional view of the composite storage device. 1
is a zirconium alloy, and 2 is a pure zirconium layer. The present invention o1 Noting that there is a slight difference in the resistance ratio of pure zirconium and zirconium alloy at 1:2, we used the eddy current flaw detection method to apply a magnetic field fluctuation from the outside of the camphor tube to detect the eddy currents generated in the tube. This method measures the thickness of pure zirconium by detecting the size. The eddy current method utilizes the fact that when a coil applied with an alternating magnetic field is brought close to metal, the impedance of the coil itself changes. Widely used for thickness measurements, etc.

本発明は、この渦電流法を適用するに際し、下記の工夫
をした。
The present invention has devised the following when applying this eddy current method.

(1)純ジルコニウム層に傷を付けたり、又は汚染をさ
けるために貫通型コイ゛ルを使用する。また貫通型コイ
ルを使用することにより、被覆管の長さ方向の厚さ分布
を連続測定できる。
(1) Use a through-type coil to avoid scratching or contaminating the pure zirconium layer. Furthermore, by using a through-type coil, the thickness distribution in the length direction of the cladding tube can be continuously measured.

(2)被測定管は径が細く、しかも薄肉である。薄肉中
の純ジルコニウム厚さを精度よく測定するためには肉厚
の影響を受けないように肉厚公差内の検量線を設ける。
(2) The tube to be measured has a small diameter and a thin wall. In order to accurately measure the thickness of pure zirconium in a thin wall, a calibration curve within the wall thickness tolerance is provided so that it is not affected by the wall thickness.

(3)  ジルコニウム合金と純ジルコニウムの固有抵
抗差が小さいので試験周波数範囲全選択する。
(3) Since the difference in specific resistance between zirconium alloy and pure zirconium is small, select the entire test frequency range.

試験周波数が低すぎる場合には肉厚の影響を強く受は測
定精度が低下する。為すきる場合にはインピーダンス変
化量と厚さの直線性が良くない。本発明者等が検討した
結果、渦電流浸透深さ1〜5Mで、±5μmの測定精度
を保証できる試験周波数範囲は、5〜130 KH2で
あることが判明した。
If the test frequency is too low, the measurement accuracy will be reduced due to the strong influence of wall thickness. If the thickness is too low, the linearity between the amount of change in impedance and the thickness is not good. As a result of studies conducted by the present inventors, it has been found that the test frequency range that can guarantee a measurement accuracy of ±5 μm at an eddy current penetration depth of 1 to 5 M is 5 to 130 KH2.

上記(2)で述べた肉厚変化に対する検量線は次のよう
にして得る。まず次の試験片を準備する。被嶺管肉厚公
差内で、上限の肉厚(Tmax )及び下限の肉厚(T
m1n ) ’lc有し、その中でそれぞれの純ジルコ
ニウム厚さを段階的に変化させたもの(例えば、30〜
120μm)全用意する。同一の渦電流試験条件で各試
験片の渦電流変化量を求める。そして、第2図に示すT
max及びTm1nに対する渦電流変化量と純ジルコニ
ウム厚さの関係図全作製する。
The calibration curve for the wall thickness change described in (2) above is obtained as follows. First, prepare the following test piece. The upper limit wall thickness (Tmax) and lower limit wall thickness (T
m1n)'lc, in which the thickness of each pure zirconium is changed in stages (for example, 30~
120 μm). Determine the amount of change in eddy current for each test piece under the same eddy current test conditions. Then, T shown in FIG.
A complete diagram of the relationship between the amount of change in eddy current and the thickness of pure zirconium with respect to max and Tm1n is prepared.

これにより、被測定管の渦電流変化(jtを測定し、同
図に示す直線りを引く。@線り上の被測定管の純ジルコ
ニウム厚さを示すXの点は下式により求める。TXは被
測定管の肉厚であり、あらかじめ何んらかの方法で測定
しておいた値である。
As a result, the eddy current change (jt) of the tube to be measured is measured, and a straight line shown in the same figure is drawn.@The point X indicating the pure zirconium thickness of the tube to be measured on the line is determined by the following formula.TX is the wall thickness of the tube to be measured, and is a value measured in advance by some method.

純ジルコニウムの厚さはXの点に相当する厚さを読み取
ることにより得られる。
The thickness of pure zirconium is obtained by reading the thickness corresponding to the point X.

以上のように、本発明は複合型燃料被樟管の外周面に設
置した渦電流コイルにより内周面の純ジルコニウム厚さ
を定量するものである。
As described above, the present invention determines the thickness of pure zirconium on the inner circumferential surface of a composite fuel camphor tube using an eddy current coil installed on the outer circumferential surface.

被覆管の肉厚を測定する方法は従来の方法で容易に、精
度よく測定できる。被接管全長にわたり迅速に測定する
方法としては超音波寸法測定法か最も好ましい。
The wall thickness of the cladding tube can be measured easily and accurately using conventional methods. Ultrasonic dimension measurement is the most preferred method for quickly measuring the entire length of the pipe.

なお、内挿型コイル又はグローブ型コイルによっても純
ジルコニウム厚さを測定できるが、上記(1)の項に対
し不都合である。
Note that the pure zirconium thickness can also be measured using an interpolated coil or a globe-shaped coil, but this is inconvenient with respect to the above item (1).

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例kH兄明する。ジルカロイ−2
管の内面に純ジルコニウム層をライニングした被測定管
を用意した。本被覆管は外径12.27調、内径10.
55酵、肉厚は810±70μmである。
Hereinafter, one embodiment of the present invention will be explained. Zircaloy-2
A tube to be measured was prepared by lining the inner surface of the tube with a layer of pure zirconium. This cladding tube has an outer diameter of 12.27 mm and an inner diameter of 10 mm.
55 fermentation, wall thickness is 810±70μm.

まず、被測定管の肉厚を超音波寸法測定装置で全長にわ
たり測定した。次に、第3図に示すように、被測定管3
をコイル保持体4に装着した。コイル保持体4の内径は
13.5mである。
First, the wall thickness of the tube to be measured was measured over the entire length using an ultrasonic dimension measuring device. Next, as shown in FIG.
was attached to the coil holder 4. The inner diameter of the coil holder 4 is 13.5 m.

コイル5は、第4図に示すように自己比較方式の貫通コ
イルでコイル巻巾4祁ずつ1対、コイル間隔2mである
。これの磁束影響範囲は巾12〜15酊である。
As shown in FIG. 4, the coils 5 are self-comparison type through-hole coils, each having a coil winding width of 4 mm and a coil spacing of 2 m. The magnetic flux influence range of this is 12 to 15 mm wide.

測定は、コイル保持体4を固定して被測定管3全長さ方
向にスライドさせ長さ方向の渦電流変化量(出力は直流
電圧)をチャートに記録した。測匣速度は1.5−”/
 sで、測定長は約4mであった。
In the measurement, the coil holder 4 was fixed and slid along the entire length of the tube 3 to be measured, and the amount of change in eddy current in the length direction (output was DC voltage) was recorded on a chart. The measuring box speed is 1.5-”/
s, and the measurement length was about 4 m.

試験周波数は64KHzであった。The test frequency was 64KHz.

第5図は、あらかじめ作製しておいた懸重、流変化h1
と肉厚及び純ジルコニウム厚さの関係図である。第1表
に上記関係図より求めた純ジルコニウム厚さの測定結果
を示す。純ジルコニウムjνさは、54〜60□mであ
った。測定後同餉所の断面を研摩し、顕微鏡写真より純
ジルコニウム厚さを実測した。その結果、各平均値に対
し、本発明の測定値は±5μn1の精度でよい一致?示
した。
Figure 5 shows the suspended load and flow change h1 prepared in advance.
FIG. 2 is a diagram showing the relationship between wall thickness and pure zirconium thickness. Table 1 shows the measurement results of the pure zirconium thickness determined from the above relationship diagram. The pure zirconium jv thickness was 54 to 60 □m. After the measurement, the cross section of the same porcelain was polished and the thickness of pure zirconium was measured from a microscopic photograph. As a result, for each average value, the measured values of the present invention are in good agreement with an accuracy of ±5 μn1? Indicated.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、純ジルコニウム厚さを簡便に、
精度よく測定できるので所望の厚さの純ジルコニウム層
を有する複合型燃料被覆管を用いて核燃料要素を得るこ
とができ、信頼性の高い核燃料集合体が得られる。
As described above, according to the present invention, the thickness of pure zirconium can be easily determined.
Since measurements can be made with high accuracy, a nuclear fuel element can be obtained using a composite fuel cladding tube having a pure zirconium layer of a desired thickness, and a highly reliable nuclear fuel assembly can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合型燃料被覆管を説明する断面図、第2図は
本発明の純ジルコニウム厚さ1llll定方法の説明図
、第3図及び第4図は本発明の貫通型コイルによる渦電
流測定方法の説明図、第5図は実施例における純ジルコ
ニウム厚さと渦電流変化量の関係を示す図である。 1・・・ジルカロイ−2合金から成る被覆管、2・・・
純ジルコニウム層。 弔2図 ヤヒソ1しつニウムRさ   → 65図 ヤVゾ1しコニウム厚さくμmノ
Figure 1 is a cross-sectional view of a composite fuel cladding tube, Figure 2 is an explanatory diagram of the method for determining the thickness of pure zirconium according to the present invention, and Figures 3 and 4 are eddy currents caused by the through-type coil of the present invention. FIG. 5, which is an explanatory diagram of the measurement method, is a diagram showing the relationship between the thickness of pure zirconium and the amount of change in eddy current in Examples. 1... Cladding tube made of Zircaloy-2 alloy, 2...
Pure zirconium layer. Diagram 2 Yahiso 1 Shitsutsunium R → Diagram 65 Yahizo 1 Conium Thickness μm

Claims (1)

【特許請求の範囲】 1、 ジルコニウム合金から成る被覆管の内周面に純ジ
ルコニウム層を設ける複合型燃料被覆管の純ジルコニウ
ム層厚さ測定方法において、上記被覆管の肉厚を測定し
、次いでジルコニウム合金の外周面に設置した貫通型渦
電流コイルにより渦電流変化量を測定し、予め求めてお
いた渦電流変化量と被覆管肉厚及び純ジルコニウム厚さ
との関係図から純ジルコニウム厚さを定量することを特
徴とする複合型燃料被覆管の被覆厚さ測定方法。 2、特許請求の範囲第1項において、純ジルコニウム厚
さを定量する方法は、被覆管肉厚公差内−の上限の肉厚
及び下限の肉厚において純ジルコニウム厚さを段階的に
変化させて得た渦電流変化量と純ジルコニウム厚さの線
図に、渦電流変化量及び被覆管肉厚の測測定値を挿入し
、純ジルコニウム厚さを定量することを特徴とする複合
型燃料被覆管の被覆厚さ測定方法。 3、%許潤求の範囲第1項において、被覆管の肉厚測定
は、超音波寸法測定法で測定することを特徴とする複合
型燃料被覆管の被保厚さ測定方法、
[Claims] 1. A method for measuring the thickness of a pure zirconium layer of a composite fuel cladding tube in which a pure zirconium layer is provided on the inner circumferential surface of a cladding tube made of a zirconium alloy, in which the wall thickness of the cladding tube is measured, and then The amount of change in eddy current is measured using a penetrating eddy current coil installed on the outer circumferential surface of the zirconium alloy, and the thickness of pure zirconium is determined from the relation diagram between the amount of change in eddy current obtained in advance, the cladding tube wall thickness, and the pure zirconium thickness. A method for measuring the cladding thickness of a composite fuel cladding tube, which is characterized by quantifying the cladding thickness of a composite fuel cladding tube. 2. In claim 1, the method for quantifying the pure zirconium thickness involves changing the pure zirconium thickness stepwise at the upper and lower limits of the wall thickness tolerance of the cladding tube. A composite fuel cladding tube characterized in that the pure zirconium thickness is determined by inserting the measured values of the eddy current change amount and the cladding tube wall thickness into the obtained diagram of the eddy current change amount and pure zirconium thickness. Method for measuring coating thickness. 3. Scope of % Allowance Required Item 1, a method for measuring the thickness of a composite fuel cladding tube, characterized in that the wall thickness of the cladding tube is measured by an ultrasonic dimension measurement method;
JP58087717A 1983-05-20 1983-05-20 Method of measuring cladding thickness of composit type fuelcan Pending JPS59214794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58087717A JPS59214794A (en) 1983-05-20 1983-05-20 Method of measuring cladding thickness of composit type fuelcan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58087717A JPS59214794A (en) 1983-05-20 1983-05-20 Method of measuring cladding thickness of composit type fuelcan

Publications (1)

Publication Number Publication Date
JPS59214794A true JPS59214794A (en) 1984-12-04

Family

ID=13922651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58087717A Pending JPS59214794A (en) 1983-05-20 1983-05-20 Method of measuring cladding thickness of composit type fuelcan

Country Status (1)

Country Link
JP (1) JPS59214794A (en)

Similar Documents

Publication Publication Date Title
JPS5967405A (en) Method for measuring thickness of liner
Laurie et al. Ultrasonic high-temperature sensors: Past experiments and prospects for future use
TW200807447A (en) Steam generator mapping system
Samal et al. Investigation of failure behavior of two different types of Zircaloy clad tubes used as nuclear reactor fuel pins
US6366083B1 (en) Method for measuring the thickness of oxide layer underlying crud layer containing ferromagnetic material on nuclear fuel rods
US5171517A (en) Method for monitoring corrosion on a member in a nuclear reactor core
JP2001141864A (en) Method for measuring thickness of cladding layer formed on nuclear fuel rod surface and including ferromagnetic material
JPS59214794A (en) Method of measuring cladding thickness of composit type fuelcan
US5122330A (en) Sensor for monitoring corrosion on a member in a nuclear reactor core
Arrestad Fuel rod performance measurements and re-instrumentation capabilities at HALDEN project
JPS5954903A (en) Method and apparatus for measuring thickness of coated pipe without destruction
JPS6271801A (en) Standard sample for measuring thickness of oxide layer of zirconium-base alloy member
JPS58166203A (en) Method and device for measuring thickness of coating film on inside surface of coated pipe for nuclear fuel
US20220148747A1 (en) System and method for local resistivity measurement and critical heat flux calculation for nuclear reactor cladding tubing
Kim et al. A review on the development of the instrumentation technology for fuel irradiation test
JPS6221002A (en) Thickness measurement of linking pipe
US20200096482A1 (en) Ultrasonic sensors and methods of using the ultrasonic sensors
Billson et al. Ultrasonic evaluation of hydride concentration in zirconium-niobium alloys
JPS58122404A (en) Measuring method of thickness of copper film on inside surface of clad pipe for nuclear fuel
JPS63235802A (en) Method for measuring thickness of liner
JPH045323B2 (en)
JPS6367506A (en) Method and instrument for measuring lining thickness of nuclear fuel coating tube
Hur et al. Correlation between General Corrosion Behavior and Eddy Current Noise of Alloy 690 Steam Generator Tube
Jones An Eddy Current Device for Measuring Aluminum Cladding on Uranium Fuel Elements
JPS62299757A (en) Inspecting method for long-sized tube for nuclear reactor measurement