JPS6270538A - Manufacture of ceramics grain-dispersed composite alloy - Google Patents

Manufacture of ceramics grain-dispersed composite alloy

Info

Publication number
JPS6270538A
JPS6270538A JP21198085A JP21198085A JPS6270538A JP S6270538 A JPS6270538 A JP S6270538A JP 21198085 A JP21198085 A JP 21198085A JP 21198085 A JP21198085 A JP 21198085A JP S6270538 A JPS6270538 A JP S6270538A
Authority
JP
Japan
Prior art keywords
particles
ceramic
dispersed
aluminum
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21198085A
Other languages
Japanese (ja)
Inventor
Shigeru Akiyama
茂 秋山
Hidetoshi Ueno
英俊 上野
Akira Kitahara
北原 晃
Koji Imagawa
今川 耕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21198085A priority Critical patent/JPS6270538A/en
Publication of JPS6270538A publication Critical patent/JPS6270538A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composite alloy in which individually independent ceramics grains are dispersed, by adding a mixture in which ceramics grains and metallic grains are uniformly dispersed to a molten metal and by mixing them by agitation. CONSTITUTION:The ceramics grains and the metallic grains for dispersion consisting of Al or alloys thereof, etc., each having average grain size ranging from 10 to 100mum, are mixed by agitation by means of a mixer and, by the use of coagulated or easily coagulating ceramics grains and metallic grains for dispersion, the mixture of both grains uniformly and independently dispersed is formed. Then this mixture is added to the molten metal, which is mixed by mechanical agitation, so that ceramics grain-dispersed composite alloy in which independent ceramics grains are uniformly dispersed in the metal can be obtained. As the above molten metal, Al or its alloys are used and, as the ceramics grains, grains of oxides such as alumina, zirconia, etc., silicon nitride, etc., are used, respectively. The above-mentioned composite alloy is useful as a new material improving strength at high temp., wear resistance and lubricity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、通常、極めて凝集し易い徹細なセラミック
ス粒子(001〜1000μm)を、前もってアルミニ
ウム等の金属粒子と混合する前処理により、容易に溶融
金属に機械的な攪拌混合により個々に独立したセラミッ
クス粒子を均一に分散させる方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention allows fine ceramic particles (001 to 1000 μm), which are normally extremely likely to agglomerate, to be easily mixed with metal particles such as aluminum through pretreatment. The present invention relates to a method for uniformly dispersing individual ceramic particles in molten metal by mechanical stirring and mixing.

このセラミックス粒子分散複合合金は、高温強度の改善
、耐摩耗性、潤滑性を向上させる特性を持つ金属複合材
料として出現が求められている。
This ceramic particle-dispersed composite alloy is expected to emerge as a metal composite material with properties that improve high-temperature strength, wear resistance, and lubricity.

〈従来技術及びその問題点〉 従来、セラミックス粒子分散複合合金の製造方法として
は、例えばアルミニウム系について述べればアルミニウ
ム粒子を酸化雰囲気中て表面に数十〇I11程度の酸化
皮膜を作って、これを圧粉成形後に、熱間押し出しによ
り製造される表面酸化法、および流動している溶湯にセ
ラミックス粒子を噴射して、アルミニウム溶湯にセラミ
ックス粒子を入れる噴射分散法がなされている。上記の
表面酸化法は、製造工程が複雑であり、アルミナ(酸化
膜)がアルミニウム粒内に存在せず、アルミナ量も多く
できず、アルミナ粒子の分布にも限界があるので、アル
ミニウムの強化にも限界がある。また上記の噴射分散法
は、r&動する溶湯に不活性ガスと共にセラミックス粒
子を噴射するのて、セラミックス粒子の歩留りが極端に
悪く、またセラミックス粒子の添加量も多くてきなく、
さらに微粒子が周囲に散乱するので環境も悪くなる。即
ちこれらの従来方法は、製造工程の複雑さや、歩留り、
大型化などに技術的な問題があり、実用化にはこれらの
問題の解決を必要としている。
<Prior art and its problems> Conventionally, in the case of aluminum-based composite alloys, for example, the method for manufacturing ceramic particle-dispersed composite alloys involves forming an oxide film of approximately several tens of I11 on the surface of aluminum particles in an oxidizing atmosphere; A surface oxidation method in which ceramic particles are manufactured by hot extrusion after powder compacting, and a spray dispersion method in which ceramic particles are injected into a flowing molten metal to introduce the ceramic particles into the molten aluminum. The above surface oxidation method has a complicated manufacturing process, alumina (oxide film) does not exist within the aluminum grains, the amount of alumina cannot be increased, and there is a limit to the distribution of alumina particles, so it is difficult to strengthen aluminum. There are also limits. In addition, in the above injection dispersion method, the ceramic particles are injected together with an inert gas into the molten metal that is moving, so the yield of the ceramic particles is extremely poor, and the amount of ceramic particles added cannot be increased.
Furthermore, the environment becomes worse because the particles are scattered around. In other words, these conventional methods suffer from the complexity of the manufacturing process, the yield rate, and
There are technical problems with increasing the size, and these problems need to be resolved for practical use.

〈発明の目的〉 この発明は、乙のような従来の課題の解決のためになさ
れたものであり、セラミックス粒子分散複合合金に要求
されろ特性を具備した複合合金を工業的に製造する方法
を提供するものである。
<Purpose of the Invention> This invention was made to solve the conventional problem as mentioned above, and provides a method for industrially manufacturing a composite alloy having the characteristics required for a ceramic particle dispersed composite alloy. This is what we provide.

〈問題点を解決する為の手段〉 この発明は、溶融金属にセラミックス粒子を加えて攪拌
することにより、多数のセラミックス粒子をもつセラミ
ックス粒子分散複合合金を製造する方法において、セラ
ミックス粒子とアルミニウム粒子またはその合金等の分
散用金属粒子を混合機で混合して、凝集したあるいは凝
集しやすいセラミックス粒子を分散用金属粒子によって
、均一に独立分散したセラミックス粒子と金属粒子の混
合物をつくり、これを溶融した金属に加えて、機械的に
攪拌混合することにより、独立したセラミックス粒子が
金属中に均一に分散するセラミックス粒子分散複合合金
を製造する方法である。溶融金属としては、アルミニウ
ムまたはその合金、分散用の金属粒子としては、アルミ
ニウムまたはその合金等が好ましい金属として用いられ
るがそれ理外の金属についても適用可能である。又セラ
ミックス粒子として(よ、アルミナ、シリコニア等の酸
化物、窒化ケイ素、サイアロン等の窒化物、炭化ケイ素
、黒鉛等の炭化物、ホウ化デクニウム等のホウ化物を用
い、上記アルミニウム粒子の中に、セラミックス粒子を
1〜80重量%加えて混合調整した後、アルミニウム溶
湯に混合物を5〜50重量%加えて攪拌し分散させても
よい。
<Means for Solving the Problems> The present invention provides a method for producing a ceramic particle-dispersed composite alloy having a large number of ceramic particles by adding ceramic particles to molten metal and stirring the mixture. The metal particles for dispersion such as alloys are mixed in a mixer, and the ceramic particles that are agglomerated or easily agglomerated are mixed with the metal particles for dispersion to create a mixture of ceramic particles and metal particles that are uniformly and independently dispersed, and this is melted. This method produces a ceramic particle-dispersed composite alloy in which individual ceramic particles are uniformly dispersed in the metal by mechanically stirring and mixing the metal. As the molten metal, aluminum or its alloy is preferably used, and as the metal particles for dispersion, aluminum or its alloy is preferably used, but other metals are also applicable. In addition, as ceramic particles (oxides such as alumina and siliconia, nitrides such as silicon nitride and sialon, carbides such as silicon carbide and graphite, and borides such as decnium boride), ceramics are added to the aluminum particles. After 1 to 80% by weight of particles are added and mixed, 5 to 50% by weight of the mixture may be added to the molten aluminum and dispersed by stirring.

〈実施例及び作用〉 実施例1 平均粒径80μmのアルミナ粒子65gと平均粒径10
0μmのアルミニウム粒子85gを、前もってボールミ
ルで′n、合した。電気炉により#1oのアルミナルツ
ボ中で740℃の溶融状態に保たれた500gの純度9
99%の純アルミニウムにカルシウムを10g1加混合
(特開昭5(i−141960) j、、増粘のため5
分間回転翼によ)1機械的に攪拌したのら、この溶融ア
ルミニウムを攪拌しながら上記の混合物を全量添加し、
約5分間炉中て攪拌した後、冷却凝固し、セラミックス
粒子分散複合合金を得た。この複合合金(よ、顕微vl
fl1111察によりアルミニウム中に添加されたアル
ミナ粒子が凝集せず個々に独立して分散していることが
認められる。
<Examples and effects> Example 1 65 g of alumina particles with an average particle size of 80 μm and an average particle size of 10
85 g of 0 μm aluminum particles were previously combined in a ball mill. 500g of purity 9 kept in a molten state at 740°C in a #1o aluminium crucible in an electric furnace
Mix 10g of calcium with 99% pure aluminum (Japanese Patent Application Laid-open No. 5 (I-141960) j, 5 for thickening)
After mechanically stirring for 1 minute (with a rotary blade), the entire amount of the above mixture was added to the molten aluminum while stirring,
After stirring in a furnace for about 5 minutes, the mixture was cooled and solidified to obtain a ceramic particle-dispersed composite alloy. This composite alloy (yo, microscopic vl
According to the fl1111 inspection, it was found that the alumina particles added to the aluminum were not aggregated but were individually dispersed.

すなわち、この場合アルミニウム粒子とアルミナ粒子を
予備混合した混合物をアルミニウム溶湯に添加すること
により、独立したアルミナ粒子がアルミニウム中に均一
に分散した複合合金の製造が容易に可能となった。
That is, in this case, by adding a premixed mixture of aluminum particles and alumina particles to molten aluminum, it became possible to easily produce a composite alloy in which independent alumina particles were uniformly dispersed in aluminum.

比較例1 実施例1の方法で740℃に保たれた500gの純アル
ミニウムに、カルシウムを10g添加混合し増粘処理を
行った後、平均粒径15μmのアルミナを25gを徐々
に添加した後、約5分間炉中で攪拌し冷却、疑固して、
セラミックス粒子分散複合合金を得た。この複合合金は
、アルミナがアルミニウム中に均一に分散しているが、
アルミナ数十個が凝集してアルミニウム中に分散してお
り、アルミナが1個1個独立したセラミックス粒子分散
複合合金の製造は不可能であった。
Comparative Example 1 After adding and mixing 10 g of calcium to 500 g of pure aluminum kept at 740°C by the method of Example 1 and performing a thickening treatment, 25 g of alumina with an average particle size of 15 μm was gradually added. Stir in the oven for about 5 minutes, cool, and solidify.
A ceramic particle dispersed composite alloy was obtained. This composite alloy has alumina uniformly dispersed in aluminum, but
Dozens of alumina particles are aggregated and dispersed in aluminum, making it impossible to produce a ceramic particle-dispersed composite alloy in which each alumina particle is independent.

実施例2 平均粒径4μmのアルミナ65gと平均粒径50μmの
アルミニウム45gと平均粒径50071mのアルミニ
ウム40gを、ボールミルで均一に混合した混合物をつ
くった。実施例1の方法で740℃の純アルミニウムの
溶湯500gにカルシウムを加え増粘した後、この混合
物を添加し5分間攪拌した後、冷却凝固してセラミック
ス粒子分散複合合金を製造した。この場合実施例1と同
様にアルミナ粒子が、個々に独立してアルミニウム中に
均一に分散した複合合金となっている。
Example 2 A mixture was prepared by uniformly mixing 65 g of alumina with an average particle size of 4 μm, 45 g of aluminum with an average particle size of 50 μm, and 40 g of aluminum with an average particle size of 50,071 m using a ball mill. Calcium was added to 500 g of molten pure aluminum at 740° C. to thicken the molten metal using the method of Example 1, the mixture was added, stirred for 5 minutes, and then cooled and solidified to produce a ceramic particle-dispersed composite alloy. In this case, as in Example 1, the alumina particles are individually and uniformly dispersed in aluminum to form a composite alloy.

このように微細なアルミナ粒子とアルミニウム粒子の場
合、これらの粒子より大きな第2のアルミニウム粒子を
入れろことにより、粒径の小さなセラミックス粒子の均
一混合分散が容易に可能になった。
In the case of such fine alumina particles and aluminum particles, by adding second aluminum particles larger than these particles, it became possible to easily mix and disperse ceramic particles with small particle sizes.

比較例2 実施例1の方法で平均粒径4μmのアルミナ65gと平
均粒径100μmのアルミニウム85gとの混合物をつ
くった。740℃の純アルミニウムの溶湯500gに1
0gのカルシウムを添加し増粘処理を行った後、混合物
を添加して5分間攪拌し、冷却凝固してセラミックス粒
子分散複合合金を製造した。この場合、比較例1と同様
にアルミナ粒子が数十個凝集した形で、アルミニウム中
に分散した複合合金となり、目的とする個々のアルミナ
粒子の分散した複合合金の製造が不可能であった。
Comparative Example 2 A mixture of 65 g of alumina with an average particle size of 4 μm and 85 g of aluminum with an average particle size of 100 μm was prepared by the method of Example 1. 1 for 500g of pure aluminum molten metal at 740℃
After adding 0 g of calcium to thicken the mixture, the mixture was stirred for 5 minutes, cooled and solidified to produce a ceramic particle dispersed composite alloy. In this case, as in Comparative Example 1, a composite alloy was obtained in which dozens of alumina particles were aggregated and dispersed in aluminum, making it impossible to manufacture the desired composite alloy in which individual alumina particles were dispersed.

実施例3 実施例2の方法で平均粒径04μmの炭化ケイ素30g
と平均粒径50μmのアルミニウム粒子60gと平均粒
径500μmのアルミニウム粒子130gとを、均一に
混合分散した混合物を作った。740℃の純アルミニウ
ムの溶湯500gを増粘した後、混合物を添加し5分間
攪拌した後、冷却凝集してセラミックス粒子分子ll複
合合金を製造した。この複合合金は、超微細な04μm
の炭化ケイ素の粒子が、個々に独立してアルミニウム中
の均一に分散した複合合金となっている。
Example 3 30 g of silicon carbide with an average particle size of 04 μm by the method of Example 2
A mixture was prepared by uniformly mixing and dispersing 60 g of aluminum particles having an average particle size of 50 μm and 130 g of aluminum particles having an average particle size of 500 μm. After thickening 500 g of pure aluminum molten metal at 740° C., the mixture was added and stirred for 5 minutes, and then cooled and agglomerated to produce a ceramic particle molecule 11 composite alloy. This composite alloy has ultra-fine 04μm
The silicon carbide particles are individually and uniformly dispersed in aluminum to form a composite alloy.

このように実施例2と同様に、超微細なセラミックス粒
子に対し一〇も、大きな粒径の第2のアルミニウム粒子
を入れて、セラミックス粒子の分散を均一にした混合物
を作ることにより、容易に超微細なセラミックス粒子の
アルミニウム中に分散したセラミックス粒子分散複合合
金の製造が可能になった。
In this way, as in Example 2, by adding second aluminum particles with a larger particle size to the ultra-fine ceramic particles to create a mixture in which the ceramic particles are uniformly dispersed, it is possible to easily disperse the ceramic particles. It has become possible to manufacture a ceramic particle-dispersed composite alloy in which ultra-fine ceramic particles are dispersed in aluminum.

実施例4  ゛ 実施例1の方法で、平均粒径4μmのアルミナ粒子と平
均粒径100μmの銅粒子350gを均一に混合した混
合物を作った。2000 gの純銅を1200℃で溶融
した後、40gのカルシウムを添加し増粘処理し、上記
混合物を全景添加し5分間攪拌した後、冷却凝固してセ
ラミックス粒子分散複合合金を製造した。この複合合金
は、銅の中に徹細なアルミナ粒子が均一に分散した複合
合金となっている。
Example 4 According to the method of Example 1, a mixture was prepared by uniformly mixing alumina particles with an average particle size of 4 μm and 350 g of copper particles with an average particle size of 100 μm. After melting 2000 g of pure copper at 1200° C., 40 g of calcium was added to thicken it, the above mixture was added in its entirety, stirred for 5 minutes, and then cooled and solidified to produce a ceramic particle dispersed composite alloy. This composite alloy has fine alumina particles uniformly dispersed in copper.

このように他の金属についてもこの原理が適用できろ。This principle can also be applied to other metals.

〈発明の効果〉 以上説明したように、この発明の詳細な説明ミックス粒
子と金属粒子とを予め均一に分散させた混合物となし、
その後に、溶融金属中へ該混合物を攪拌混合する為に混
合が容易となり、しかも個々に独立したセラミックス粒
子の分散したセラミックス粒子分散複合合金を製造する
ことができ、工業的な規模での製造が可能である。そし
てこの金属複合材料は、高温強度の改善、耐摩耗性、潤
滑性を向上させる新材料として有用である。
<Effects of the Invention> As explained above, the detailed description of the present invention is as follows.
After that, the mixture is stirred and mixed into the molten metal, making it easy to mix and making it possible to manufacture a ceramic particle-dispersed composite alloy in which individual ceramic particles are dispersed, making it possible to manufacture on an industrial scale. It is possible. This metal composite material is useful as a new material that improves high-temperature strength, wear resistance, and lubricity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明により製造された実施例2のセラミッ
クス粒子分散複合合金の研摩面の金属組織写真である。 4μmのセラミックス粒子が、個々に独立して分散して
いるのが観察される。 第2図は比較例2のセラミックス粒子分散複合合金の研
摩面の金属組織写真である。4μmのセラミックス粒子
が凝集しているのが観察される。 第1図
FIG. 1 is a photograph of the metallographic structure of the polished surface of the ceramic particle dispersed composite alloy of Example 2 manufactured according to the present invention. Ceramic particles of 4 μm are observed to be individually dispersed. FIG. 2 is a photograph of the metallographic structure of the polished surface of the ceramic particle-dispersed composite alloy of Comparative Example 2. It is observed that ceramic particles of 4 μm are aggregated. Figure 1

Claims (1)

【特許請求の範囲】 1 溶融金属にセラミックス粒子を加えて攪拌すること
により、多数の独立したセラミックス粒子よりなる、セ
ラミックス粒子分散複合合金を製造する方法において、
セラミックス粒子と1種類の粒径範囲を持つ分散用金属
粒子とを、混合機で前もって混合し、金属粒子により独
立されたセラミックス粒子の混合物をつくり、これを溶
融金属に加えて攪拌混合することにより、金属中にセラ
ミックス粒子が個々に分散したセラミックス粒子分散複
合合金を製造する方法。 2 溶融金属としてアルミニウムまたはその合金、セラ
ミックス粒子としてアルミナ、ジルコニア等の酸化物、
窒化ケイ素、サイアロン等の窒化物、炭化ケイ素、黒鉛
等の炭化物、ホウ化チタニウム等のホウ化物で平均粒径
範囲10〜1000μm、分散用金属粒子としてアルミ
ニウムまたはその合金で平均粒径10〜1000μmを
用いて、上記セラミックス粒子対アルミニウム粒子の重
量比を1対99から80対20まで任意に変化させ混合
した後、溶融金属に該混合物を20〜50重量%加えて
攪拌混合することにより、独立したセラミックス粒子を
0.2〜40重量%分散させることを特徴とする特許請
求範囲第1項記載のセラミックス粒子分散複合合金の製
造方法。 3 セラミックス粒子分散複合合金を製造する方法にお
いて、凝集した微細なセラミックス粒子と、2種類以上
の異なる粒径範囲を持つ分散用金属粒子とを混合機で混
合し、独立した微細なセラミックス粒子の混合物をつく
り、これを溶融金属に加えて攪拌することにより、微細
なセラミックス粒子の分散したセラミックス粒子分散複
合合金を製造する方法。 4 セラミックス粒子として平均粒径0.01〜20μ
mの範囲、セラミックス粒子の1〜2000倍の平均粒
径を持つ第1アルミニウム粒子、および第1アルミニウ
ム粒子の1〜200倍の平均粒径を持つ第2アルミニウ
ム粒子を用いて、上記第1アルミニウム粒子と第2アル
ミニウム粒子の混合比を1対99から90対10まで任
意に変化させたアルミニウム粒子混合物と上記セラミッ
クス粒子との重量比を99対1から20対80まで任意
に変化させたセラミックス粒子とアルミニウム粒子の混
合物を溶融金属に対し5〜50重量%加え攪拌混合する
ことにより個々に微細なセラミックス粒子を分散させる
ことを特徴とする特許請求の範囲の第3項記載の微細な
セラミックス粒子分散複合合金の製造方法。
[Claims] 1. A method for producing a ceramic particle-dispersed composite alloy consisting of a large number of independent ceramic particles by adding ceramic particles to molten metal and stirring the mixture,
By pre-mixing ceramic particles and dispersing metal particles having one type of particle size range in a mixer to create a mixture of ceramic particles separated by metal particles, this is added to molten metal and mixed by stirring. , a method for manufacturing a ceramic particle-dispersed composite alloy in which ceramic particles are individually dispersed in a metal. 2 Aluminum or its alloy as the molten metal, oxides such as alumina and zirconia as the ceramic particles,
Nitrides such as silicon nitride and sialon, carbides such as silicon carbide and graphite, and borides such as titanium boride have an average particle size range of 10 to 1000 μm, and aluminum or its alloys have an average particle size of 10 to 1000 μm as metal particles for dispersion. After mixing, the weight ratio of the ceramic particles to the aluminum particles is arbitrarily changed from 1:99 to 80:20, and then 20 to 50% by weight of the mixture is added to the molten metal and stirred and mixed. 2. The method for producing a ceramic particle-dispersed composite alloy according to claim 1, wherein the ceramic particles are dispersed in an amount of 0.2 to 40% by weight. 3 In a method for manufacturing a ceramic particle dispersed composite alloy, agglomerated fine ceramic particles and two or more types of dispersing metal particles having different particle size ranges are mixed in a mixer to form a mixture of independent fine ceramic particles. A method of manufacturing a ceramic particle-dispersed composite alloy in which fine ceramic particles are dispersed by adding it to molten metal and stirring it. 4 Average particle size as ceramic particles: 0.01 to 20μ
m range, first aluminum particles having an average particle size of 1 to 2000 times that of the ceramic particles, and second aluminum particles having an average particle size of 1 to 200 times that of the first aluminum particles. Ceramic particles, in which the weight ratio of the ceramic particles to the aluminum particle mixture is arbitrarily changed from 99:1 to 20:80, in which the mixing ratio of the particles and the second aluminum particles is arbitrarily changed from 1:99 to 90:10. Fine ceramic particle dispersion according to claim 3, characterized in that the fine ceramic particles are individually dispersed by adding 5 to 50% by weight of a mixture of aluminum particles and aluminum particles to the molten metal and stirring and mixing. Method for manufacturing composite alloys.
JP21198085A 1985-09-24 1985-09-24 Manufacture of ceramics grain-dispersed composite alloy Pending JPS6270538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21198085A JPS6270538A (en) 1985-09-24 1985-09-24 Manufacture of ceramics grain-dispersed composite alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21198085A JPS6270538A (en) 1985-09-24 1985-09-24 Manufacture of ceramics grain-dispersed composite alloy

Publications (1)

Publication Number Publication Date
JPS6270538A true JPS6270538A (en) 1987-04-01

Family

ID=16614890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21198085A Pending JPS6270538A (en) 1985-09-24 1985-09-24 Manufacture of ceramics grain-dispersed composite alloy

Country Status (1)

Country Link
JP (1) JPS6270538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212730A (en) * 1988-02-18 1989-08-25 Mitsubishi Alum Co Ltd Manufacture of ceramic grain dispersion-type aluminum-based composite material
JPH02101140A (en) * 1988-10-07 1990-04-12 Honda Motor Co Ltd Wear-resistant aluminum alloy
US5028494A (en) * 1988-07-15 1991-07-02 Railway Technical Research Institute Brake disk material for railroad vehicle
JPH0612926A (en) * 1992-06-30 1994-01-21 Hitachi Ltd Superconductive wire and composite superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077945A (en) * 1983-10-04 1985-05-02 Kawasaki Steel Corp Manufacture of metallic material containing dispersed particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077945A (en) * 1983-10-04 1985-05-02 Kawasaki Steel Corp Manufacture of metallic material containing dispersed particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212730A (en) * 1988-02-18 1989-08-25 Mitsubishi Alum Co Ltd Manufacture of ceramic grain dispersion-type aluminum-based composite material
US5028494A (en) * 1988-07-15 1991-07-02 Railway Technical Research Institute Brake disk material for railroad vehicle
JPH02101140A (en) * 1988-10-07 1990-04-12 Honda Motor Co Ltd Wear-resistant aluminum alloy
JPH0541689B2 (en) * 1988-10-07 1993-06-24 Honda Motor Co Ltd
JPH0612926A (en) * 1992-06-30 1994-01-21 Hitachi Ltd Superconductive wire and composite superconductor

Similar Documents

Publication Publication Date Title
JP5442260B2 (en) Method for producing densified molybdenum metal powder
CN110157935A (en) Cast Al-Si alloy Al-V-B fining agent, preparation method and application
CN109371276A (en) The method that batch founding prepares graphene enhancing aluminium alloy based nano composite material
JPS6270538A (en) Manufacture of ceramics grain-dispersed composite alloy
JPH0625774A (en) Production of tib2-dispersed tial-base composite material
CN107400808A (en) A kind of Al Ti C Nb intermediate alloys and its preparation method and application
JPS5964766A (en) Composite plasma spraying material
JPS62158842A (en) Sliding material
JP3045395B2 (en) Method for producing silicon carbide-containing aluminum alloy
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH1150172A (en) Carbide-dispersion strengthened copper alloy material
JPH08176704A (en) Production of in situ al and mg composite material
CN108285987A (en) The preparation method of copper oxide-vanadium carbide particle enhancing antibacterial medical magnesium alloy materials
JPH02185932A (en) Gold alloy capable of blackening and blackening treatment
CN111822722B (en) TiAl/TiB for additive manufacturing 2 Preparation method of powder material
JPH0674443B2 (en) Method and apparatus for producing composite powder of ceramics and metal
JPH0219177B2 (en)
JP2694893B2 (en) Carbon-carbide ceramic spherical composite and method for producing the same
JPH11100625A (en) Boride and carbine dispersion-strengthened copper and its production
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JPH01108326A (en) Production of particle-dispersed alloy
JPS60162740A (en) Production of aluminum casting alloy dispersed with ceramic particles
JPH0892671A (en) Production of metal matrix composite material
JPH03234352A (en) Manufacture of ceramic dispersing reinforced copper
JPH10245642A (en) Production of aluminum base hyperfine grained oxide composite material