JPH08176704A - Production of in situ al and mg composite material - Google Patents

Production of in situ al and mg composite material

Info

Publication number
JPH08176704A
JPH08176704A JP25829391A JP25829391A JPH08176704A JP H08176704 A JPH08176704 A JP H08176704A JP 25829391 A JP25829391 A JP 25829391A JP 25829391 A JP25829391 A JP 25829391A JP H08176704 A JPH08176704 A JP H08176704A
Authority
JP
Japan
Prior art keywords
situ
composite material
oxide
carbide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25829391A
Other languages
Japanese (ja)
Inventor
Takao Cho
隆郎 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25829391A priority Critical patent/JPH08176704A/en
Publication of JPH08176704A publication Critical patent/JPH08176704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a simple process for production which forms and disperses fine carbide or oxide in situ as a process for producing an aluminum or magnesium composite material. CONSTITUTION: Solid oxide or carbide relatively low in thermodynamical stability is added into molten aluminum or magnesium and further their alloy and the oxide or carbide of the different kind having high stability is formed and dispersed therein in situ. The fine oxide or carbide particles are uniformly dispersed into the aluminum or magnesium matrix by the simple in situ method.

Description

【発明の詳細な説明】 (社会的寄与)本発明による低製造コストの軽量にして
強靭な微細粒子分散強化型マグネシウム複合材料の製造
法確立。 (従来の粒子分散強化型金属基複合材料製造法及びそこ
における課題)これまでの粒子分散強化型金属基複合材
料の製造方法としては、金属およびセラミックス粉末を
混合・成形・焼結する粉末冶金法、あるいは高粘性の半
溶融金属中に粒子を混入するコンポ・キャスティング法
が見られるが、いずれも、例えばアルミニウム/セラミ
ックス間のように、濡れ性が悪いために、粒子を強制的
にマトリックス中に分散させる方法であリ、高いコスト
を避けられないという課題を抱えている。また、フォル
テックス法あるいは溶湯攪拌法と呼ばれる方法は、粒子
を溶融金属内に攪拌のみによって混入・分散するもの
で、この方法では、セラミックス−メタル間の濡れ性を
向上させる成分の添加が不可欠であり、これがない場合
には粒子混入自体が難しくなる。また、たとえ濡れ性を
良好にしたとしても、粒子径1μm以下の微細粒子を溶
融メタルに分散することがかなり困難であるという課題
を持っている。 (本発明による課題の解決策)プロセスが複雑なために
コスト高につながる粉末冶金法、あるいはコンポ・キャ
スティング法を避け、溶湯攪拌法を採用する。ただし、
この方法による粒子分散には、微細粒子分散が困難とい
う限界があるので、いわゆるIn SiTu複合材料の
製造法をとる。すなわち、本発明がより所とする理論的
背景は、マトリックス金属の酸化物、炭化物、窒化物よ
りも化学的安定性に劣る酸化物、炭化物、窒化物、つま
り標準生成自由エネルギーが相対的に大きい化合物粒子
の添加であり、しかも溶湯への混入が容易な大きさの粒
子を添加するところにある。このとき、添加された粒子
は化学的安定性において相対的に劣るが故に、溶湯内に
おいて分解して酸素、炭素あるいは窒素を発生するとと
もに、標準生成自由エネルギーが小さいマトリックス金
属と反応して酸化物、炭化物あるいは窒化物を形成す
る。この分解量は添加粒子の供給速度あるいは温度によ
って制御すれば、溶湯内生成化合物の粒子径および生成
量を調整することが出来る。この方法によれば、溶湯表
面からの粒子混入・分散でなく、溶湯内において化合物
を形成するので、きわめて微小な粒子を分散することが
出来る。したがって、一般に粒子分散強化型複合材料の
強度は、粒子径が微細なほど向上することが知られてい
るように、In Situ法により生成された微細粒子
を分散すれば高強度が期待される。また、添加化合物の
分解成分のうち酸素、炭素、窒素以外の成分はマトリッ
クスの合金成分として有効に活用される利点も持ってい
る。本発明では、このように低コスト複合化プロセスの
観点から、まず溶湯攪拌法を採用し、マトリックスより
も化学的安定性に劣る化合物を添加し、溶湯内において
分解・反応させて微細粒子を分散させ、高強度の粒子分
散強化型複合材料を提供しようという特徴をもつ。 (製造条件の設定) (1) 温度: マグネシウムは蒸発しやすく活性なた
め、低温での操作が好ましく、700〜800℃とする
が、アルミニウムをマトリックスとする場合には反応を
速やかに行なうためにより高温が良い。ただし、CuO
は1086℃に熱分解温度を持つので、添加に当たって
は爆発の注意が必要である。 (2) 添加化合物の大きさ: 溶湯攪拌法による粒子
の混入分散に要する攪拌時間は粒子径低下につれて長く
なるので、10μm以上が良い。 (3) 攪拌速度: 特に高速である必要はなく60r
pmで十分である。 (4) 雰囲気: 操業は不活性性雰囲気下で行なうこ
とが良い。 (5) 粒子添加方法: 連続添加、半連続添加のいず
れも可。 (実施例)アルゴン雰囲気下、MgOるつぼ内にて60
グラムのAl−3%Mg合金を溶解し、1000℃に達
したところで、モータによる溶湯攪拌を開始し、攪拌を
継続しながらCuO粒子を徐々に添加した。この時、溶
湯内ではCuOが分解し、酸素はアルミニウム反応して
微細なAlを形成して分散し、一方Cuは合金成
分となっている。攪拌終了後、複合材料を金型に鋳造
し、さらにこの試料を熱間押出しを行い、強度を測定試
料を作成した。この複合材料について引張強度を測定し
た結果、第1図に示すように、40.0kgf/mm
となり、添加したCuOの全てが分解して合金化したと
仮定したときのマトリックス組成Al−3%Mg−7.
8%Cuの引張強度34.1kgf/mmよりも高強
度を得ている。 (発明の効果)金属基複合材料の製造コスト低減に対し
て最も有望なプロセスは溶湯攪拌法であるが、この方法
においては、良好な濡れ性が不可欠であり、また小さい
粒子の分散にも限界がある。一方、粒子分散強化型複合
材料の強度向上には小粒子分散が欠かせず、そのための
新しいプロセスの開発が待たれていた。この点、本発明
は溶湯内において微細な酸化物、炭化物あるいは窒化物
を形成させる特徴を持ち、プロセスも簡便かつ低コスト
である。このように、本発明は低コストでしかも軽量に
して高強度の金属基複合材料を提供するものである。
Detailed Description of the Invention (Social Contribution) Establishment of a method for manufacturing a lightweight, tough, and fine particle dispersion-reinforced magnesium composite material at low manufacturing cost according to the present invention. (Conventional method for producing particle-dispersion-strengthened metal-based composite material and problems therefor) As a conventional method for producing particle-dispersion-strengthened metal-based composite material, a powder metallurgy method of mixing, molding, and sintering metal and ceramic powders has been used. , Or compo-casting method in which particles are mixed in a highly viscous semi-molten metal, both of them have poor wettability, for example, between aluminum and ceramics, so that the particles are forced into the matrix. It is a method of dispersion, but it has a problem that high costs cannot be avoided. The method called the Fortex method or the molten metal stirring method mixes and disperses the particles in the molten metal only by stirring, and in this method, it is essential to add a component that improves the wettability between the ceramic and the metal. Yes, without this, it becomes difficult to mix the particles. Moreover, even if the wettability is improved, it is quite difficult to disperse fine particles having a particle diameter of 1 μm or less in the molten metal. (Means for Solving the Problems According to the Present Invention) The molten metal stirring method is adopted while avoiding the powder metallurgy method or the component casting method, which leads to high cost due to the complicated process. However,
Since there is a limit to the difficulty of fine particle dispersion in the particle dispersion by this method, a so-called In SiTu composite material manufacturing method is adopted. That is, the theoretical background on which the present invention is based is that oxides, carbides, and nitrides having a lower chemical stability than the oxides, carbides, and nitrides of the matrix metal, that is, the standard free energy of formation is relatively large. This is the addition of compound particles, and the particle size is such that mixing into the molten metal is easy. At this time, since the added particles are relatively inferior in chemical stability, they decompose in the molten metal to generate oxygen, carbon or nitrogen, and react with a matrix metal having a small standard free energy of formation to form an oxide. Form carbide or nitride. The amount of this decomposition can be adjusted by controlling the feed rate or temperature of the added particles to adjust the particle size and the amount of the compound produced in the melt. According to this method, since the compound is formed in the molten metal, not by mixing and dispersing the particles from the surface of the molten metal, extremely fine particles can be dispersed. Therefore, it is generally known that the strength of the particle dispersion-reinforced composite material is improved as the particle diameter is finer, and it is expected that high strength is achieved by dispersing the fine particles generated by the In Situ method. Further, among the decomposition components of the additive compound, components other than oxygen, carbon and nitrogen also have the advantage of being effectively utilized as alloy components of the matrix. In the present invention, from the viewpoint of the low cost composite process, first, the molten metal stirring method is adopted, and a compound having a chemical stability lower than that of the matrix is added, and the fine particles are dispersed by causing decomposition and reaction in the molten metal. Therefore, it has the feature of providing a high-strength particle dispersion-reinforced composite material. (Setting of manufacturing conditions) (1) Temperature: Since magnesium easily evaporates and is active, it is preferable to operate at a low temperature, and the temperature is 700 to 800 ° C. However, when aluminum is used as a matrix, the reaction is performed more quickly. High temperature is good. However, CuO
Has a thermal decomposition temperature of 1086 ° C, so care must be taken when exploding when adding. (2) Size of added compound: Since the stirring time required for mixing and dispersing particles by the molten metal stirring method becomes longer as the particle diameter decreases, 10 μm or more is preferable. (3) Stirring speed: 60r is not required to be particularly high.
pm is sufficient. (4) Atmosphere: The operation should be performed in an inert atmosphere. (5) Particle addition method: Either continuous addition or semi-continuous addition is possible. (Example) 60 in an MgO crucible under an argon atmosphere
Gram of Al-3% Mg alloy was melted, and when the temperature reached 1000 ° C., stirring of the molten metal by a motor was started, and CuO particles were gradually added while stirring was continued. At this time, CuO is decomposed in the molten metal, oxygen reacts with aluminum to form fine Al 2 O 3 , and is dispersed, while Cu is an alloy component. After completion of stirring, the composite material was cast in a mold, and this sample was hot extruded to prepare a sample for measuring the strength. As a result of measuring the tensile strength of this composite material, as shown in FIG. 1, it was 40.0 kgf / mm 2.
The matrix composition Al-3% Mg-7., Assuming that all of the added CuO was decomposed and alloyed.
Higher strength than the tensile strength of 34.1 kgf / mm 2 of 8% Cu is obtained. (Effect of the invention) The most promising process for reducing the manufacturing cost of metal-based composite materials is the melt stirring method, but in this method, good wettability is essential and there is a limit to the dispersion of small particles. There is. On the other hand, dispersion of small particles is essential for improving the strength of particle dispersion-reinforced composite materials, and the development of a new process for that purpose has been awaited. In this respect, the present invention is characterized by forming fine oxides, carbides or nitrides in the molten metal, and the process is simple and low cost. Thus, the present invention provides a high-strength metal matrix composite material that is low in cost and lightweight.

【図面の簡単な説明】 第1図:Al In Situ生成による粒子分
散強化型アルミニウム複合材料の引張強度
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: Tensile strength of Al 2 O 3 In Situ generated particle dispersion strengthened aluminum composite material

Claims (1)

【特許請求の範囲】 (1)溶融したアルミニウム、アルミニウム合金、マグ
ネシウム、マグネシウム合金中に各種化合物を添加し、
この化合物分解に伴うIn Situ 生成化合物分散
による複合材料の製造方法。 (2)前記各種化合物は炭化物、酸化物、窒化物のいず
れか1種又は2種以上であることを特徴とする特許請求
の範囲第1項の複合体。 (3)前記炭化物はAl、CaC、Cr
、Cr、Cr23、NiC、Mo
C、WC、SiC、FeCのいずれか1種又は2種以
上であることを特徴とする特許請求の範囲第1項または
第2項のいずれか記載の複合体。 (4)前記酸化物はCuO、CuO、Fe、F
eO、NiO、CoO、SnO、ZnO、Cr
、MnO、SiO、V、TiO、Al
のいずれか1種又は2種以上であることを特徴と
する特許請求の範囲第1項から第3項までのいずれか記
載の複合体。 (5)前記の窒化物はCrN、VN、Si、Mg
、TaNのいずれか1種又は2種以上であること
を特徴とする特許請求の範囲第1項から第4項までのい
ずれか記載の複合体。
(Claims) (1) Various compounds are added to molten aluminum, aluminum alloy, magnesium, magnesium alloy,
A method for producing a composite material by dispersing an In Situ-produced compound accompanying the decomposition of the compound. (2) The composite according to claim 1, wherein the various compounds are one kind or two kinds or more of a carbide, an oxide and a nitride. (3) The carbides are Al 4 C 3 , CaC 2 , Cr
7 C 3 , Cr 3 C 2 , Cr 23 C 6 , Ni 3 C, Mo 2
C, WC, SiC, Fe 3 C is any one kind or two kinds or more, The composite body according to any one of claims 1 and 2. (4) the oxide CuO, Cu 2 O, Fe 2 O 3, F
eO, NiO, CoO, SnO 2 , ZnO, Cr
2 O 3 , MnO, SiO 2 , V 2 O 3 , TiO 2 , Al
The composite according to any one of claims 1 to 3, wherein the composite is any one or more of 2 O 3 . (5) The nitrides are CrN, VN, Si 3 N 4 , Mg
Any one of 3 N 2 and TaN or two or more thereof. The composite according to any one of claims 1 to 4, wherein the complex is any one of 3 N 2 and TaN.
JP25829391A 1991-07-03 1991-07-03 Production of in situ al and mg composite material Pending JPH08176704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25829391A JPH08176704A (en) 1991-07-03 1991-07-03 Production of in situ al and mg composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25829391A JPH08176704A (en) 1991-07-03 1991-07-03 Production of in situ al and mg composite material

Publications (1)

Publication Number Publication Date
JPH08176704A true JPH08176704A (en) 1996-07-09

Family

ID=17318249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25829391A Pending JPH08176704A (en) 1991-07-03 1991-07-03 Production of in situ al and mg composite material

Country Status (1)

Country Link
JP (1) JPH08176704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281794B1 (en) * 2011-03-28 2013-07-05 한국기계연구원 Fabrication method of aluminum matrix composites and aluminum matrix composite by the same
KR20190102445A (en) * 2018-02-26 2019-09-04 한국생산기술연구원 Manufacturing method of Magnesium mother alloy and Aluminum alloy
WO2019176159A1 (en) * 2018-03-12 2019-09-19 三菱電機株式会社 Insulating molded body and gas circuit breaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281794B1 (en) * 2011-03-28 2013-07-05 한국기계연구원 Fabrication method of aluminum matrix composites and aluminum matrix composite by the same
KR20190102445A (en) * 2018-02-26 2019-09-04 한국생산기술연구원 Manufacturing method of Magnesium mother alloy and Aluminum alloy
WO2019176159A1 (en) * 2018-03-12 2019-09-19 三菱電機株式会社 Insulating molded body and gas circuit breaker
US11322322B2 (en) 2018-03-12 2022-05-03 Mitsubishi Electric Corporation Insulating molded body and gas circuit breaker

Similar Documents

Publication Publication Date Title
US4916029A (en) Composites having an intermetallic containing matrix
US5093148A (en) Arc-melting process for forming metallic-second phase composites
US4774052A (en) Composites having an intermetallic containing matrix
US4917964A (en) Porous metal-second phase composites
CN104985188A (en) Method for preparing atomized iron powder containing nano ceramic phase
US3205099A (en) Stable dispersoid composites and production thereof
WO1989010982A1 (en) Arc-melting process for forming metallic-second phase composites and product thereof
JPH08176704A (en) Production of in situ al and mg composite material
JPH06330105A (en) Production of ti or ti alloy sintered compact
KR102077536B1 (en) FABRICATION METHOD OF Mo-Si-B ALLOY AND Mo-Si-B ALLOY
CN108504891B (en) Ultra-fine zirconium carbide-zirconium boride ceramic complex intensifying copper electrode material one-step method for synthesizing
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPS6270538A (en) Manufacture of ceramics grain-dispersed composite alloy
JPH05214477A (en) Composite material and its manufacture
JPS6354056B2 (en)
JPH03234352A (en) Manufacture of ceramic dispersing reinforced copper
JPH01108326A (en) Production of particle-dispersed alloy
JPH0674443B2 (en) Method and apparatus for producing composite powder of ceramics and metal
JPH073361A (en) Production of dispersed grain-reinforced magnesium composite material
GB2184133A (en) Metal matrix composites
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH0657303A (en) Sintering method for noble metal powder mixture containing silver and copper
US4985200A (en) Method of making sintered aluminium nickel alloys
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JPH04293703A (en) Composite material and its production