JPS62158842A - Sliding material - Google Patents

Sliding material

Info

Publication number
JPS62158842A
JPS62158842A JP29824385A JP29824385A JPS62158842A JP S62158842 A JPS62158842 A JP S62158842A JP 29824385 A JP29824385 A JP 29824385A JP 29824385 A JP29824385 A JP 29824385A JP S62158842 A JPS62158842 A JP S62158842A
Authority
JP
Japan
Prior art keywords
particles
wear
added
sliding material
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29824385A
Other languages
Japanese (ja)
Inventor
Masao Yamashita
山下 昌夫
Hiroshi Sasaki
宏 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP29824385A priority Critical patent/JPS62158842A/en
Publication of JPS62158842A publication Critical patent/JPS62158842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide a sliding material with excellent seizure-resisting properties such as high thermal conductivity, high melting point, high strength, etc., by dispersing trace amounts of grain-size-regulated wear-resistant grains into an Ni- and Si-containing copper alloy having a specific composition. CONSTITUTION:The wear-resistant grains with 0.3-80mu diameter are dispersed by 0.001-0.8wt% into the copper alloy containing Ni and Si in the 2:1 atomic % ratio and in an amount of 1.0-12wt%, in total, and having the balance essentially Cu with usual impurities. The wear-resistant grains are selected from borides, silicides, nitrides, oxidic or carbidic ceramics, etc. This sliding material has high hardness and is excellent in seizure-resisting properties as compared with the existing materials.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回転運動や往復運動する摺動用部材に用いら
れて高い熱伝導率・融点と高強度とをかねそなえた時効
析出型銅合金と耐摩耗性粒子との複合材よりなる摺動用
材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an aging precipitation type copper alloy that is used in sliding members that rotate or reciprocate and has high thermal conductivity, melting point, and high strength. This invention relates to a sliding material made of a composite material with abrasive particles.

従来の技術 摺動用材料としてはすでに特殊高力黄銅や、JI8に制
定されている鉛青銅系材料などがある。
Conventional sliding materials include special high-strength brass and lead bronze materials specified in JI8.

また最近はこれらを改良したものとしては特公昭59−
3422号や特公昭53−44135号がある。
Recently, as an improved version of these,
There are No. 3422 and Special Publication No. 53-44135.

発明が解決しようとする問題点 しかしこれらの従来の摺動用材料には以下の欠点がある
Problems to be Solved by the Invention However, these conventional sliding materials have the following drawbacks.

すなわち、Zn 、 8B 、 Atなる元素をCtL
に多量に添加しているために (1)熱伝導率かCμに比較してに〜イと低い(2) 
 融点がCtLに比較して100℃〜300℃低い (3)  Mn、 8i、 Pa、 Niなどの第三元
素によって形成される金属間化合物の硬さは超高負荷下
で用いられる摺動材としては十分ではない。
That is, the elements Zn, 8B, and At are CtL
Because of the large amount added to (1) the thermal conductivity is very low compared to Cμ (2)
The melting point is 100°C to 300°C lower than that of CtL. (3) The hardness of intermetallic compounds formed by third elements such as Mn, 8i, Pa, and Ni makes them suitable for sliding materials used under ultra-high loads. is not enough.

すぐれた摺動用材料の特性は印熱伝導率が高いこと (
2]融点が高いこと (3]マトリクス(1)の分散粒
子の硬さが高く均一に分散していることである。
An excellent characteristic of sliding materials is high thermal conductivity (
2] The melting point is high. (3) The dispersed particles of the matrix (1) have high hardness and are uniformly dispersed.

発明の目的 本発明は上記の事情に鑑みなされたものであって、高熱
伝導率で高融点でしかも高強度なものとなり、既存の高
性能な摺動用材料に比べて格段の耐焼付性能を有する摺
動用材料を提供することを目的とTる。
Purpose of the Invention The present invention has been made in view of the above circumstances, and has high thermal conductivity, high melting point, and high strength, and has markedly superior seizure resistance compared to existing high-performance sliding materials. The purpose is to provide sliding materials.

間層点を解決するための手段及び作用 上記の目的を達成するために、本発明は、Niおよび8
iを2:1の鳳子チ比で、総計1.0〜12′N量係含
有し、残部実質的に銅と通常の不純物とからなる銅合金
中に直径0.3〜F30μの耐摩耗性粒子0.001〜
0.81i%を分散させで構成しである。
Means and operation for solving interlayer points In order to achieve the above object, the present invention provides Ni and 8
A wear-resistant material with a diameter of 0.3 to F30μ is contained in a copper alloy containing i at a ratio of 2:1 in a total amount of 1.0 to 12'N, and the remainder substantially consisting of copper and ordinary impurities. Sexual particles 0.001~
It is composed of 0.81i% dispersed.

実  施  例 以下、本発明を図面を参照して説明する。Example Hereinafter, the present invention will be explained with reference to the drawings.

耐摩耗性粒子としての硬質粒子をCu−Ni −8iマ
トリクス中に均一に分散させる方法として焼結法がある
が価格面、強度面等の制約があり、必ずしも好適ではな
い。また硬質粒子を合金溶製時に物理的に添加すると、
多くの場合比重差によって粒子が浮上したり、あるいは
溶湯と粒子とのぬれ不良のため両者が全く混合されない
などの不具合を生じやすい。
A sintering method is available as a method for uniformly dispersing hard particles as wear-resistant particles in a Cu-Ni-8i matrix, but there are limitations in terms of cost, strength, etc., and this is not necessarily suitable. Additionally, if hard particles are physically added during alloy melting,
In many cases, problems tend to occur, such as particles floating due to the difference in specific gravity, or problems such as the molten metal and particles not being mixed at all due to poor wetting between the two.

発明者はこの点を種々検討した結果以下の手段を用いて
硬質粒子の均一分散をはかった。
As a result of various studies on this point, the inventors attempted to uniformly disperse the hard particles using the following means.

■ 硬質粒子を構成する元素をそれぞれ単独に溶湯中に
添加し、溶湯中に所期の硬質粒子をあらたに生ぜしめる
■ Each of the elements constituting the hard particles is individually added to the molten metal to newly generate the desired hard particles in the molten metal.

■ アーク溶解により溶湯と硬質粒子とをはげしく攪拌
して均一に混合させたのち急冷凝固させる。
■ The molten metal and hard particles are vigorously stirred and mixed uniformly by arc melting, and then rapidly solidified.

上記■の方法によると、粒子と溶湯とのぬれ性の問題は
なくなり、また生成する硬質粒子の比重が溶湯の比重と
かなり異なっても、それら粒子が浮上あるいは沈澱する
度合もわずかなることがわかった。
It has been found that, according to method (■) above, the problem of wettability between the particles and the molten metal is eliminated, and even if the specific gravity of the hard particles produced is quite different from the specific gravity of the molten metal, the degree to which these particles float or settle is small. Ta.

添加する元素(多くは2種類)がともに0編に溶解しや
Tいものであるとこれら元素が溶湯中で結合する確率は
小さい。また添加量が多くなると元素によっては合金の
熱伝導率を大きく低下させてしまう。
If the added elements (often two types) are both easily soluble in the melt, the probability that these elements will combine in the molten metal is small. Moreover, if the amount added is large, depending on the element, the thermal conductivity of the alloy will be greatly reduced.

一万添加する元素がともKCμに溶解しないものである
と、粉末等の形態で添加したこれら元素が溶湯中で出会
って結合Tる確率も低くなる。
If none of the 10,000 added elements dissolves in KCμ, the probability that these elements added in the form of powder or the like will meet and bond in the molten metal will be low.

以上より、硬質粒子形成元素のうちの片方がCμ溶湯に
溶けこみ、かつ残る片方の元素がCμ溶湯に溶けにくい
か、あるいは全く溶けないことか必要条件である。この
ような条件を満たす元素の組み合わせとして、 MO,B(M(l t Bsを形成) I W、B(%
 Bsを形成)Mo、8i(MOSitを形成) IC
r、 5i(Cr8i1を形成)などがある。とくにM
O,WなどCwに全く溶解しない元素を溶湯中に添加T
るとこれらの一部が純金属の状態でかたまって残留Tる
傾向がある。
From the above, it is necessary that one of the hard particle-forming elements dissolves in the Cμ molten metal, and that the remaining element either hardly dissolves in the Cμ molten metal or does not dissolve at all. As a combination of elements that satisfy these conditions, MO, B (M (forms l t Bs) I W, B (%
Bs is formed) Mo, 8i (MOSit is formed) IC
r, 5i (forming Cr8i1), etc. Especially M
Adding elements such as O and W that do not dissolve in Cw at all to the molten metal T
When this happens, some of these tend to aggregate in a pure metal state and become residual T.

これらを防止するためには 1 ) MO,Wなどの粉末を多量のCu粉と均一混合
した状態で添加して、かたまるのを防ぐ。
In order to prevent these, 1) Add powders such as MO and W in a uniformly mixed state with a large amount of Cu powder to prevent clumping.

+1)Ni−Mo合金など固溶体のかたちで添加するな
どが有効である。
+1) It is effective to add it in the form of a solid solution such as a Ni-Mo alloy.

次に上記■の方法について説明する。Next, the method (2) above will be explained.

基本的な考え方は、セラミック粉末を添加した溶湯をは
げしく攪拌した状態から急速凝固させて低比重のセラミ
ック粉末の浮上分離を阻止しようとするものである。
The basic idea is to rapidly solidify a molten metal to which ceramic powder has been added while vigorously stirring it, thereby preventing the floatation and separation of low-density ceramic powder.

溶湯を急速に凝固させるためには、溶湯を攪拌停止後瞬
時に熱伝導率の大きい金属にふれさせる必要がある。こ
のためには溶湯をとりべにとって金型に鋳込む時間的な
余裕はない。したがって溶解工程は高熱伝導率の金型内
で実施する必要がある。このような溶解はアーク溶解に
よってのみ可能であり、とくに溶湯をはげしく攪拌する
ことができるのは溶解素材に直接通電Tる直接アーク溶
解法のみである。
In order to solidify the molten metal rapidly, it is necessary to bring the molten metal into contact with a metal having high thermal conductivity immediately after stopping stirring. For this purpose, there is no time to take the molten metal into a ladle and cast it into a mold. Therefore, the melting process must be carried out in a mold with high thermal conductivity. Such melting is possible only by arc melting, and in particular, only the direct arc melting method in which electricity is applied directly to the melted material can stir the molten metal vigorously.

以上より発明者は具体的な目的達成手段として、水冷銅
金型を有するアルゴンアーク炉により材料を溶製するこ
とを考えた。
Based on the above, the inventor considered melting the material in an argon arc furnace having a water-cooled copper mold as a specific means for achieving the objective.

なおこのほかTjG溶接器などを用いて金属母材上にこ
れら鋼合金セラミックス複合材を肉盛りすることも可能
である。
In addition, it is also possible to build up these steel alloy ceramic composite materials on a metal base material using a TJG welder or the like.

以上■、■の方法にて製造した合金を900℃前後にて
IH程度保持したのち水冷して溶体化した。こののち5
00℃XIHの時効処理を施して所期の高硬度を得た。
The alloys produced by the methods (1) and (2) above were maintained at around 900° C. to about IH and then cooled with water to form a solution. After this 5
Aging treatment at 00°C XIH was performed to obtain the desired high hardness.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例■ アルゴンアーク炉にてセラミック粒子を溶解時に混合す
ることを考えた。
Example ■ We considered mixing ceramic particles during melting in an argon arc furnace.

マトリクス合金としてNiとSiとを原子チ比で2:1
の割合で添加したCg−Ni−Si金合金用いた。溶体
化後の時効処理により、Ni、9iが析出して合金全体
が硬化Tる。組成はCu −2N&! 8*(wtl)
とした。
As a matrix alloy, the atomic ratio of Ni and Si is 2:1.
A Cg-Ni-Si gold alloy was used. By aging treatment after solution treatment, Ni and 9i precipitate and the entire alloy is hardened. The composition is Cu-2N&! 8*(wtl)
And so.

セラミック粉末として平均径gμのs i C1同じく
80μのsio、、同じく20μの人t、0.ならびに
同じ<30μのsi、o、をとりあげ、0.019〜Q
、3wt%添加した。
As a ceramic powder, the average diameter gμ is s i C1, which is also 80μ, sio, which is also 20μ, and 0. Also, taking the same <30μ si, o, 0.019~Q
, 3 wt% was added.

アルゴンアーク炉の調合型中に金属si、Ni塊、電気
鋼塊および平均径約80μの電解銅粉と上記セラミック
粉との混合物を挿入し、アルボy雰囲気中100〜35
0人にて溶解をおこなった。
A mixture of metal Si, Ni ingots, electric steel ingots, and electrolytic copper powder with an average diameter of about 80μ and the above ceramic powder was inserted into a mixing mold of an argon arc furnace, and
The dissolution was performed by 0 people.

インゴット重量は100Fである。The ingot weight is 100F.

溶製後、インゴットを中央部で切断し、セラミック粉の
分布を観察した。その結果、すべてのインゴットにつき
分布はきわめて均一良好であった。マトリクス合金が高
熱伝導率であり、凝固が十分ずみやかに進行したことも
大きく寄与していると考えられる。
After melting, the ingot was cut at the center and the distribution of ceramic powder was observed. As a result, the distribution was extremely uniform for all ingots. It is thought that the fact that the matrix alloy has high thermal conductivity and solidification progressed sufficiently quickly also contributed greatly.

なおセラミック粉を銅粉と混合して添加したのはセラミ
ック粉のみであると溶解中にこれらがチャージアップし
て飛散するためである。
Note that if the ceramic powder is mixed with the copper powder and only the ceramic powder is added, the ceramic powder will charge up and scatter during melting.

したがってセラきツク粉に無電解Niメッキを施こすな
どによっても同じ効果が期待される。
Therefore, the same effect can be expected by applying electroless Ni plating to ceramic powder.

以上の溶製材8900℃xll(→水冷なる溶体化処理
ののち、500℃XIHの時効処理を施こして硬度測定
ののち摺動試験に供した。
After solution treatment at 8900°C x 11 (→ water cooling), aging treatment at 500°C x IH was performed, hardness was measured, and the material was subjected to a sliding test.

試験条件を表1に示T、試験機は自家製で5寵xlow
a+X20藺の試験片2枚をφ130の1転する相手板
と摺動させる型式である。
The test conditions are shown in Table 1.
This is a type in which two test pieces of a+X20 are slid against a mating plate of φ130 that rotates once.

表1  摺動試験の条件 以上の結果を総合して比較例の結果とあわせて表2およ
び第1図に示T。
Table 1 The results of the sliding test conditions and above are summarized and shown in Table 2 and FIG. 1 together with the results of the comparative example.

どのセラミック粉末を添加した場合にも、無添加のもの
(比較例2)にくらべてpvmasg値は向上しており
、とくに20μ径の人40.粉をO*3wt%前後添加
したものがTぐれる。
No matter which ceramic powder is added, the pvmasg value is improved compared to the one without additive (Comparative Example 2), especially for those with a diameter of 20μ. The product with around 3wt% of O* added has T-glue.

8iCについては第1図より添加量がQ、)wtlをこ
えると既存の特殊高力黄銅のレベルよりもp vmax
値が低下することがわかる。これは8iCがとくに高硬
度であり、添加量が増Tと相手板をひつかく効果が増し
て摺動面の発熱をまねくためである。これに対してs 
i o、はもっとも低硬度であり、0.8wt@まで添
加してもTぐれたPVmas: 値を維持し得る。
Regarding 8iC, as shown in Figure 1, when the amount of addition exceeds Q, ) wtl, the p vmax is higher than the level of existing special high strength brass.
It can be seen that the value decreases. This is because 8iC has particularly high hardness, and as the amount of addition increases, the effect of hitting the mating plate increases, leading to heat generation on the sliding surface. On the other hand, s
io has the lowest hardness, and even when added up to 0.8 wt@, the PVmas value below T can be maintained.

なおA 40B 1m子も高硬度であるが、その粒径が
20μとSiCよりも大きいために比較的に多量に添加
しても粒子の数はさほど増さない。
Note that A 40B 1m particles also have high hardness, but since the particle size is 20 μm, which is larger than SiC, the number of particles does not increase much even if a relatively large amount is added.

このために相手板をひつかく確率が小さくなりTぐれた
結果が得られたのである。この傾向は30μのsi、N
4粉を添加したものについても同様であろう。
Because of this, the probability of hitting the opponent's board became smaller, resulting in a better result. This tendency is consistent with 30μ si, N
The same would apply to those to which 4 powders were added.

表2   セラミック粉混合溶製材のPvmax値と硬
さ実施例■ Cat−2〜εNiR81合金マトリクス中に、zrB
、、 8iB、、 W、 B、、 CrB、、 Mo、
 B、、 VSit。
Table 2 Example of Pvmax value and hardness of ceramic powder mixed lumber
,, 8iB,, W, B,, CrB,, Mo,
B., VSit.

M o SL tなる硬質粒子をそれぞれ生成させる目
的で、これら構成元素を単独に添加した表3に示す合金
を溶製した。900℃xlH,500℃XIHの溶体化
および時効処理を施こして、硬度測定、光顕微鏡組織観
察ののち摺動試験した。
For the purpose of producing hard particles of M o SL t, alloys shown in Table 3 to which these constituent elements were added singly were produced. It was subjected to solution treatment and aging treatment at 900° C.XIH and 500° C.

便宜上溶解は実施例のと同じアルゴンアーク炉によって
実施した。添加元素のうちCtLに全く溶解しないWと
MOのみは2〜3s径の粉末で添加した。
For convenience, melting was carried out in the same argon arc furnace as in the examples. Among the added elements, only W and MO, which do not dissolve at all in CtL, were added in the form of powder with a diameter of 2 to 3 s.

結果を表3に右欄に併記した。The results are also listed in the right column of Table 3.

表3  硬質粒子溶解時生成材の諸性性光顕微鏡観察の
結果どの合金にも硬質粒子の均一分散がみとめられた。
Table 3: Properties of materials produced during dissolution of hard particles As a result of light microscopic observation, uniform dispersion of hard particles was observed in all alloys.

粒子の硬度は測定不能であったが、どの合金の研贋面に
もパフ研磨後に研磨方向と平行に硬質粒子特有の条痕を
生じたため、十分な硬度の粒子の生成がうらづけられた
。なお湯がアークによってはげしく攪拌されるために、
純W、純MOなどがかたまって残留することはなかった
Although the hardness of the particles could not be measured, the scratches characteristic of hard particles were produced in parallel to the polishing direction after puff polishing on the polished surfaces of all alloys, suggesting the generation of particles with sufficient hardness. Furthermore, since the hot water is vigorously stirred by the arc,
Pure W, pure MO, etc. did not remain in a lump.

摺動試験の結果は表3よりどの合金も表1に示T比較例
にくらべて格段にすぐれていることがわかる。124〜
25合金はNi、9i含有量が多量であるため高硬度で
あり、ミクロな片当りを生じやTいためにp’imax
値は若干低下している。
It can be seen from Table 3 that the results of the sliding test are far superior to the T comparative example shown in Table 1 for all alloys. 124~
25 alloy has a high hardness due to its large Ni and 9i contents, and it has a high p'imax due to micro uneven contact and T.
The value has decreased slightly.

実施例0 実施例■において比較的にpvmax値が高く、コスト
的にも有利でかつCμ溶湯との比重差の小さい粒子とし
でW、 B、 、 MO,B、 、ならびにMO!98
1をとりあげた。59の大気溶解をおこない、インゴッ
トを徐冷凝固させて粒子分布の不均一性などをチェック
したのち溶体化、時効処理を行なって硬度測定ののち摺
動試(験に供した。
Example 0 In Example 2, particles having a relatively high pvmax value, advantageous in terms of cost, and having a small difference in specific gravity from the Cμ molten metal were used: W, B, , MO, B, and MO! 98
I picked up 1. 59 was dissolved in the atmosphere, the ingot was slowly cooled and solidified, and the non-uniformity of particle distribution was checked, followed by solution treatment, aging treatment, hardness measurement, and sliding test.

溶解は黒鉛ルツボを用いたルツボ溶解により、溶解温度
1250℃にて実施した。
The melting was carried out by crucible melting using a graphite crucible at a melting temperature of 1250°C.

電気鋼溶落ののち木炭系のカバー剤で溶湯表面を被覆し
、0.02%Pにで脱酸ののち、硬質粒子構成元素を添
加した。5〜(QminののちNiおよびCμm15%
Si母合金を添加して5miル保持後ルツボを加熱炉外
に取り出して凝固さセた。
After the electric steel burn-through, the surface of the molten metal was coated with a charcoal-based covering agent, and after deoxidizing with 0.02% P, hard particle constituent elements were added. 5~(Ni and Cμm 15% after Qmin
After adding the Si master alloy and holding it at 5 mil, the crucible was taken out of the heating furnace and solidified.

合金組成、硬質粒子構成元素の添加法並びに摺動試験の
結果を表4にまとめて示T、Bを含有するものは市販の
純B結晶で添加した。
The alloy composition, the addition method of hard particle constituent elements, and the results of the sliding test are summarized in Table 4.Those containing T and B were added using commercially available pure B crystals.

MOおよびWは2〜3μ径の粉末を重量比で100倍の
電解銅粉(平均径FEOμ)と均一混合して添加Tるか
、MOの場合はこのほかに別に溶製したNi−5Mo母
合金のかたちで添加した。Ni−Mo母合金はアルゴン
アーク炉にて溶製したが、一度の溶解での使用量がわず
かなるため量産を考慮してもコスト高にはならない。
MO and W can be added by uniformly mixing powder with a diameter of 2 to 3μ with 100 times the weight ratio of electrolytic copper powder (average diameter FEOμ), or in the case of MO, add Ni-5Mo mother powder separately melted. It was added in the form of an alloy. The Ni-Mo master alloy was melted in an argon arc furnace, but since the amount used in one melting is small, the cost does not increase even when mass production is considered.

表4   大気溶解後徐冷凝固材の製法とpvmGx値
つぎに表4の合金26〜33についてMO,B。
Table 4 Manufacturing method and pvmGx value of slowly cooled solidified material after atmospheric melting Next, MO and B for alloys 26 to 33 in Table 4.

分散量とPVmax値との関係を図示すると第2図の通
りである。わずかO−000−0O1のMez B6粒
子の分散でも無添加のものに比べて効果が認められ、0
.002w4%に至ると既存高性能材のレベルをTでに
超えている。第1図のものにくらべてはるかく少ない分
散量でこのような効果があられれるのは、MO,Wを微
細な粉末で添加Tるために硬質粒子の平均径も0.3〜
3μと微細になり、粒子の分散数が非常に増Tためであ
る。硬質粒子の粒径は電子顕微鏡レプリカ法にて正しく
確認した。
The relationship between the amount of dispersion and the PVmax value is illustrated in FIG. 2. Even dispersion of Mez B6 particles with only O-000-0O1 was found to be more effective than that without any additives, with 0
.. When it reaches 4% of 002w, T exceeds the level of existing high performance materials. This effect can be achieved with a much smaller amount of dispersion compared to the one in Figure 1, because MO and W are added in the form of fine powder, and the average diameter of the hard particles is also 0.3~0.
This is because the particles become as fine as 3μ and the number of particles dispersed increases significantly. The particle size of the hard particles was confirmed correctly using an electron microscope replica method.

次にNi、f3i、硬質粒子の粒径及び硬質粒子の分散
量の限定理由を述べる。
Next, reasons for limiting the particle diameters of Ni, f3i, hard particles, and the amount of dispersion of hard particles will be described.

Niff1si Ni、Si  1vyt%未満では、時効処理をおこな
ってもほとんど硬さの向上が認められない。また12W
f%をこえると著しく脆化して摺動中に亀裂を生じるな
どの不具合を生じる。また熱伝導率も大きく低下する。
Niff1si If Ni, Si is less than 1 vyt%, hardly any improvement in hardness is observed even after aging treatment. Also 12W
If it exceeds f%, it becomes extremely brittle and causes problems such as cracking during sliding. Thermal conductivity also decreases significantly.

好′ましくは1.5〜5w4%である。Preferably it is 1.5-5w4%.

硬質粒子 0.3μ程度の粒径から分散の効果が認められる(合金
426〜35)。また上限は80μであり(第1図参照
)、80μをこえると粒子が相手板にくい込むために摩
擦係数が上昇して摺動部が発熱しPV77!α2値の低
下をまねく。7好ましくは1〜30Jである。
The dispersion effect is recognized from the particle size of hard particles of about 0.3 μm (alloys 426 to 35). The upper limit is 80μ (see Figure 1), and if it exceeds 80μ, the particles will sink into the mating plate, increasing the friction coefficient and causing the sliding part to generate heat, PV77! This leads to a decrease in α2 value. 7, preferably 1 to 30 J.

硬質粒子の分散量 第1図、第2図よりo、oo+ 〜o、swttsで効
果があることがわかる。好ましくは0.002〜0.4
wt’lAである。
It can be seen from FIGS. 1 and 2 that the dispersion amount of hard particles from o, oo+ to o, swtts is effective. Preferably 0.002 to 0.4
wt'lA.

発明の効果 、以上詳述したように、本発明はNiおよび8iを2=
1の原子チルで、総計1.0〜12重量係含有し、残部
実質的に銅と通常の不純物とからなる銅合金中に直径0
.3〜F30μの耐摩耗性粒子0.001〜0.8重量
%を分散させでなる摺動用材料である。
Effects of the Invention As detailed above, the present invention provides Ni and 8i with 2=
1 atomic chill, a total of 1.0 to 12% by weight is contained in the copper alloy, the remainder consisting essentially of copper and ordinary impurities.
.. This is a sliding material made by dispersing 0.001 to 0.8% by weight of wear-resistant particles of 3 to 30 μm.

したがって、本発明に係る摺動用材料は、高熱伝導率で
高融点でしかも高強度なものとなり、既存の高性能な摺
動材料に比べて格段の耐焼付性能を有Tるものになる。
Therefore, the sliding material according to the present invention has high thermal conductivity, high melting point, and high strength, and has significantly higher seizure resistance than existing high-performance sliding materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硬質粒子の添加量とPVmax値との関係図、
第2図は硬質粒子分散量とp’imax値との関係図で
ある。 第1図 粒子の添加!  [wtX] 第2図
Figure 1 is a diagram of the relationship between the amount of hard particles added and the PVmax value,
FIG. 2 is a diagram showing the relationship between the amount of hard particles dispersed and the p'imax value. Figure 1 Addition of particles! [wtX] Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)NiおよびSiを2:1の原子%比で、総計1.
0〜12重量%含有し、残部実質的に銅と通常の不純物
とからなる銅合金中に直径0.3〜80μの耐摩耗性粒
子0.001〜0.8重量%を分散させてなる摺動用材
料。
(1) Ni and Si in an atomic % ratio of 2:1, totaling 1.
0.001 to 0.8% by weight of wear-resistant particles with a diameter of 0.3 to 80μ are dispersed in a copper alloy containing 0 to 12% by weight, with the remainder consisting essentially of copper and ordinary impurities. Materials for dynamic use.
(2)耐摩耗粒子が硼化物である特許請求の範囲の記載
(1)の摺動用材料。
(2) The sliding material according to claim (1), wherein the wear-resistant particles are boride.
(3)耐摩粍粒子が硅化物である特許請求の範囲の記載
(1)の摺動用材料。
(3) The sliding material according to claim (1), wherein the wear-resistant particles are silicide.
(4)耐摩耗粒子が窒化物系または酸化物系または炭化
物系セラミックスである特許請求の範囲の記載(1)の
摺動用材料。
(4) The sliding material according to claim (1), wherein the wear-resistant particles are nitride-based, oxide-based, or carbide-based ceramics.
JP29824385A 1985-12-28 1985-12-28 Sliding material Pending JPS62158842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29824385A JPS62158842A (en) 1985-12-28 1985-12-28 Sliding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29824385A JPS62158842A (en) 1985-12-28 1985-12-28 Sliding material

Publications (1)

Publication Number Publication Date
JPS62158842A true JPS62158842A (en) 1987-07-14

Family

ID=17857086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29824385A Pending JPS62158842A (en) 1985-12-28 1985-12-28 Sliding material

Country Status (1)

Country Link
JP (1) JPS62158842A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436744A (en) * 1987-07-30 1989-02-07 Shinzo Sato Product and material reinforced by distributing metallic nitrogen compound into total area of copper titanium, aluminum, magnesium as well as alloy of these metallic groups and normal cast iron
JPS6455346A (en) * 1987-08-25 1989-03-02 Mitsubishi Metal Corp Wear-resistant cu alloy having high strength and high toughness
JPH01152232A (en) * 1987-12-10 1989-06-14 Toyota Motor Corp Wear-resistant cu-based alloy
JPH02122038A (en) * 1988-10-31 1990-05-09 Dai Ichi Kogyo Seiyaku Co Ltd Copper conductor composition
JP2008540838A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
JP2008540839A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436744A (en) * 1987-07-30 1989-02-07 Shinzo Sato Product and material reinforced by distributing metallic nitrogen compound into total area of copper titanium, aluminum, magnesium as well as alloy of these metallic groups and normal cast iron
JPS6455346A (en) * 1987-08-25 1989-03-02 Mitsubishi Metal Corp Wear-resistant cu alloy having high strength and high toughness
JPH01152232A (en) * 1987-12-10 1989-06-14 Toyota Motor Corp Wear-resistant cu-based alloy
JPH02122038A (en) * 1988-10-31 1990-05-09 Dai Ichi Kogyo Seiyaku Co Ltd Copper conductor composition
JP2008540838A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method
JP2008540839A (en) * 2005-05-13 2008-11-20 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Sliding bearing composite material, use and manufacturing method

Similar Documents

Publication Publication Date Title
US4207096A (en) Method of producing graphite-containing copper alloys
Pai et al. Production of cast aluminium-graphite particle composites using a pellet method
CN110157935B (en) Al-V-B refiner for casting aluminum-silicon alloy, preparation method and application thereof
TW200422415A (en) Copper alloy sputtering target, process for producing the same and semiconductor element wiring
FR2784690A1 (en) Pre-alloyed tungsten and-or molybdenum and transition metal based powder, useful for sintered parts or cermet binders, comprises micron-size elementary particles
US2124538A (en) Method of making a boron carbide composition
JP5182773B2 (en) Semi-solid casting method for producing copper alloy
JPS62158842A (en) Sliding material
CN116555758B (en) Metal ceramic gradient coating and preparation method and application thereof
US3993478A (en) Process for dispersoid strengthening of copper by fusion metallurgy
WO2021045183A1 (en) Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER
JPS60238078A (en) High alloying method of casting surface
JPH0625774A (en) Production of tib2-dispersed tial-base composite material
JPH04502784A (en) Phase redistribution process
JPS5959848A (en) Addition of insoluble substance to liquid or partially liqu-id metal
JPS5964766A (en) Composite plasma spraying material
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
JPH03504614A (en) Solid-state manufacturing method for high-performance metal alloys
EP0053301A2 (en) Method of producing aluminium base sintered body containing graphite
US3189444A (en) Metallic composition and method of making
Novák et al. Effect of alloying elements on microstructure and properties of Fe-Al and Fe-Al-Si alloys produced by reactive sintering
JPS6270538A (en) Manufacture of ceramics grain-dispersed composite alloy
Kumar et al. Production of semi-solid feedstock of A356 alloy and A356-5TiB2 in-situ composite by cooling slope casting
JP2778972B2 (en) Graphite dispersed Co-Ni based self-lubricating alloy
Atapek et al. On the properties of cast and powder metallurgical Cu–6Ni-1.5 Si-0.15 Al (wt.%) alloy