JP2778972B2 - Graphite dispersed Co-Ni based self-lubricating alloy - Google Patents

Graphite dispersed Co-Ni based self-lubricating alloy

Info

Publication number
JP2778972B2
JP2778972B2 JP2892989A JP2892989A JP2778972B2 JP 2778972 B2 JP2778972 B2 JP 2778972B2 JP 2892989 A JP2892989 A JP 2892989A JP 2892989 A JP2892989 A JP 2892989A JP 2778972 B2 JP2778972 B2 JP 2778972B2
Authority
JP
Japan
Prior art keywords
graphite
alloy
based self
present
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2892989A
Other languages
Japanese (ja)
Other versions
JPH02209444A (en
Inventor
完一 田中
謙介 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP2892989A priority Critical patent/JP2778972B2/en
Publication of JPH02209444A publication Critical patent/JPH02209444A/en
Application granted granted Critical
Publication of JP2778972B2 publication Critical patent/JP2778972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は流体潤滑が不可能な各種摺動部材や高温下で
使用される各種摺動部材において、その金属母材上に、
肉盛溶接などの方法により簡単に固体潤滑性を有するグ
ラファイトを均一に分散させた肉盛層を形成させるため
のグラファイト分散Co−Ni基自己潤滑性合金に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to various sliding members which cannot be fluid lubricated or various sliding members used at high temperatures.
The present invention relates to a graphite-dispersed Co—Ni-based self-lubricating alloy for easily forming a build-up layer in which graphite having solid lubricity is uniformly dispersed by a method such as overlay welding.

〔従来の技術〕[Conventional technology]

グラファイトや二硫化モリブデンは結晶構造上異方性
が強く、特定な結晶面間や原子間でその結合力が弱く、
せん断によって切れやすく、このため内部すべりを起こ
し、低摩擦を与えることから、固体潤滑剤として用いら
れる。特にグラファイトは熱安定性にも優れていること
から多用されている。
Graphite and molybdenum disulfide have strong anisotropy in crystal structure, and their bonding strength between specific crystal planes and atoms is weak.
It is used as a solid lubricant because it is easily cut by shearing, causing internal slip and giving low friction. Particularly, graphite is widely used because of its excellent thermal stability.

従来グラファイトを固体潤滑剤として用いる場合1)
母材表面に直接塗布するかスプレーした後乾燥させて用
いる方法、2)油や樹脂類などの中に懸濁又は分散させ
て用いる方法、3)金属や油脂と混合して複合材料の形
で用いる方法がある。しかしながら1)の方法ではグラ
ファイトを分散させた流体を部材表面に塗布(又はスプ
レー)し、乾燥させるため手間がかかり、かつ被膜が薄
いため長時間の潤滑効果は期待できない。2)の方法で
は、潤滑油に添加して用いるため、その粒度や表面物
性、油との密度差さらには他の添加剤との共存など、グ
ラファイトの安定した油中分散が得にくく、このためグ
ラファイト粒子表面にあらかじめ界面活性剤の吸着膜を
形成させるなど、親油化処理をして油に漏れやすくして
やることが必要である。また、3)の方法では部材内部
にグラファイトが分散しているため、長時間の潤滑効果
が期待できるが、グラファイトの分散性の問題や強度及
び作成の難しさなどの問題がある。
Conventional use of graphite as solid lubricant 1)
The method of applying directly to the surface of the base material or spraying it and then drying it. 2) The method of suspending or dispersing it in oils or resins, etc. 3) Mixing with metals or fats and oils to form a composite material There are methods to use. However, in the method 1), a fluid in which graphite is dispersed is applied (or sprayed) to the surface of the member, and it is troublesome to dry it. Further, since the film is thin, a long-term lubricating effect cannot be expected. In the method 2), since it is used by adding it to a lubricating oil, it is difficult to obtain a stable dispersion of graphite in oil, such as its particle size, surface properties, density difference with oil, and coexistence with other additives. It is necessary to make lipophilic treatment, for example, to form a surfactant adsorption film on the surface of the graphite particles in advance so that the oil can easily leak into the oil. In the method 3), since the graphite is dispersed inside the member, a long-term lubricating effect can be expected. However, there are problems such as the dispersibility of graphite, the strength, and the difficulty of preparation.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明者等は摺動部にグラファイトを塗布又は油と共
に供給する方法ではなく、部材内部にグラファイトが分
散したものでしかも強度が大きく、製造も容易なものを
種々見当した結果、ある特定の合金組成においてはグラ
ファイトが均一に晶出し、潤滑が良好で耐摩耗性、耐食
性も良好な合金組成を見出し、本発明を完成した。
The inventors of the present invention have found various types of materials in which graphite is dispersed inside the member, which has high strength and is easy to manufacture, rather than applying graphite to the sliding portion or supplying it together with oil. In the composition, graphite was uniformly crystallized, and an alloy composition having good lubrication, good wear resistance and good corrosion resistance was found, and the present invention was completed.

また本発明の合金は、肉盛溶接などの方法で肉盛層を
形成させると同時にこの肉盛層中に球状もしくは片状の
グラファイトを均一に分散させることも可能で作成が容
易であることも見出した。
Further, the alloy of the present invention can be easily formed by forming a build-up layer by a method such as build-up welding and simultaneously dispersing spherical or flake graphite uniformly in the build-up layer. I found it.

〔問題を解決するための手段〕[Means for solving the problem]

即ち本発明は、重量%でC1.0〜5.0%,B0.1〜4.5%,Si
0.1〜9.0%を含有し、さらに必要に応じてCr1.0〜15.0
%又は/およびCu1.0〜5.0%を含有し、残部がCoとNiの
二種及び不可避的不純物よりなる組成を有することを特
徴とするグラファイト分散Co−Ni基自己潤滑性合金であ
る。
That is, the present invention is based on the following:
0.1 to 9.0%, Cr 1.0 to 15.0 if necessary
% Or / and 1.0 to 5.0% Cu, and the balance is a graphite-dispersed Co-Ni-based self-lubricating alloy characterized by having a composition of two types of Co and Ni and unavoidable impurities.

〔作用〕[Action]

次に本発明合金の成分限定理由を説明する。 Next, the reasons for limiting the components of the alloy of the present invention will be described.

C CはCo−Niを主体とした基質中に球状又は片状のグラ
ファイトとして晶出し、固体潤滑剤として働き耐摩耗性
の向上に寄与する。C含有量が重量%で1.0%未満では
基質のCo−Ni中に固溶し、ほとんどグラファイトとして
晶出せず、5.0%以上ではCo−Niに対する最大溶解度を
越えるため、溶湯中に溶解しなくなる。このためC含有
量は1.0〜5.0%に定めた。
CC crystallizes as spherical or flaky graphite in a substrate mainly composed of Co—Ni and acts as a solid lubricant, contributing to an improvement in wear resistance. If the C content is less than 1.0% by weight, it will form a solid solution in the substrate Co-Ni and hardly crystallize as graphite, and if it exceeds 5.0%, it will exceed the maximum solubility in Co-Ni and will not be dissolved in the molten metal. For this reason, the C content is set to 1.0 to 5.0%.

B BはCo−Niとの間で金属間化合物を形成し、合金の硬
さを上げる働きがある他、合金に自溶性を与え、肉盛溶
接を容易にする働きを有する。B含有量が重量%で0.1
%未満では硬さの向上及び自溶性が得られず、4.5%以
上では硬さが高くなりすぎ肉盛層に割れを生じるように
なり好ましくない。また、4.5%以上になるとCo−Niに
対するCの最高溶解度が下がり、グラファイトの晶出が
ほとんど見られなくなる。このためB含有量は0.1〜4.5
%に定めた。
BB forms an intermetallic compound with Co-Ni and has a function of increasing the hardness of the alloy, and also has a function of giving self-solubility to the alloy and facilitating overlay welding. B content is 0.1% by weight
%, The hardness is not improved and the self-solubility is not obtained. If the content is 4.5% or more, the hardness is too high, and the cladding layer is cracked. On the other hand, when the content exceeds 4.5%, the maximum solubility of C in Co-Ni decreases, and crystallization of graphite is hardly observed. Therefore, the B content is 0.1 to 4.5.
%.

Si SiはBと同じようにCo−Niとの間で金属間化合物を形
成し、合金の硬さを上げる働きがある他合金に自溶性を
与え、肉盛溶接を容易にする働きを有する。Si含有量が
重量%で1.0%未満では、硬さの向上及び自溶性が得ら
れず、9.0%以上では硬さが高くなりすぎ、肉盛層に割
れを生じるようになり好ましくない。また9.0%以上に
なるとCo−Niに対するCの最高溶解度が下がり、グラフ
ァイトの晶出がほとんど見られなくなる。このためSi含
有量は1.0〜9.0%に定めた。
Si Si, like B, forms an intermetallic compound with Co-Ni, has the function of increasing the hardness of the alloy, gives self-solubility to other alloys, and has the function of facilitating overlay welding. If the Si content is less than 1.0% by weight, improvement in hardness and self-solubility cannot be obtained. When the content exceeds 9.0%, the maximum solubility of C in Co-Ni decreases, and crystallization of graphite is hardly observed. For this reason, the Si content is set to 1.0 to 9.0%.

Cr Crは添加しなくても摺動部材としての特性に影響はな
いが、耐食性を必要とする場合にはCrを添加する方が好
ましい。
Cr Even if Cr is not added, there is no effect on the properties of the sliding member. However, when corrosion resistance is required, it is preferable to add Cr.

Crは合金の耐食性を向上させる働きを有し、Cr含有量
が重量%で1.0%未満ではこの働きがほとんど見られ
ず、15.0%以上になるとCとの間で炭化物を形成するよ
うになり、グラファイトの晶出量が低下し自己潤滑性が
得られなくなる。また炭化物の形成にともない肉盛層の
割れ感受性が高くなる。このためCr含有量は1.0〜15.0
%に定めた。
Cr has the function of improving the corrosion resistance of the alloy. When the Cr content is less than 1.0% by weight, this function is hardly observed, and when the Cr content exceeds 15.0%, carbides are formed with C, The amount of graphite crystallized decreases and self-lubricating properties cannot be obtained. In addition, the susceptibility of the build-up layer to cracking increases with the formation of carbides. Therefore, the Cr content is 1.0-15.0
%.

Cu Cuは添加しなくても摺動部材としての特性に影響はな
いが、耐食性を要求される場合にはCrと同じくCuを添加
する方が好ましい。また、CrとCuを複合して添加すれば
より好ましい。
Cu Even if Cu is not added, there is no effect on the properties of the sliding member. However, when corrosion resistance is required, it is preferable to add Cu as in the case of Cr. It is more preferable to add Cr and Cu in combination.

CuはCrと同じように合金の耐食性を向上させる働きを
有するが、Cu含有量が重量%で1.0%未満ではこの働き
がほとんどみられず、5.0%以上になると肉盛溶接時偏
析を起こし、肉盛層に割れを誘発する恐れがある。
Cu has a function to improve the corrosion resistance of the alloy like Cr, but this function is hardly seen when the Cu content is less than 1.0% by weight, and when the Cu content is more than 5.0%, segregation occurs at the time of overlay welding, There is a risk of causing cracks in the overlay.

なお、CrとCuを複合して添加する場合はそれぞれの下
限及び上限を添加すればよい。
When adding Cr and Cu in combination, the respective lower and upper limits may be added.

Co,Ni Co,Niは本合金において基質となるものである。Coに
対するNiの比率が高くなると、グラファイトの晶出量が
若干減少する傾向がある。しかしながらいずれの比率に
おいても、本合金の目的である自己潤滑性を得るための
グラファイトの晶出は見られる。これはCoとNiが同族元
素でかつ全率固溶体を形成するためと考えられる。
Co, Ni Co and Ni are substrates in the present alloy. As the ratio of Ni to Co increases, the amount of graphite crystallized tends to decrease slightly. However, at any ratio, crystallization of graphite for obtaining the self-lubricating property which is the object of the present alloy is observed. This is considered to be because Co and Ni are homologous elements and form a solid solution in all proportions.

〔実施例〕〔Example〕

次に本発明の合金を実施例により比較例と対比しなが
ら具体的に説明する。
Next, the alloy of the present invention will be specifically described with reference to examples and comparative examples.

アトマイズ法により、それぞれ第1表に示される成分
組成をもつ本発明の合金及び比較例合金を粉末化(粒子
径105〜177μm)し、これをプラズマ粉末肉盛装置を用
い、SS−41母材上に2.5mmの厚みに肉盛を行った。こう
して肉盛した試験片を所定の大きさに切断し、肉盛層表
面を耐水研磨紙及びバフ研磨により研磨し、ビッカース
硬さ計で肉盛層の硬さを測定後、摩耗試験に供した。摩
耗試験は第2図に示すように、肉盛した試験硬を固定
側、白銑製リングを回転側にして行った。第2表にこの
摩耗試験条件を示す。
The alloy of the present invention and the alloy of the comparative example each having the component composition shown in Table 1 were powderized (particle diameter: 105 to 177 μm) by an atomizing method, and the powder was coated on a SS-41 base material using a plasma powder overlaying apparatus. Overlay was performed to a thickness of 2.5 mm. The thus-prepared test piece was cut into a predetermined size, the surface of the build-up layer was polished with water-resistant abrasive paper and buffing, and the hardness of the build-up layer was measured with a Vickers hardness meter, and then subjected to an abrasion test. . As shown in FIG. 2, the abrasion test was carried out with the hardened test specimens on the fixed side and the white iron ring on the rotating side. Table 2 shows the wear test conditions.

腐食試験は、それぞれ第1表に示される成分組成をも
つ本発明の合金及び比較例の合金をアルゴン気流中で溶
解しシエル鋳型に鋳造後、10mm×10mm×10mmに切断した
ものを試験片とし、5%H2SO4(沸騰中)に6時間浸漬
し、その時の腐食減量を測定した。
In the corrosion test, the alloys of the present invention and the alloys of the comparative examples having the component compositions shown in Table 1 were melted in an argon stream, cast into shell molds, and cut into 10 mm x 10 mm x 10 mm specimens. The sample was immersed in 5% H 2 SO 4 (during boiling) for 6 hours, and the weight loss at that time was measured.

第1表は、この摩耗試験・肉盛試験及び肉盛層の測定
結果を示したものである。
Table 1 shows the results of the wear test, the overlay test and the measurement of the overlay.

また、第1図は摩耗試験の結果得られた試験片及び相
手材(リング)の摩耗減量を図示したものである。第3
図は、本発明の合金No.2及びNo.4における肉盛層断面の
X線写真である。組成からわかるように、Co−Ni合金基
質中にグラファイトが均一に分散していることがわか
る。
FIG. 1 is a graph showing the wear loss of a test piece and a mating material (ring) obtained as a result of a wear test. Third
The figure is an X-ray photograph of the section of the buildup layer in the alloys No. 2 and No. 4 of the present invention. As can be seen from the composition, it can be seen that graphite is uniformly dispersed in the Co—Ni alloy substrate.

第1表、第1図に示すように、本発明の合金は比較例
の合金に比べ摩耗が少なく、かつ相手の摩耗も少ない。
こうしたことから、無潤滑の状態において良好な潤滑性
を示していることがわかる。
As shown in Table 1 and FIG. 1, the alloy of the present invention has less wear than the alloy of the comparative example, and also has less wear on the partner.
From these facts, it can be seen that good lubricity is exhibited in a non-lubricated state.

〔発明の効果〕〔The invention's effect〕

本発明によるグラファイト分散Co−Ni基自己潤滑性合
金は、金属母材にプラズマアークやレーザービームなど
の熱源により肉盛すると同時に、その肉盛層中に球状及
び片状グラファイトを均一に分散させようとするもの
で、こうして形成した肉盛層は、比較例の合金に比べて
耐摩耗性に優れ、かつグラファイトが肉盛層全体にわた
り均一に分散しているため、グラファイトを塗布(また
はスプレー)した場合に比べ長時間潤滑効果が得られ
る。
The graphite-dispersed Co-Ni-based self-lubricating alloy according to the present invention is used to build up a metal base material by a heat source such as a plasma arc or a laser beam, and to uniformly disperse spherical and flaky graphite in the build-up layer. Since the build-up layer formed in this way is more excellent in wear resistance than the alloy of the comparative example and the graphite is uniformly dispersed throughout the build-up layer, graphite was applied (or sprayed). Longer lubrication effect can be obtained compared to the case.

なお、上記実施例では、本発明の合金を金属母材上に
粉末肉盛して用いたが、これを鋳物として用いても肉盛
同様、優れた特性を示す。
In the above-described embodiment, the alloy of the present invention was used by powder overlaying on a metal base material.

上述のように、本発明の合金は、流体潤滑が不可能な
各種摺動部材に使用することで、潤滑の効果が得られる
とともに、装置の小型集約化に寄与する。
As described above, when the alloy of the present invention is used for various sliding members that cannot perform fluid lubrication, the effect of lubrication can be obtained and the device contributes to downsizing.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、摩耗試験後の試験片及び相手材の摩耗減量、
第2図は摩耗試験概略図、第3図は本発明の合金No.2及
びNo.4における肉盛層断面のX線写真で1−A,1−Bは
合金No.2で、2−A,2−Bは合金No.4である。また、A
は反射電子像でBはCKαの特性X線像である。
FIG. 1 shows the loss of wear of the test piece and the mating material after the wear test,
FIG. 2 is a schematic view of the abrasion test, and FIG. 3 is an X-ray photograph of a cross-section of the overlay of alloy Nos. 2 and 4 of the present invention. A, 2-B is alloy No.4. Also, A
Is a reflected electron image and B is a characteristic X-ray image of CKα.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でC1.0〜5.0%,B0.1〜4.5%,Si0.1
〜9.0%を含有し、残部がCoとNiの二種及び不可避的不
純物よりなる組成を有することを特徴とするグラファイ
ト分散Co−Ni基自己潤滑性合金。
C. 1.0 to 5.0%, B0.1 to 4.5%, and Si0.1% by weight.
A graphite-dispersed Co-Ni-based self-lubricating alloy containing up to 9.0%, the balance being composed of two types of Co and Ni and inevitable impurities.
【請求項2】重量%でC1.0〜5.0%,B0.1〜4.5%,Si0.1
〜9.0%を含有し、さらにCr1.0〜15.0%を含有し、残部
がCoとNiの二種及び不可避的不純物よりなる組成を有す
ることを特徴とするグラファイト分散Co−Ni基自己潤滑
性合金。
(2) C1.0-5.0%, B0.1-4.5%, Si0.1
A graphite-dispersed Co-Ni-based self-lubricating alloy characterized by having a composition of 1.0 to 15.0%, Cr 1.0 to 15.0%, and the balance consisting of two types of Co and Ni and unavoidable impurities. .
【請求項3】重量%でC1.0〜5.0%,B0.1〜4.5%,Si0.1
〜9.0%を含有し、さらにCu1.0〜5.0%を含有し、残部
がCoとNiの二種及び不可避的不純物よりなる組成を有す
ることを特徴とするグラファイト分散Co−Ni基自己潤滑
性合金。
(3) C1.0-5.0%, B0.1-4.5%, Si0.1
A graphite-dispersed Co-Ni-based self-lubricating alloy characterized by having a composition consisting of two types of Co and Ni and unavoidable impurities, the composition further comprising 1.0% to 5.0% of Cu, and the balance being Co and Ni. .
【請求項4】重量%でC1.0〜5.0%,B0.1〜4.5%,Si0.1
〜9.0%を含有し、さらにCr1.0〜15.0%とCu1.0〜5.0%
を含有し、残部がCoとNiの二種及び不可避的不純物より
なる組成を有することを特徴とするグラファイト分散Co
−Ni基自己潤滑性合金。
(4) C1.0-5.0%, B0.1-4.5%, Si0.1
~ 9.0%, Cr1.0 ~ 15.0% and Cu1.0 ~ 5.0%
Characterized by having a composition consisting of two types of Co and Ni and unavoidable impurities.
-Ni-based self-lubricating alloy.
JP2892989A 1989-02-08 1989-02-08 Graphite dispersed Co-Ni based self-lubricating alloy Expired - Fee Related JP2778972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2892989A JP2778972B2 (en) 1989-02-08 1989-02-08 Graphite dispersed Co-Ni based self-lubricating alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2892989A JP2778972B2 (en) 1989-02-08 1989-02-08 Graphite dispersed Co-Ni based self-lubricating alloy

Publications (2)

Publication Number Publication Date
JPH02209444A JPH02209444A (en) 1990-08-20
JP2778972B2 true JP2778972B2 (en) 1998-07-23

Family

ID=12262092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2892989A Expired - Fee Related JP2778972B2 (en) 1989-02-08 1989-02-08 Graphite dispersed Co-Ni based self-lubricating alloy

Country Status (1)

Country Link
JP (1) JP2778972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1101402A2 (en) * 2011-03-29 2013-06-04 Mahle Metal Leve Sa sliding element
CN112011249B (en) * 2020-08-17 2021-11-30 湖南开磷雁峰塔涂料有限公司 High-strength flame-retardant water-based epoxy resin coating and preparation method thereof

Also Published As

Publication number Publication date
JPH02209444A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
JP3373709B2 (en) Copper-based sliding bearing materials and sliding bearings for internal combustion engines
US4383970A (en) Process for preparation of graphite-containing aluminum alloys
WO1999043963A1 (en) Sliding bearing for internal combustion engine
Pathak et al. On the wear characteristics of leaded aluminium bearing alloys
Dong et al. Preparation, characterization and mechanical properties of Cu-Sn alloy/graphite composites
Vencl et al. Production, microstructure and tribological properties of Zn-Al/Ti metal-metal composites reinforced with alumina nanoparticles
JP6104348B2 (en) Method for producing copper alloy powder
JP2018048358A (en) Copper-based sintered alloy oil retaining bearing
WO2022137810A1 (en) Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
JP2778972B2 (en) Graphite dispersed Co-Ni based self-lubricating alloy
KR20000048230A (en) Swash-Plate of Swash-Plate Type Compressor
WO2023190873A1 (en) Sliding material
JP2825834B2 (en) Graphite dispersed self-lubricating alloy
JP4589229B2 (en) Sliding member
JP2735848B2 (en) Graphite dispersed Co-based alloy
Chatterjee et al. Effect of laser post-treatment on Al 2 O 3-TiB 2-TiN composite coating with free hBN
JP2778965B2 (en) Graphite dispersed Ni-based alloy
Li et al. Microstructure and tribological behaviors of diffusion bonded powder sintered Cu–Sn based alloys
JPS58164785A (en) Wear resistant composite powder for spraying
GB2216543A (en) Sintered oil retaining bearing
JPS60187637A (en) Production of graphite-containing aluminum alloy
JPS6086237A (en) Cu-alloy for slide member
JPS62158842A (en) Sliding material
Suthar et al. Effect of percentage reinforcement on mechanical and tribological properties of AHMMCs
Zhang et al. Influence of MoS 2 on the Microstructure and Properties of Laser Clad NiCrBSi Coatings.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees