JPS6268695A - High temperature calcined flux for submerged arc welding - Google Patents

High temperature calcined flux for submerged arc welding

Info

Publication number
JPS6268695A
JPS6268695A JP20525185A JP20525185A JPS6268695A JP S6268695 A JPS6268695 A JP S6268695A JP 20525185 A JP20525185 A JP 20525185A JP 20525185 A JP20525185 A JP 20525185A JP S6268695 A JPS6268695 A JP S6268695A
Authority
JP
Japan
Prior art keywords
flux
amount
welding
temperature
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20525185A
Other languages
Japanese (ja)
Inventor
Isao Sugioka
杉岡 勲
Saneji Nishimura
西村 實治
Tatsumi Hosono
細野 辰美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20525185A priority Critical patent/JPS6268695A/en
Publication of JPS6268695A publication Critical patent/JPS6268695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To obtain good mechanical properties and to improve working environment and working efficiency by limiting the compsn. calcining temp. and bulk density of a high-temp. calcined flux. CONSTITUTION:The flux is calcined at >=750 deg.C and the compsn. of the flux is made to consist of 5-10W% either or both of CaO; MgO as basic oxide, 3-30W% metallic fluoride except alkali metal fluoride in terms of fluorine, 5-50W% SiO2 as acidic oxide or 25-60W% of both of said SiO2 and <=44W% Al2O3 which are used in the form of metallic powder. Si in the flux is made <=0.5W%. The bulk density is made 0.8-1.2g/cm<3>. The resultant flux is granular and does not generate dust, fumes, smell and exposing arcs and provides the good mechanical properties in welding of steel products for which low-temp. toughness is required.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は潜弧溶接用フラックスに関し、さらに詳しくは
高温焼成フラックスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a flux for submerged arc welding, and more particularly to a high temperature firing flux.

(従来の技術) 近年、労働衛生上の観点から露出アーク元の発生がなく
、ヒユームの発生の少ない溶接が要望され、これらの問
題の少ない潜弧溶接が見直されてきている。また、材質
の点からは低温域で使用される鋼構造物が多くなり低温
靭性の優れた材料が求められている。潜弧溶接において
このヒーームや靭性は主に7ラツクスの形態や組成によ
って決定される。
(Prior Art) In recent years, from the viewpoint of occupational health, there has been a demand for welding that does not generate exposed arc sources and generates less fumes, and submerged arc welding, which has fewer of these problems, has been reconsidered. In addition, from the viewpoint of materials, many steel structures are used in low-temperature regions, and materials with excellent low-temperature toughness are required. In submerged arc welding, the heap and toughness are mainly determined by the morphology and composition of the 7 lux.

潜弧溶接に用いられるフラックスはその形態から1種々
の原料分電気炉等で溶融してフラックスの粒子内の成分
が均一である溶融型フラックスと、種々の原料粉をケイ
酸アルカリ等で結合し、焼成したもので7ラソクス粒子
が各原料の粒子の集合物で構成されている造粒型7ラソ
クスとに大別される。さらに後者は焼成温度により40
0〜550℃で焼成する低温焼成フラックスと、550
〜1000℃で焼成する高温焼成7ラツクスとに分けら
れる。
The flux used in submerged arc welding is made up of two types: one is a molten type flux in which various raw materials are melted in an electric furnace, etc. so that the components within the flux particles are uniform, and the other is a molten type flux in which various raw material powders are combined with an alkali silicate, etc. It is roughly divided into granulated type 7 Lasox, in which the fired 7 Lasox particles are composed of aggregates of particles of each raw material. Furthermore, the latter is 40% depending on the firing temperature.
Low-temperature firing flux fired at 0 to 550°C, and 550°C
It is divided into 7 lacs fired at a high temperature of ~1000°C.

また、高温焼成フラックスの焼成温度については、従来
2通りの考え方があった。すなわち特公昭31−715
7号公報に記載の「溶剤原料@細粉末と硅酸ンーダある
いは硅酸カリの如き結合剤と混和塊状物の個々の溶剤原
料粉末が溶融して相互に反応することがなく、しかも結
合剤が溶融硬化するに足る適当な温度(例えば649〜
760℃)でキルン中を通過せしめる。」製造方法であ
り、もう1つは「結合剤としての硅酸アルカリ塩の融点
以下の温度(550〜800℃)で焙焼する」特公昭3
7−3258号公報に記載の製造方法である。
Furthermore, there have conventionally been two ways of thinking regarding the firing temperature of high-temperature firing flux. Namely, Special Public Interest Publication 31-715
Publication No. 7 states, ``Solvent raw material @ fine powder mixed with a binder such as silicic acid powder or potassium silicate, and individual solvent raw material powders of aggregates will not melt and react with each other, and the binder will not react with each other. Appropriate temperature sufficient to melt and harden (e.g. 649 ~
760°C) through a kiln. ” manufacturing method, and the other is “roasting at a temperature below the melting point of the alkali silicate as a binder (550 to 800°C)”
This is a manufacturing method described in Japanese Patent No. 7-3258.

両者の思想は異なるけれどもそれぞれの例示の・焼成温
度はほとんど同じである。これは固着剤の種類によって
融点が異なるためとも考えられる。しかし、いずれにし
てもそのフラックスの吸湿性あるいは拡散性水素量に及
はす作用効果については前記特許文献には何も開示され
ていない。
Although the ideas of the two are different, the firing temperature in each example is almost the same. This may be because the melting point differs depending on the type of adhesive. However, in any case, the above-mentioned patent document does not disclose anything about the effects on the hygroscopicity or the amount of diffusible hydrogen of the flux.

一方、この高温焼成フラックスは溶融形フラックスと同
様ガス発生剤を含んでいないのでガス発生剤として石灰
石など全添加した低温焼成フラックスにくらべ、ヒユー
ムの発生が著しく少ない。
On the other hand, since this high-temperature fired flux does not contain a gas generating agent like the molten flux, it generates significantly less fume than a low-temperature fired flux in which limestone or the like is completely added as a gas generating agent.

また、フラックスが顆粒状であるので、溶融型細粒7ラ
ツクスの1つの短所である粉塵の発生が少ない。さらに
、酸性ないし中性の溶融型7ラツクスを用いた時に発生
する刺激臭気(HFあるいは5iF3がスによるものと
考えられている)が発生しないなどの労働衛生上澄れた
長所を有している。
Furthermore, since the flux is in the form of granules, there is less dust generation, which is one of the disadvantages of the molten fine-grained 7-Lux. Furthermore, it has the advantage of superior occupational hygiene, such as not producing the irritating odor (thought to be caused by HF or 5iF3) that occurs when using acidic or neutral molten 7LAX. .

ところが、この高温焼成フラックスは欧米で広く用いら
れているにもかかわらず、日本ではほとんど使用されて
いないのが現状である。
However, although this high-temperature fired flux is widely used in Europe and America, it is currently hardly used in Japan.

そこで、本発明者らは高温焼成7ラツクスについて詳し
く調査した。特開昭57−106496号公報や特公昭
32−409号公報に開示されているMgO含有量の多
いものは低温焼成7う、クスに比べ乾燥時の水分量は少
ないけれども溶接において気孔や水素割れの原因となる
拡散性水素量が少しの吸湿量でも多くなるということが
判った。また特公昭44−13249号公報の実施例に
MgOが少なく拡散性水素量の比較的少ないフラックス
も見られるが、この例のように従来の高温焼成フラック
スは一般に7ラツクス中のSi童が多く、低温での靭性
があまり良好でない。さらに、交流での溶接作業性が溶
融型7ラツクスに比べ劣る問題があることが判った。す
なわち、これら従来の高温焼成フラックスは日本では湿
度の高い時期が多いため吸湿が大きくなジ易く、また、
潜弧溶接電源として交流が主に使われているため交流溶
接作業性が問題となる。さらに靭性が不満足であるため
従来の高温焼成フラックスが普及していないものと考え
られる。つまジ、高温焼成フラックスにおいて拡散性水
素量及び吸湿量の低減、靭性の向上、交流作業性の改善
が同時に達成できれば、労働衛生上好ましい高性能なフ
ラックスが期待できるにも拘わらず従来この面の検討は
ほとんどみられなかった。
Therefore, the present inventors conducted a detailed investigation on high-temperature fired 7 lacs. The products with a high MgO content disclosed in JP-A-57-106496 and JP-B-32-409 are low-temperature fired, and although they have a lower moisture content when drying than wood, they do not cause pores or hydrogen cracking during welding. It was found that even a small amount of moisture absorption increases the amount of diffusible hydrogen that causes this. Furthermore, in the example of Japanese Patent Publication No. 44-13249, there is a flux with a low MgO content and a relatively small amount of diffusible hydrogen, but conventional high-temperature fired fluxes, such as this example, generally have a high Si content in the 7 lac flux. Toughness at low temperatures is not very good. Furthermore, it was found that there was a problem in that the workability of welding with alternating current was inferior to that of the fusion type 7LAX. In other words, these conventional high-temperature fired fluxes tend to absorb a lot of moisture because there are many humid periods in Japan, and
Since AC is mainly used as the power source for submerged arc welding, AC welding workability becomes a problem. Furthermore, it is thought that conventional high-temperature fired fluxes are not popular because their toughness is unsatisfactory. If high-temperature fired fluxes could reduce the amount of diffusible hydrogen and moisture absorption, improve toughness, and improve AC workability at the same time, it would be possible to create a high-performance flux that is favorable for occupational health. There was almost no consideration.

(発明が解決しようとする問題点) 本発明は従来の高温焼成フラックスの長所を保持し、か
つ、拡散性水素量が少なく交流作業性が良好で高靭性の
得られるフラックスの提供を目的とするものである。
(Problems to be Solved by the Invention) The present invention aims to provide a flux that retains the advantages of conventional high-temperature fired fluxes, has a small amount of diffusible hydrogen, has good AC workability, and has high toughness. It is something.

(問題点全解決するための手段) 本発明の要旨は750℃以上で焼成してなる高温焼成フ
ラックスにおいて塩基性酸化物として1::aO,Mg
Oのいずれか又は両方で5〜10%、アルカリ金属弗化
物を除く金属弗化物を弗素1で換算して3〜30%、酸
性酸化物として5to2 i 5〜50チ又はこの5I
O2と44%以下のAt2o3の両方で25〜60%、
金属粉として、7ラツクス中のStが0.5%以下であ
り、かさ密度が0.8〜1.21Ax3であることを特
徴とする潜弧溶接用フラックスにある。
(Means for solving all problems) The gist of the present invention is that 1::aO, Mg
5 to 10% for either or both of O, 3 to 30% for metal fluorides excluding alkali metal fluorides calculated as 1 fluorine, 5 to 2 i 5 to 50 t or this 5 I as acidic oxides.
25-60% for both O2 and At2o3 below 44%,
The flux for submerged arc welding is characterized in that, as a metal powder, St in 7 lux is 0.5% or less and a bulk density is 0.8 to 1.21Ax3.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず、高温焼成フラックスの吸湿による拡散性水素量の
増加を改善するため、焼成温度と7ラツクス組成の関係
について詳細に検討した。
First, in order to improve the increase in the amount of diffusible hydrogen due to moisture absorption in high-temperature fired flux, we investigated in detail the relationship between firing temperature and 7lux composition.

検討の結果、吸湿性に関して次の新しい知見を得た。As a result of the study, we obtained the following new knowledge regarding hygroscopicity.

すなわち、塩基性酸化物としてCaOを3%、MgOを
4多含有しケイ酸ソーダ(水ガラス)で造粒した7ラツ
クスエ、塩基性酸化物CaOを8%、MgOを20%を
含有するケイ酸ソーダ(水〃ラスンで造粒したフラック
ス■、塩基性炭酸塩としてCaCO2t” 16%、塩
基性酸化物MgOi 30%、CaOを4%含有しケイ
酸ソーダ(水ガラス)で造粒したフラックスm(従来の
低温焼成フラックスタイf)の夫々を450〜950℃
の範囲の種々の温度で焼成し、冷却後、24時問屋内に
暴露し、拡散性水素量全測定した・ その結果を第1図に示す。塩基性酸化物CaOrMgO
含有量の少ないフラックス■では700℃以上で急激に
拡散性水素量が減少し、非常に少なくな乙。これに対し
CaO,MgO含有量の多いフラックス■でンi暁成温
度の上昇に伴い拡散性水素量は僅かずつ減少するが非常
に多く気孔やポックマークが発生し易い。また、従来の
低温焼成フラックス■の場合、拡散性水素量は520℃
までは減少するがそれ以上ではCaCO3が分解してし
まい、溶接時においてCaCO3→CaO+CO2反応
てよるアーク空洞のH2分圧低減効果が失われると同時
にCaCO3の分解によって生じたCaOおよび多量の
MgOが非常に活性で吸湿量が多いため、拡散性水素量
が急増することが判った。
That is, 7 lacquer containing 3% CaO and 4% MgO as basic oxides and granulated with sodium silicate (water glass), and silicic acid containing 8% CaO and 20% MgO as basic oxides. Soda (Water) Flux granulated with lasing ■, flux M containing 16% CaCO2t'' as basic carbonate, 30% basic oxide MgOi, 4% CaO and granulated with sodium silicate (water glass) Each of the conventional low temperature firing flux ties f) was heated to 450 to 950℃.
The samples were fired at various temperatures within the range of 100%, and after cooling, they were exposed indoors for 24 hours, and the total amount of diffusible hydrogen was measured. The results are shown in Figure 1. Basic oxide CaOrMgO
For flux ■ with a low content, the amount of diffusible hydrogen decreases rapidly at temperatures above 700℃, and is extremely small. On the other hand, in flux (2) with a high content of CaO and MgO, the amount of diffusible hydrogen decreases little by little as the formation temperature increases, but it is very large and tends to cause pores and pockmarks. In addition, in the case of conventional low-temperature firing flux ■, the amount of diffusible hydrogen is 520℃
However, if it exceeds that point, CaCO3 will decompose, and the effect of reducing the H2 partial pressure in the arc cavity due to the CaCO3→CaO+CO2 reaction during welding will be lost, and at the same time, CaO and a large amount of MgO produced by the decomposition of CaCO3 will be extremely It was found that the amount of diffusible hydrogen increases rapidly because it is active and absorbs a large amount of moisture.

なお、第1図において拡散性水素量が8 、+u/l 
00gdepo以上の領域は気孔やポックマークなどが
発生しやすかった。
In addition, in Fig. 1, the amount of diffusible hydrogen is 8, +u/l
Pores, pockmarks, etc. were likely to occur in areas with 00 gdepo or more.

次に靭性改善について吸湿性を小さくし、拡散性水素量
を少なくするだめ塩基性酸化物CaO・MgOを少なく
したフラックスベースで検討した。その結果アルカリ金
属弗化物を除く金属弗化物は吸湿性を増大させないで、
溶接金属の酸素量を下げ靭性向上に有効な成分であるこ
とが判った。
Next, we investigated the improvement of toughness by using a flux base containing less basic oxides CaO and MgO in order to reduce hygroscopicity and reduce the amount of diffusible hydrogen. As a result, metal fluorides other than alkali metal fluorides do not increase hygroscopicity;
It was found that it is an effective ingredient in reducing the amount of oxygen in the weld metal and improving its toughness.

ところで、従来欧米では直流電源が主に使われ、直流で
は溶接金属の酸素量が交流に比べ多くなるため、あるい
は合金剤を7ラツクスから添加するためか、高温゛焼成
でも変質(酸化・窒化)し難いF’5−3iやS i−
Mnが脱酸あるいは合金剤としてかなり多量添加されて
いる。この脱酸・合金剤の金属粉について検討した結果
、本発明7ラツクスでは焼成温、・、度を750℃以上
に特定することによジ過酸化物の酸素を分解除去でき、
さらに弗化物全必要靭性(酸素量と相関関係がある)レ
ベルに応じて添加するために、これら金属粉はむしろ少
ない方がポックマークなどが少なくなり、むしろSt量
は0.5%以下にすれば第2図に示すように靭性が大幅
に向上することが判った。
By the way, in the past, DC power sources were mainly used in Europe and the United States, and with DC, the amount of oxygen in the weld metal is higher than with AC, or perhaps because alloying agents are added from 7 lux, even high temperature firing causes deterioration (oxidation and nitridation). F'5-3i and Si-
A fairly large amount of Mn is added as a deoxidizing or alloying agent. As a result of studying the metal powder used as the deoxidizing/alloying agent, we found that the 7LAX of the present invention can decompose and remove oxygen from diperoxide by specifying the firing temperature to 750°C or higher.
Furthermore, since fluoride is added according to the level of total required toughness (which has a correlation with the amount of oxygen), pockmarks and the like will be reduced if there are fewer metal powders; As shown in Figure 2, it was found that the toughness was significantly improved.

また、交流作業性を改善すべく種々検討した結果、従来
の高温焼成フラックスのかさ密度は1.37?km3 
程度であったが、密度の大きい金属粉の減少と造粒方法
の改善で粒子形状を変えることによりフラックスのかさ
密度を1.2 gAm3以下に小さくすれば交流溶接で
問題であったビードの拡がり、討アンダーカット性が大
幅に向上することが判った。
In addition, as a result of various studies to improve AC workability, we found that the bulk density of conventional high-temperature fired flux is 1.37? km3
However, by reducing the bulk density of the flux to 1.2 gAm3 or less by reducing the density of metal powder and changing the particle shape by improving the granulation method, the bead spreading, which was a problem in AC welding, could be avoided. It was found that the undercut performance was significantly improved.

本発明は上記高温焼成フラックスに関する3つの新しい
知見とフシックス他成分との関係についてさらに究明し
てなし得之ものである。
The present invention was achieved by further investigating the three new findings regarding the above-mentioned high-temperature fired flux and the relationship between the flux and other components.

つぎに本発明構成要件の数値限定理由について述べる。Next, the reasons for limiting the numerical values of the constituent elements of the present invention will be described.

焼成温度:焼成温度が750℃未満の場合、吸湿性が著
しく犬きくなり、水分に起因するビット、ポックマーク
、割れなどが発生し易くなる。特に日本のような湿度の
高い大気条件のとき問題である。またMn酸化物を添加
したフラックスにおいてその原料としてMnO2’if
含む鉱石全使用した場合、焼成温度が750℃未満では
過剰酸素の分解除去(MnO2→Mn2O3+ O)が
不十分となり溶接金属の酸素量が増し、靭性が劣化する
Firing temperature: If the firing temperature is less than 750°C, the hygroscopicity becomes extremely poor, and bits, pockmarks, cracks, etc. due to moisture are likely to occur. This is especially a problem in humid atmospheric conditions like Japan. In addition, MnO2'if is used as a raw material in the flux containing Mn oxide.
When all the ores contained in the weld metal are used, if the firing temperature is less than 750°C, the decomposition and removal of excess oxygen (MnO2→Mn2O3+ O) will be insufficient, the amount of oxygen in the weld metal will increase, and the toughness will deteriorate.

なお、焼成温度が約550〜700℃のときは固着剤の
強度が小さく、フラックスの粉化を生じ易くなる。
Note that when the firing temperature is approximately 550 to 700°C, the strength of the adhesive is low, and the flux is likely to be powdered.

塩基性成分: CaO,MgOのいずれか又は両方で1
0%を超えた場合、いずれも吸湿性が大きくなり耐ピッ
ト住耐ポックマーク性、耐水素割れ性が劣化し問題であ
る。
Basic component: 1 of CaO, MgO or both
If it exceeds 0%, moisture absorption becomes large and pitting resistance and pockmark resistance and hydrogen cracking resistance deteriorate, which is a problem.

反面、これら塩基性酸化物は金属弗化物と同様、溶接金
属の酸素量の増加を抑制する働11する。
On the other hand, these basic oxides, like metal fluorides, function to suppress the increase in the amount of oxygen in the weld metal.

また、スラグの粘性や流動性などのスラグ物性に関係す
る。したがって、CaO,MgOのいずれか又は両方で
5チ未溝の時は溶接金属の酸素量が多くなり靭性が劣化
する。またスラグ流動性が悪くポックマークが発生し、
ビードの均一性が劣化する。
It also relates to slag physical properties such as slag viscosity and fluidity. Therefore, when either or both of CaO and MgO are not grooved in 5 grooves, the amount of oxygen in the weld metal increases and the toughness deteriorates. In addition, slag fluidity is poor and pock marks occur.
Bead uniformity deteriorates.

金属弗化物:金属弗化物は溶接金属の酸素量の増加の抑
制作用と共に生成スラグの流動性調整、拡散性水素量の
低減の働きをする重要な成分である。しかし、アルカリ
金属弗化物は他金属弗化物と異なジ、1%を超えて添加
すると吸湿性が著しくなり、拡散性水素量が多くなるた
めこの点からは添加しない方が良い。したがって、アル
カリ金属弗化物の分を除き、金属弗化物の弗素に換算し
た値が3%未満になるとこれらの作用効果が不充分とな
ジ、靭性が劣化し、ポックマークが発生し易くなる。反
対に30%を超えると、スラグが流れやすくアークが不
安定になジ、ビード波形が粗くなる。
Metal fluoride: Metal fluoride is an important component that suppresses the increase in the amount of oxygen in the weld metal, adjusts the fluidity of the generated slag, and reduces the amount of diffusible hydrogen. However, when an alkali metal fluoride is added in an amount exceeding 1%, which is different from other metal fluorides, the hygroscopicity becomes significant and the amount of diffusible hydrogen increases, so from this point of view it is better not to add it. Therefore, if the value of the metal fluoride converted to fluorine, excluding the alkali metal fluoride, is less than 3%, these effects will be insufficient, the toughness will deteriorate, and pock marks will easily occur. On the other hand, if it exceeds 30%, the slag tends to flow, the arc becomes unstable, and the bead waveform becomes rough.

5jO7は溶装作業性を良好に保つための必須成分であ
!l15%未満の場合、ビード波形が粗く平滑なビード
が得られない。また、50%?超すとスラグの粘性が犬
きくなりすぎポックマークやピットを生じ易くなる。ま
た溶接金属の酸素量が多くなり靭性が劣化する。
5jO7 is an essential component to maintain good welding workability! When l is less than 15%, the bead waveform is rough and smooth beads cannot be obtained. Also, 50%? If the slag is exceeded, the viscosity of the slag becomes too strong and pock marks and pits are likely to occur. In addition, the amount of oxygen in the weld metal increases and the toughness deteriorates.

Al2O3は44チを超すとスラグの粘性・融点が高く
なジすざポックマークやピット−4生シ易く、ビード幅
が小さくなり凸ビードになジ易い。また5IO2と同様
靭性が劣化する。
When Al2O3 exceeds 44 inches, the slag has a high viscosity and melting point, which tends to cause pockmarks and pit-4 formation, and the bead width becomes small, making it easy to form convex beads. Also, like 5IO2, toughness deteriorates.

さらに8102 + Al2O5が25%未満の場合、
スラグの粘性が小さく、融点が高くなるためビードが荒
れ易く良好なビードが得られない。5IO2+Al2O
3が60%を超えた場合、溶接金属の酸素量が多くなり
良好な靭性が得られない。また、スラグの粘性が大きす
ぎポックマークが発生し易くなる。
Furthermore, when 8102 + Al2O5 is less than 25%,
Since the slag has a low viscosity and a high melting point, the beads tend to become rough and good beads cannot be obtained. 5IO2+Al2O
If 3 exceeds 60%, the amount of oxygen in the weld metal increases and good toughness cannot be obtained. Furthermore, the viscosity of the slag is too high and pock marks are likely to occur.

フラックス中のSiは前述の通り、靭性確保のため0.
5%以下にしなければ、ならない。
As mentioned above, the Si content in the flux is 0.0% to ensure toughness.
It won't happen unless it's 5% or less.

かさ密度は溶接作業性特に交流溶接作業性を良好に保つ
ため1.2 E/CrIL3以下にする必要がある。
The bulk density needs to be 1.2 E/CrIL3 or less to maintain good welding workability, especially AC welding workability.

しかし0.8に抛3未満になると7ラツクスが使用中粉
化し易く、粉塵発生の原因となる。
However, if the ratio is less than 3 to 0.8, 7 lux will easily turn into powder during use, causing dust generation.

以下に本発明の効果を実施例によジ、さらに具体的に説
明する。
The effects of the present invention will be explained in more detail below with reference to Examples.

(実施例1) 焼成後最終的に第1表に示す化学組成になるように配合
した原料粉末を第2表の固着剤と混合、造粒し、250
℃で予備乾燥したA〜0の粒状フラックス中間品を第3
表に示すように種々の温度で焼成し本発明フラックスと
比較7ラソクス全製造した。また第4表に比較のため使
用した従来例フラックスの成分系、粒度とかさ密度を示
す。フラックスは吸湿性の比較のため、350℃で2時
間再乾燥後15時間大気中に暴露して以下の溶接に使用
した。
(Example 1) After firing, the raw material powder blended so as to have the final chemical composition shown in Table 1 was mixed with the adhesive shown in Table 2 and granulated.
A to 0 granular flux intermediate product pre-dried at
As shown in the table, all seven lasoxes were prepared by firing at various temperatures and compared with the flux of the present invention. Furthermore, Table 4 shows the component system, particle size, and bulk density of the conventional flux used for comparison. For comparison of hygroscopicity, the flux was re-dried at 350° C. for 2 hours, exposed to the atmosphere for 15 hours, and used in the following welding.

次に、第3表に示す本発明フラックスAI、Bl。Next, the present invention fluxes AI and Bl shown in Table 3.

CI 、Dl 、El 、Fl、比較例フラックスA2
.C2゜Kl 、 LL 、Mlおよび第4表の従来例
フラックスFP、と第6表のWLワイヤを組合せ第7表
1の溶接条件で第5表の鋼板P1でつくったT形部材の
水平すみ肉溶接を行なった。また、同様の7ラツクスと
ワイヤを用い第5表の鋼板P2、第7表の溶接条件■を
用いNK規格に準じ溶着金属の機械的性質を調べた。こ
れらの結果を第8表に併せて示す。
CI, Dl, El, Fl, comparative example flux A2
.. C2゜Horizontal fillet of a T-shaped member made by combining Kl, LL, Ml and the conventional flux FP shown in Table 4 with the WL wire shown in Table 6 and using the steel plate P1 shown in Table 5 under the welding conditions shown in Table 7 1. Performed welding. In addition, using the same 7 lux and wire, the mechanical properties of the deposited metal were investigated in accordance with the NK standard using steel plate P2 in Table 5 and welding condition (1) in Table 7. These results are also shown in Table 8.

この結果、本発明フラックスの場合、すみ肉溶接におい
て拡散性水素量が少ないためピットの発生はなく、ビー
ド外観が良好で、ヒユームや臭気の発生もなく、スラブ
剥離性が良好であり、溶接作業性が優れている。かつ、
溶着金属の機械的性質も良好である。
As a result, in the case of the flux of the present invention, the amount of diffusible hydrogen is small in fillet welding, so no pits are formed, the bead appearance is good, there is no fume or odor, and the slab peelability is good, and the welding work Excellent quality. and,
The mechanical properties of the deposited metal are also good.

比較例フラックスA2の場合ばかさ密度が1.3p抛3
で大きすぎるため凸ピードでアンダーカットが発生し問
題がある。C2は焼成温度が650℃と低いため拡散性
水素量が多くポックマーク、ピットが発生した。K1は
CaO+MgOが11チと多いため拡散性水素量が多く
、ピットが発生し易い。
In the case of comparative example flux A2, the bulk density is 1.3p3
Since the diameter is too large, undercuts occur at convex peeds, causing problems. In C2, since the firing temperature was as low as 650° C., the amount of diffusible hydrogen was large, and pock marks and pits were generated. Since K1 has a large amount of CaO+MgO (11 chips), the amount of diffusible hydrogen is large, and pits are likely to occur.

さらにSi量が0.7チと多いため靭性が劣る。Llは
ht2o5が49チと多すぎ融点が高いため凸ビードで
アンダーカットが発生し易い。MlはMgOが13%と
多く、焼成温度が720℃と低いため拡散性水素量が多
くピットが発生し易い。さらに5102が52俤と多い
ためスラグの焼付を生じ、靭性が低い。従来例フラック
スFPは溶接空刺激臭が発生し、溶接ヘッド近傍での作
業の障害となる。
Furthermore, since the amount of Si is as high as 0.7 inches, the toughness is poor. Ll has too much ht2o5 of 49 degrees and has a high melting point, so undercuts are likely to occur in convex beads. Since Ml has a large MgO content of 13% and the firing temperature is as low as 720° C., the amount of diffusible hydrogen is large and pits are likely to occur. Furthermore, since the number of 5102 is as large as 52, slag seizure occurs and the toughness is low. Conventional flux FP generates a pungent odor during welding, which obstructs work in the vicinity of the welding head.

スラグ剥離性も劣りタガネで強打する必要がある。The slag removability is also poor and requires strong hitting with a chisel.

また、ポックマーク、ピットが発生し、靭性も低く改良
の余地がある。
In addition, pockmarks and pits occur, and the toughness is low, leaving room for improvement.

(実施例2) 第3表に示す本発明フラックスGl、H1、比較例7ラ
ツクスG2.G3.Nlおよび第4表の従来例フラック
スBFと第6表のワイヤW2f!:組合せ第5表に示す
鋼板P3の両面各3・マスの溶接を第7表に示す溶接条
件で行なった。そのビード外観、X線結果、機械的性質
の調査結果を第9表に示す。
(Example 2) Invention fluxes Gl and H1 shown in Table 3, Comparative Example 7 flux G2. G3. Nl and conventional flux BF in Table 4 and wire W2f in Table 6! : Combination Welding of 3 squares on each side of steel plate P3 shown in Table 5 was performed under the welding conditions shown in Table 7. Table 9 shows the bead appearance, X-ray results, and mechanical property investigation results.

この結果、本発明フラックスGl、I(lの場合ビード
は美1毘で表面・内部とも無欠陥であり機械的性能も非
常に良好であった。
As a result, in the case of the fluxes Gl and I(l) of the present invention, the bead was in good condition with no defects on the surface or inside, and the mechanical performance was also very good.

比較例フラックスG2は焼成温度が600℃と低いため
、拡散性水素量が多く、ポックマーク、水素割れ、ブロ
ーホールが発生した。G3はかさ密度が小さすぎ、溶接
中に7ラツクスが粉化しフラックス散布中粉塵が発生し
易く、ビード幅が不揃でスラグ巻込みを生じた。N1は
ビード外観は良好で内質欠陥もなかったがSi量が3%
と多いため衝撃値が低い。
Comparative example flux G2 had a low firing temperature of 600° C., so the amount of diffusible hydrogen was large, and pock marks, hydrogen cracks, and blowholes occurred. In G3, the bulk density was too small, 7 lux was powdered during welding, dust was easily generated during flux distribution, and the bead width was uneven, causing slag entrainment. N1 had a good bead appearance and no internal defects, but the Si content was 3%.
The impact value is low because there are many.

従来例フラックスBFはガス発生剤として炭酸石灰金含
有しているので溶接中ヒユームが発生し、タンクなどゴ
ンドラでの浴接の場合ヒーームコレクターなしでは労働
衛生上問題がある。また、吸湿性が大きく、拡散性水素
量が多くなり、ポックマークや水素割れが発生した。
Since the conventional flux BF contains lime gold carbonate as a gas generating agent, fume is generated during welding, and when bathing in a gondola such as a tank, there is a problem in terms of occupational health unless a heap collector is used. In addition, it had high hygroscopicity and a large amount of diffusible hydrogen, causing pock marks and hydrogen cracks.

(実施例3) 第3表に示す本発明フラックス11.Jl、比較例フラ
ックスJ2,01および第4表の従来例フラックスFC
と第6表のワイヤW3i組合せ第5表の鋼板P4を用い
NK規格に準じ第7表の■条件で溶着金属試験を行なっ
た。その結果を第10表に示す。
(Example 3) The flux 11 of the present invention shown in Table 3. Jl, comparative example flux J2,01 and conventional example flux FC in Table 4
A weld metal test was conducted using the wire W3i in Table 6 and the steel plate P4 in Table 5 under the conditions of ■ in Table 7 in accordance with the NK standard. The results are shown in Table 10.

本発明フラックスII、Jlは良好なビード外観で内質
欠陥もなく、機械的性質も良好な値が得られた。
Fluxes II and Jl of the present invention had good bead appearance, no internal defects, and good mechanical properties.

比較例7ラツクスJ2は焼成温度が680℃と低く、か
さ密度が1.317i/cm3と大さいため、ポックマ
ーク、ブローホールが発生した。同じ(01は弗素が3
3チと多すぎるためアークが不安定とな9ビードが凸で
不揃であジスラグ巻込みが発生した。
Comparative Example 7 Lux J2 had a low firing temperature of 680° C. and a large bulk density of 1.317 i/cm 3 , so pock marks and blowholes occurred. Same (01 has 3 fluorine
The arc was unstable due to the excessive number of 3 beads, and the 9 beads were convex and uneven, causing dis-slag entrainment.

従来例フラックスFGは粒度が48 X D mesh
で細粒であるため吸湿性が大きく破ツクマークが発生し
念。さらにフラックスの散布・回収時粉塵が発生するた
め改善の予地がある。
Conventional flux FG has a particle size of 48 x D mesh
Because it is a fine grain, it is highly hygroscopic and may cause puncture marks. Furthermore, there is room for improvement as dust is generated during flux dispersion and collection.

(発明の効果) 以上、本発明フラックスは顆粒状で粉化し難いので粉塵
の発生がほとんどなく、さらにガス発生剤を含有してい
ないのでヒユームや臭気の発生がなく、もちろん露光ア
ーク光の発生がないので労働衛生上極めて浸れており、
良好な機械的性質が得られ、低温靭性の要求される鋼材
の溶受において作業環境の改善、作業能率の向上に極め
て効果がある。
(Effects of the Invention) As described above, the flux of the present invention is granular and difficult to powder, so it hardly generates dust, and since it does not contain a gas generating agent, it does not generate fumes or odors, and of course, it does not generate exposure arc light. Because there is no such thing, it is extremely difficult for occupational health reasons.
It provides good mechanical properties and is extremely effective in improving the working environment and work efficiency in welding steel materials that require low-temperature toughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種フラックスの焼成温度と拡散性水素量の関
係を示す線図、第2図はフラックス中のSt量と吸収エ
ネルギの関係を示す線図である。 第1図 焼却i!(°c)
FIG. 1 is a diagram showing the relationship between the firing temperature and the amount of diffusible hydrogen for various fluxes, and FIG. 2 is a diagram showing the relationship between the amount of St in the flux and absorbed energy. Figure 1 Incineration i! (°c)

Claims (1)

【特許請求の範囲】[Claims] 750℃以上で焼成してなる高温焼成フラックスにおい
て、塩基性酸化物としてCaO、MgOのいずれか又は
両方で5〜10%(重量%、以下同じ)、アルカリ金属
弗化物を除く金属弗化物を弗素に換算して3〜30%、
酸性酸化物としてSiO_2を5〜50%又はこのSi
O_2と44%以下のAl_2O_3の両方を25〜6
0%含有し、金属粉として、フラックス中のSiが0.
5%以下であり、かさ密度が0.8〜1.2g/cm^
3であることを特徴とする潜弧溶接用高温焼成フラック
ス。
In the high-temperature fired flux fired at 750°C or higher, 5 to 10% (wt%, same hereinafter) of either or both of CaO and MgO as basic oxides and fluorine as metal fluorides other than alkali metal fluorides. 3 to 30%,
5 to 50% of SiO_2 as acidic oxide or this Si
Both O_2 and 44% or less Al_2O_3 from 25 to 6
0% Si in the flux as metal powder.
5% or less, and the bulk density is 0.8 to 1.2 g/cm^
3. A high-temperature firing flux for submerged arc welding.
JP20525185A 1985-09-19 1985-09-19 High temperature calcined flux for submerged arc welding Pending JPS6268695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20525185A JPS6268695A (en) 1985-09-19 1985-09-19 High temperature calcined flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20525185A JPS6268695A (en) 1985-09-19 1985-09-19 High temperature calcined flux for submerged arc welding

Publications (1)

Publication Number Publication Date
JPS6268695A true JPS6268695A (en) 1987-03-28

Family

ID=16503891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20525185A Pending JPS6268695A (en) 1985-09-19 1985-09-19 High temperature calcined flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS6268695A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334596A (en) * 1999-05-25 2000-12-05 Kawasaki Steel Corp Production of calcined flux for submerged arc welding
WO2015019684A1 (en) 2013-08-05 2015-02-12 株式会社神戸製鋼所 Flux for submerged arc welding
WO2015087843A1 (en) 2013-12-13 2015-06-18 株式会社神戸製鋼所 Flux for submerged arc welding
KR20170104504A (en) 2015-02-02 2017-09-15 가부시키가이샤 고베 세이코쇼 Flux for submerged arc welding
KR20170104505A (en) 2015-02-02 2017-09-15 가부시키가이샤 고베 세이코쇼 Flux for submerged arc welding
CN107206550A (en) * 2015-02-02 2017-09-26 株式会社神户制钢所 Solder flux used for submerged arc welding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334596A (en) * 1999-05-25 2000-12-05 Kawasaki Steel Corp Production of calcined flux for submerged arc welding
WO2015019684A1 (en) 2013-08-05 2015-02-12 株式会社神戸製鋼所 Flux for submerged arc welding
KR20160025628A (en) 2013-08-05 2016-03-08 가부시키가이샤 고베 세이코쇼 Flux for submerged arc welding
US10272528B2 (en) 2013-08-05 2019-04-30 Kobe Steel, Ltd. Flux for submerged arc welding
WO2015087843A1 (en) 2013-12-13 2015-06-18 株式会社神戸製鋼所 Flux for submerged arc welding
KR20160085307A (en) 2013-12-13 2016-07-15 가부시키가이샤 고베 세이코쇼 Flux for submerged arc welding
KR20170104504A (en) 2015-02-02 2017-09-15 가부시키가이샤 고베 세이코쇼 Flux for submerged arc welding
KR20170104505A (en) 2015-02-02 2017-09-15 가부시키가이샤 고베 세이코쇼 Flux for submerged arc welding
CN107206550A (en) * 2015-02-02 2017-09-26 株式会社神户制钢所 Solder flux used for submerged arc welding
EP3254799A4 (en) * 2015-02-02 2018-08-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux for submerged arc welding
CN107206550B (en) * 2015-02-02 2019-08-20 株式会社神户制钢所 Solder flux used for submerged arc welding

Similar Documents

Publication Publication Date Title
JPS6225479B1 (en)
JPS5915756B2 (en) Flux-cored wire for gas shield arc welding
JP3392347B2 (en) Sintered flux for submerged arc welding and method for producing the same
JPH0521675B2 (en)
US3580748A (en) Welding flux component
JPS6268695A (en) High temperature calcined flux for submerged arc welding
JP3433681B2 (en) Sintered flux for submerged arc welding and method for producing the same
JP2003245794A (en) Manufacturing method for sintered flux for submerged arc welding
JPS62240195A (en) Low hydrogen type bond flux
JP2544479B2 (en) Bond flux for submerged arc welding
JPH02280995A (en) Bond flux for submerged arc welding
JP3620383B2 (en) Firing-type flux for submerged arc welding, manufacturing method thereof, and submerged arc fillet welding method
JPH0335033B2 (en)
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JP3505429B2 (en) Flux-cored wire for gas shielded arc welding
JP3788757B2 (en) Bond flux for submerged arc welding
JPH01138098A (en) Coated electrode for stainless steel
JPS5937719B2 (en) Sintered flux for submerged arc welding
JPS591519B2 (en) Manufacturing method of ultra-low hydrogen coated arc welding rod
JP7313965B2 (en) Sintered flux for submerged arc welding of low temperature steel
JP3336244B2 (en) High temperature firing type flux for submerged arc welding and method for producing the same
JPH08267280A (en) Sio2-mno baked flux for submerged arc welding
JPS5843197B2 (en) taisuisokouenkiseisenkoyousetsuyouflux
JPS6352794A (en) Baked flux for submerged arc welding
SU1397306A1 (en) Iron welding electrode