JPS6268135A - Driving force distribution controller for 4-wheel-drive vehicle - Google Patents

Driving force distribution controller for 4-wheel-drive vehicle

Info

Publication number
JPS6268135A
JPS6268135A JP20847785A JP20847785A JPS6268135A JP S6268135 A JPS6268135 A JP S6268135A JP 20847785 A JP20847785 A JP 20847785A JP 20847785 A JP20847785 A JP 20847785A JP S6268135 A JPS6268135 A JP S6268135A
Authority
JP
Japan
Prior art keywords
control
clutch
sensor
acceleration
force distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20847785A
Other languages
Japanese (ja)
Other versions
JPH07108619B2 (en
Inventor
Genpei Naitou
原平 内藤
Shuji Torii
修司 鳥居
Kiyotaka Ozaki
尾崎 清孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60208477A priority Critical patent/JPH07108619B2/en
Priority to US06/906,309 priority patent/US4773500A/en
Priority to DE19863631180 priority patent/DE3631180A1/en
Publication of JPS6268135A publication Critical patent/JPS6268135A/en
Publication of JPH07108619B2 publication Critical patent/JPH07108619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To improve the acceleration performance by setting such control characteristic that the clutch fastening force for the driving-force distribution control increases in accordance with the front and rear wheel revolution speed difference and controlling the clutch fastening force by using the control characteristic having the larger control constant as the acceleration state shows sharp acceleration. CONSTITUTION:The captioned apparatus has a variable torque clutch 3 in the driving-force transmission system for rear wheels 1 and 2, and said clutch 3 is operation-controlled by an actuator 4 controlled by a control means 6 on the basis of the input signals supplied from an input sensor 5. In this case, a front and rear wheel revolution speed difference sensor 501 and an accelera tion state sensor 502 are provided as input sensors 5. The control means 6 sets such control characteristic that the clutch fastening force increases corre sponding to the front and rear wheel revolution speed difference. Further, the clutch fastening force is controlled on the basis of the control characteristic having the larger control constant as the acceleration state detected by an acceleration state sensor 502 shows sharp acceleration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪への駆動力配分を所定の制御条件によ
り制御させるようにした四輪駆動車の駆動力配分制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a driving force distribution control device for a four-wheel drive vehicle that controls the distribution of driving force to front and rear wheels according to predetermined control conditions.

(従来の技術) 従来の四輪駆動車の駆動力配分制御装置としては、例え
ば特開昭56−26636号公報に記載されているよう
な装置が知られている。
(Prior Art) As a conventional driving force distribution control device for a four-wheel drive vehicle, a device as described in, for example, Japanese Unexamined Patent Publication No. 56-26636 is known.

この従来装置は、変速機において前後輪の一方へ直接動
力伝達し、油圧クラッチ式のトランスファクラッチを介
して上記前後輪の他方へも動力伝達すべく構成し、上記
クラッチを通常はスプリングにより滑り可能な半クラッ
チの係合状態にし、上記前後輪の間でスリップを生じた
場合はピストンの抑圧により完全に一体化した保合状態
にするように2段に制御することを特徴とするものであ
った。
This conventional device is configured to transmit power directly to one of the front and rear wheels in a transmission, and also to the other of the front and rear wheels via a hydraulic transfer clutch, and the clutch is usually slidable by a spring. The clutch is in a half-engaged state, and if a slip occurs between the front and rear wheels, the piston is suppressed to achieve a fully integrated engagement state, and control is performed in two stages. Ta.

従って、従来装置では、前後輪の間でスリップが所定値
以下の時は、トランスファクラッチが半クラツチ係合状
態で、トランスファクラッチを介してわずかに駆動力伝
達される駆動力配分状態(2輪駆動に近い状態)であり
、また、前後輪の間でスリップが所定値以上になると、
トランスファクラッチが完全係合をし、完全4輪駆動走
行状態になっていた。
Therefore, in the conventional device, when the slip between the front and rear wheels is below a predetermined value, the transfer clutch is in a half-clutch engaged state, and the drive force distribution state (two-wheel drive ), and if the slip between the front and rear wheels exceeds a predetermined value,
The transfer clutch was fully engaged and the vehicle was in full four-wheel drive.

(発明が解決しようとする問題点) しかしながら、このような従来の駆動力配分制御装置に
あっては、所定のスリップ率を境に2輪駆動状態から4
輪駆動状態へと0N−OFF的に駆動力配分が切換わる
ものであったため、直結4輪駆動状態では、旋回特性が
強アンダーステア傾向となり、また、2輪駆動状態では
、急発進時にホイールスリップしてしまい、さらに旋回
時にはスピンに至るという問題点があった。
(Problems to be Solved by the Invention) However, in such a conventional driving force distribution control device, it is difficult to switch from a two-wheel drive state to a four-wheel drive state after a predetermined slip ratio.
Because the drive force distribution was switched in an 0N-OFF manner to the wheel drive state, in the direct four-wheel drive state, the turning characteristics tended to have strong understeer, and in the two-wheel drive state, the wheels slipped when starting suddenly. Furthermore, there was a problem in that it could lead to a spin when turning.

これに対し、本出願人は、上述の問題点を解決すること
を目的として、前後輪の回転速度差に応じて最良の駆動
力配分が得られる内容の出願を先に行なった。(特願昭
59−276048)しかし、可変トルククラッチのク
ラッチ締結力を制御する制御特性の比例定数を、手動切
換や路面摩擦係数等で異ならせているものの、車両の加
速状態とは無関係に比例定数が設定されてしまうもので
あったため、2輪駆動に近い駆動力配分を示す小さな比
例定数の制御特性に設定されている時に、急発進を行な
うとホイールスリップを生じやすいし、急加速旋回を行
なうとスピンを生じやすいものであったし、また、4輪
駆動に近い駆動力配分を示す大きな比例定数の制御特性
に設定されている時に、緩加速旋回を行なうとアンダー
ステア傾向の強い旋回特性となってしまうという問題点
を残していた。
On the other hand, the applicant of the present application previously filed an application with the content that the best driving force distribution can be obtained according to the rotational speed difference between the front and rear wheels, with the aim of solving the above-mentioned problems. (Japanese Patent Application No. 59-276048) However, although the proportional constant of the control characteristic that controls the clutch engagement force of the variable torque clutch is varied by manual switching, road surface friction coefficient, etc., it is proportional regardless of the acceleration state of the vehicle. Since the constant was set, when the control characteristic was set to a small proportional constant that indicates a drive force distribution similar to that of two-wheel drive, sudden starts tend to cause wheel slip, and sudden acceleration turns are likely to occur. In addition, when the control characteristic is set to a large proportional constant that indicates a drive force distribution close to that of four-wheel drive, if a slow acceleration turn is performed, the turning characteristic tends to have a strong tendency to understeer. This left the problem that it would become

(問題点を解決するための手段) 本発明は、上述のような問題点を解決することを目的と
してなされたもので、この目的達成のために本発明では
、以下に述べるような解決手段とした。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the above-mentioned problems, and in order to achieve this purpose, the present invention employs the following solving means. did.

本発明の解決手段を第1図に示すクレーム概念図により
説明すると1前後輪1.2への駆動力伝達系の途中に設
けられた可変トルククラッチ3と、該可変トルククラッ
チ3を作動させるアクチュエータ4と、入力センサ5か
らの入力信号に基づいて、可変トルククラッチ3のクラ
ッチ締結力を制御する制御信号を前記アクチュエータ4
に対して出力する制御手段6と、′を備えた四輪駆動車
の駆動力配分制御装置において、前記入力センサ5とし
て1前後輪回転速度差センサ501と加速状態センサ5
02とを含み、前記制御手段6に前後輪回転速度差に対
応してクラッチ締結力が大きくなる制御特性を設定させ
、前記加速状態センナ502による加速状態が急加速を
示すほど制御定数の大きな制御特性に基づくクラッチ締
結力の制御を行なうようにした。
The solution of the present invention will be explained with reference to the claim conceptual diagram shown in FIG. 4 and an input signal from the input sensor 5, a control signal for controlling the clutch engagement force of the variable torque clutch 3 is transmitted to the actuator 4.
In the driving force distribution control device for a four-wheel drive vehicle, which includes a control means 6 for outputting an output to
02, the control means 6 is configured to set a control characteristic in which the clutch engagement force increases in accordance with the difference in front and rear wheel rotational speeds, and the control constant is increased as the acceleration state by the acceleration state sensor 502 indicates a sudden acceleration. The clutch engagement force is controlled based on the characteristics.

(作 用) 従って1本発明の四輪駆動車の駆動力配分制御装置では
、上述のような手段としたことで、駆動力配分が前後輪
回転速度差に応じてなめらかに変化しステア特性の急変
がないと共に、急加速時には、制御定数の大きな制御特
性に基づくクラッチ締結力の制御が行なわれ、4輪駆動
に近い駆動力配分制御となり、急発進時のホイールスリ
ップや急加速旋回時のスピンが防止され、また、緩加速
時には、制御定数の小さな制御特性に基づくクラッチ締
結力の制御が行なわれ、2輪駆動に近い駆動力配分制御
となり、緩加速旋回時のアンダーステア傾向が軽減され
、加速状態に応じた駆動力配分制御を行なうことができ
る。
(Function) Therefore, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, by using the above-mentioned means, the driving force distribution changes smoothly according to the difference in rotational speed of the front and rear wheels, and the steering characteristics are improved. There is no sudden change, and during sudden acceleration, clutch engagement force is controlled based on control characteristics with a large control constant, resulting in drive force distribution control similar to four-wheel drive, reducing wheel slip during sudden starts and spin during sudden acceleration turns. In addition, during slow acceleration, the clutch engagement force is controlled based on the control characteristics with a small control constant, resulting in drive force distribution control similar to that of two-wheel drive, reducing the tendency for understeer during turns during slow acceleration. Driving force distribution control can be performed according to the state.

(実施例) 以下1本発明の実施例を図面により詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあたって、後輪駆動をベース
にした四輪駆動車の駆動力配分制御装置を例にとる。
In describing this embodiment, a driving force distribution control system for a four-wheel drive vehicle based on rear wheel drive will be taken as an example.

まず、第2図〜第6図に示す実施例についてその構成を
説明する。
First, the configuration of the embodiment shown in FIGS. 2 to 6 will be explained.

10は駆動力配分装置であって、第2図に示すように、
駆動入力軸11.トランスミッション12、入力軸13
.後輪側駆動軸14.多板摩擦クラッチ15.オイルポ
ンプ16.圧油吐出管17、オイル吸入v18.リザー
ブタンク19.ギヤトレーン20.前輪側駆動軸21を
備えている。
10 is a driving force distribution device, as shown in FIG.
Drive input shaft 11. Transmission 12, input shaft 13
.. Rear wheel side drive shaft 14. Multi-plate friction clutch 15. Oil pump 16. Pressure oil discharge pipe 17, oil suction v18. Reserve tank 19. Gear train 20. A front wheel side drive shaft 21 is provided.

上記駆動入力軸11は、エンジン及びクラッチを経過し
た駆動力が入力される軸である。
The drive input shaft 11 is a shaft to which the driving force that has passed through the engine and the clutch is input.

上記トランスミッション12は、前記駆動入力軸11か
らの回転駆動力をシフト操作により選択′1、た変速段
位置に応じて変速させるもので、実施例では平行な二本
のシャフトに異なるギヤ比の歯屯組を設けたタイプのも
のを用いている。
The transmission 12 changes the speed of the rotational driving force from the drive input shaft 11 according to a selected gear position by a shift operation, and in this embodiment, two parallel shafts are provided with teeth of different gear ratios. A type with a trunnion is used.

上記入力軸13は、トランスファとしての多板摩擦クラ
ッチ15へ前記トランスミッション12からの回転駆動
力を入力させる軸である。
The input shaft 13 is a shaft for inputting the rotational driving force from the transmission 12 to the multi-disc friction clutch 15 as a transfer.

上記後輪側駆動軸14は、前記入力軸13と同芯上に直
結させたもので、入力軸13からの回転駆動力がそのま
ま伝達される。
The rear wheel drive shaft 14 is coaxially and directly connected to the input shaft 13, and the rotational driving force from the input shaft 13 is directly transmitted thereto.

−に記多板摩擦クラッチ15は、クラッチ締結圧により
前輪側への伝達駆動力の変更が可能なりラッチで、前記
入力軸13及び後輪側駆動軸14に固定させたクラッチ
ドラム15aと、該クラッチドラムL5aに回転方向係
合させたフリクションブレー)15bと、前記入力軸1
3の外周部に回転可能に支持させたクラッチハブ15c
と、該クラッチハブ15cに回転方向係合させたフリク
ションディスク15dと、交互に配置されるフリクショ
ンプレート15bとフリクシ璽ンディスク15dとの一
端側に設けられるクラッチピストン15eと、該クラッ
チピストン15eと前記クラッチドラム15aとの間に
形成されるシリンダ室15fと、を備えている。
- The multi-disc friction clutch 15 can change the driving force transmitted to the front wheels by means of clutch engagement pressure. A friction brake (15b) engaged with the clutch drum L5a in the rotational direction, and the input shaft 1
Clutch hub 15c rotatably supported on the outer periphery of 3.
, a friction disk 15d engaged in the rotational direction with the clutch hub 15c, a clutch piston 15e provided at one end of the friction plate 15b and the friction disk 15d arranged alternately, and the clutch piston 15e and the friction disk 15d. A cylinder chamber 15f formed between the clutch drum 15a and the clutch drum 15a.

上記オイルポンプ16は、リザーブタンク19内のオイ
ルをオイル吸入管18から吸入し、加圧させて圧油吐出
管17に供給するポンプで、この圧油吐出管17は前記
シリンダ室15fに連通され、オイルポンプ16からの
加圧油供給時は、クラッチ締結圧Pをクラッチピストン
15eに付与して、フリクションプレート15bとフリ
クションディスク15dとを圧接させ、入力軸13から
の駆動力を前輪側へ伝達させる。
The oil pump 16 is a pump that sucks oil in the reserve tank 19 through an oil suction pipe 18, pressurizes it, and supplies it to a pressure oil discharge pipe 17, which is communicated with the cylinder chamber 15f. When pressurized oil is supplied from the oil pump 16, a clutch engagement pressure P is applied to the clutch piston 15e to press the friction plate 15b and the friction disc 15d into contact with each other, thereby transmitting the driving force from the input shaft 13 to the front wheels. let

上記ギヤトレーン20は、前記クラッチハブ15Cに設
けられた第1ギヤ20aと、中間シャフ)20bに設け
られた第2ギヤ20cと、前輪側駆動軸21に設けられ
た第3ギヤ20dと、によって構成され、多板摩擦クラ
ッチ15の締結による前輪側への駆動力を伝達させる手
段である。
The gear train 20 includes a first gear 20a provided on the clutch hub 15C, a second gear 20c provided on the intermediate shaft 20b, and a third gear 20d provided on the front wheel drive shaft 21. This is a means for transmitting the driving force to the front wheels by engaging the multi-disc friction clutch 15.

」1記前輪側駆動軸21は、車両の前輪に回転駆動力を
伝達させる軸である。
1. The front wheel drive shaft 21 is a shaft that transmits rotational driving force to the front wheels of the vehicle.

尚、第3図はトランスファの具体例を示したもので、ト
ランスファケース22の中に前記多板摩擦クラッチ15
やギヤ類やシャフト類が納められている。
Incidentally, FIG. 3 shows a specific example of the transfer, in which the multi-disc friction clutch 15 is installed in the transfer case 22.
It houses gears, shafts, etc.

第3図中15gはディシュプレート、23はリターンス
プリング、24はi′17ノ御圧油入カボート。
In Figure 3, 15g is the dish plate, 23 is the return spring, and 24 is the i'17 control oil-filled cover.

25は制御圧油路、26は後輪側出力軸、27は潤滑用
油路、28はスピー゛ドメータ用ピニオン。
25 is a control pressure oil passage, 26 is a rear wheel side output shaft, 27 is a lubricating oil passage, and 28 is a speedometer pinion.

29はオイルシール、30はベアリング、31はニード
ルベアリング、32はスラストベアリング、33は継手
7ランジである。
29 is an oil seal, 30 is a bearing, 31 is a needle bearing, 32 is a thrust bearing, and 33 is a joint 7 flange.

40は駆動力配分制御装置であって、入力センサとして
前輪側回転センサ41.後輪側回転センサ42.アクセ
ル開度センサ43を備え、制御子[)としてコントロー
ルユニット45を備え、アクチュエータとしてへルブソ
レノイド46.電磁比例制御リリーフバルブ479分岐
ドレーン管48を備えている。
Reference numeral 40 denotes a driving force distribution control device, which includes a front wheel rotation sensor 41 as an input sensor. Rear wheel side rotation sensor 42. An accelerator opening sensor 43 is provided, a control unit 45 is provided as a controller, and a help solenoid 46 is provided as an actuator. It is equipped with an electromagnetic proportional control relief valve 479 and a branch drain pipe 48.

前輪側回転センサ41及び後輪側回転センサ42は、そ
れぞれ前輪側駆動軸21及び後輪側駆動軸14の途中に
設けられたもので、例えば、軸に固定された回転板と、
回転板の孔位置に配置された光電管及び光電素子と、に
よる回転センサ等を用い、この筒回転センサ41,42
からは軸回転に応じた回転信号(nf)、(nr)が出
力される。
The front wheel rotation sensor 41 and the rear wheel rotation sensor 42 are provided in the middle of the front wheel drive shaft 21 and the rear wheel drive shaft 14, respectively, and include, for example, a rotary plate fixed to the shaft,
The cylindrical rotation sensors 41 and 42 are installed using rotation sensors such as phototubes and photoelectric elements placed in the holes of the rotary plate.
Rotation signals (nf) and (nr) corresponding to the rotation of the shaft are output from.

上記アクセル開度センサ43は、アクセルの踏み込み度
合を検出し、踏み込み度合に応じたアクセル開度信号(
a)を出力するセンサで、加速状態を検知する手段とし
て用いられる。
The accelerator opening sensor 43 detects the degree of depression of the accelerator, and generates an accelerator opening degree signal (
This is a sensor that outputs a) and is used as a means to detect an acceleration state.

上記コントロールユニット45は、前記回転センサ41
,42からの回転信号(nf)、(nr)とアクセル開
度センサ43からのアクセル開度信号(a)を入力し、
予め設定されている比例定数(制御定数)の異なる複数
の制御特性の中から、制御起動毎にその時のアクセル開
度Aに応じた制御特性が選択され、その制御特性及び前
後輪回転速度差ΔNに基づいた制御信号(C)を前記バ
ルブソレノイド46に出力するもので、第4図に示すよ
うに、入力回路461、クロック回路452、RAM4
53、ROM454、CPU455、出力回路456を
備えている。
The control unit 45 includes the rotation sensor 41
, 42 and the accelerator opening signal (a) from the accelerator opening sensor 43,
From among a plurality of preset control characteristics with different proportional constants (control constants), a control characteristic corresponding to the accelerator opening degree A at that time is selected each time the control is started, and the control characteristic and the front and rear wheel rotational speed difference ΔN are selected. It outputs a control signal (C) based on the above to the valve solenoid 46, and as shown in FIG.
53, ROM 454, CPU 455, and output circuit 456.

尚、前記制御特性は、前輪側への伝達トルクΔTと、回
転速度差ΔN(ΔN=Nr−Nf)の関数として次式の
ようにあられされ、比例定数Kを変更させることで、複
数の制御特性を設定させている。
The above control characteristics are expressed as a function of the torque transmitted to the front wheels ΔT and the rotational speed difference ΔN (ΔN=Nr-Nf) as shown in the following equation, and by changing the proportionality constant K, multiple controls can be performed. Characteristics are set.

ΔT=に−func (ΔN)  K;比例定数入力回
路451は、各入力センサ類41,42.43から入力
される入力信号をCPU455での演算処理が行なえる
信号とする回路である。
ΔT=−func (ΔN) K; The proportional constant input circuit 451 is a circuit that converts input signals input from each input sensor 41, 42, 43 into a signal that can be processed by the CPU 455.

上記クロック回路452は、時間指示を行ない、CPU
455での演算処理を所定時間毎に行なわせるための回
路である。
The clock circuit 452 gives time instructions and
This is a circuit for performing the arithmetic processing in 455 at predetermined time intervals.

上記RAM453 (ランダム・アクセス・メモリ)は
、書込み読出しのできるメモリで、このRAM453に
は、CPU455で演算処理が行なわれている間に入力
される入力信号や演算処理に必要な情報を一時的に記憶
させておく回路である。
The RAM 453 (random access memory) is a memory that can be written to and read from, and input signals input while the CPU 455 is performing calculation processing and information necessary for the calculation processing are temporarily stored in the RAM 453. This is a circuit that stores information.

上記ROM454(リード゛・オンリー・メモリ)は読
出し専用のメモリで、このROM454には、第5図に
示すマツプとなるように、回転速度差ΔNと前輪側への
伝達トルクΔTとの関係において比例定数CKI 、に
2  、に3 )が異なる複数の制御特性C+  、C
2、C3が表(テーブル)の形で予め記憶されていて、
アクセル開度Aにより1つの制御特性が選択され、さら
にCPU455で演算された回転速度差ΔNに基づいて
、テーブルルックアップが行われる。
The ROM 454 (read-only memory) is a read-only memory, and as shown in the map shown in Fig. 5, the ROM 454 has a map that shows the relationship between the rotational speed difference ΔN and the torque transmitted to the front wheels ΔT. Multiple control characteristics C+, C with different constants CKI, 2, 3)
2. C3 is stored in advance in the form of a table,
One control characteristic is selected based on the accelerator opening degree A, and a table lookup is performed based on the rotational speed difference ΔN calculated by the CPU 455.

尚、回転速度差ΔNと伝達トルクΔTとの制御特性は、
所定の回転速度差までは比例関係の勾配による特性であ
るが、途中から勾配が急に立ち上り回転速度差ΔNに対
する伝達トルクΔTの上昇率が増大し、クラッチのすべ
りを防止するような特性としている。
The control characteristics of the rotational speed difference ΔN and the transmission torque ΔT are as follows:
The characteristic is based on the slope of the proportional relationship up to a predetermined rotational speed difference, but the slope suddenly rises in the middle, increasing the rate of increase of the transmitted torque ΔT relative to the rotational speed difference ΔN, and is a characteristic that prevents clutch slippage. .

上記CPU455 (セントラル・プロセシング・ユニ
ット)は、演算処理を行なう中央処理装置で、このCP
U455では、前後輪の回転速度差ΔNの演算や、RA
M453及びROM454からの読み出し等を行ない、
その結果信号を出力回路456に出力する。
The CPU 455 (central processing unit) is a central processing unit that performs arithmetic processing.
In U455, calculation of rotational speed difference ΔN between front and rear wheels and RA
Performs reading from M453 and ROM454,
The resulting signal is output to output circuit 456.

上記出力回路456は、アクチュエータであるバルブソ
レノイド46に対し、CPU455からの結果信号に応
じた制御信号(C)を出力する回路である。
The output circuit 456 is a circuit that outputs a control signal (C) according to a result signal from the CPU 455 to the valve solenoid 46, which is an actuator.

上記バルブソレノイド46は、圧油吐出管17からリザ
ーブタンク19へ分岐連通させた分岐ドレーン管48の
途中に設けた電磁比例制御リリーフパルプ47を駆動さ
せるアクチュエータで、°前記リリーフバルブ47を開
閉させることで制御信号(C)に応じたクラッチ締結圧
Pとなす。
The valve solenoid 46 is an actuator that drives an electromagnetic proportional control relief pulp 47 provided in the middle of a branch drain pipe 48 that branches from the pressure oil discharge pipe 17 to the reserve tank 19, and opens and closes the relief valve 47. The clutch engagement pressure P is set according to the control signal (C).

尚、クラッチ締結圧Pは、次式であられされる。Note that the clutch engagement pressure P is expressed by the following formula.

P=ΔT/ (p・s・2n−Rm) μ;クラッチ板の摩擦係数  S:ピストンへの圧力作
用面a  n;フリクシ冨ンディスク枚数 Rm;フリ
クションディスクのトルク伝達有効半径 従って、クラッチ締結圧Pを増大させると、伝達トルク
ΔTも比例して増大する。
P=ΔT/ (p・s・2n−Rm) μ: Friction coefficient of clutch plate S: Pressure acting surface on piston a n: Number of friction disks Rm: Torque transmission effective radius of friction disk Therefore, clutch engagement pressure When P is increased, the transmitted torque ΔT also increases proportionally.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

まず、実施例での駆動力配分制御作動の流れを、第6図
に示すフローチャート図により説明する。
First, the flow of the driving force distribution control operation in the embodiment will be explained with reference to the flowchart shown in FIG.

(イ)前後輪の回転速度差ΔNが正の場合前後輪の回転
速度差ΔNが正の場合、つまり後輪スリップ状態での制
御作動の流れは、ステップ200→ステツプ201→ス
テツプ202→ステツプ203→ステツプ204→°ス
テツプ205→ステツプ206へと進む流れとなり、こ
の作動が繰り返される。
(a) When the rotational speed difference ΔN between the front and rear wheels is positive When the rotational speed difference ΔN between the front and rear wheels is positive, that is, when the rear wheels are slipping, the flow of control operation is as follows: Step 200 → Step 201 → Step 202 → Step 203 → Step 204 → Step 205 → Step 206, and this operation is repeated.

尚、ステップ200は前後輪回転速度Nf、Nrの読み
込みステップであり、ステップ201は前後輪回転速度
差ΔN(ΔN=Nr−Nf)の演算ステップであり、ス
テップ202はΔNが正か負かの判断ステップであり、
ステップ203はアクセル開度Aの読み込みステップで
あり、ステップ204はアクセル開度Aにより制御特性
C+  。
Note that step 200 is a step for reading the front and rear wheel rotational speeds Nf and Nr, step 201 is a calculation step for the front and rear wheel rotational speed difference ΔN (ΔN=Nr-Nf), and step 202 is a step for calculating whether ΔN is positive or negative. It is a judgment step,
Step 203 is a step of reading the accelerator opening degree A, and step 204 reads the control characteristic C+ according to the accelerator opening degree A.

C2,C3を選択する選択ステップであり、ステップ2
05は前後輪回転速度差ΔNにより選択した制御特性か
ら伝達トルクΔTをテーブルルックアップする検索ステ
ップであり、ステップ206は前記ステップ205でテ
ーブルルックアップされた伝達トルクΔTが得られる制
御信号(C)を出力するステップである。
This is a selection step to select C2 and C3, and step 2
05 is a search step in which the transmission torque ΔT is looked up in a table from the control characteristics selected based on the front and rear wheel rotational speed difference ΔN, and step 206 is a control signal (C) from which the transmission torque ΔT looked up in the table in step 205 is obtained. This is the step to output.

具体例として、アクセルペダルを踏み込んでのご加速時
であり、前後輪回転速度差ΔNがΔN+である時は、ア
クセル開度Aが大きくなるに従って制御特性の選択がC
!→C2→C3と変化するため、第5図に示すように、
アクセルペダルの踏み込み始めで、制御特性C+が選択
されている時は、伝達トルクΔT1が得られる制御信号
(C)が出力され、アクセルペダルが少し踏み込まれて
いて制御特性C2が選択されている時は、伝達トルクΔ
T2が得られる制御信号(C)が出力され、アクセルペ
ダルが大きく踏み込まれていて制御特性C3が選択され
ている時は、伝達トルクΔT3が得られる制御信号(C
)が出力されることになる。しかも、アクセルペダルが
急に踏み込まれることで、伝達トルクΔTは短時間にて
ΔT1→ΔT2→ΔT3と変化し、車両が加速状態に入
った時には前輪側への伝達トルクΔTの増大で4輪駆動
状態に近い駆動力配分となる。
As a specific example, when accelerating by depressing the accelerator pedal, and when the front and rear wheel rotational speed difference ΔN is ΔN+, the selection of the control characteristic becomes C as the accelerator opening degree A increases.
! → C2 → C3, so as shown in Figure 5,
When the accelerator pedal is first depressed and the control characteristic C+ is selected, a control signal (C) that provides the transmission torque ΔT1 is output, and when the accelerator pedal is slightly depressed and the control characteristic C2 is selected. is the transmitted torque Δ
When a control signal (C) that yields T2 is output, and the accelerator pedal is depressed significantly and control characteristic C3 is selected, a control signal (C) that yields transmission torque ΔT3 is output.
) will be output. Moreover, when the accelerator pedal is suddenly depressed, the transmitted torque ΔT changes from ΔT1 → ΔT2 → ΔT3 in a short period of time, and when the vehicle enters the acceleration state, the transmitted torque ΔT to the front wheels increases, resulting in four-wheel drive. The driving force distribution will be close to the state.

また、アクセルペダルへの踏み込み量が小さく、しかも
踏み込み動作もほとんど行なわれない緩加速時であり、
前述と同様に前後輪回転速度差ΔNがΔN1である時は
、アクセル開度Aが小さく、しかもアクセル開度Aの変
化もほとんどないため、制御特性C+が選択されたまま
となり、前輪側への伝達トルクΔTも最もトルクが小さ
いΔT+ のままとなり、前輪側への駆動力配分が小さ
な後輪駆動状態に近い駆動力配分となる。
Also, during slow acceleration, when the amount of depression on the accelerator pedal is small and there is almost no pedal movement,
Similarly to the above, when the front and rear wheel rotational speed difference ΔN is ΔN1, the accelerator opening A is small and there is almost no change in the accelerator opening A, so control characteristic C+ remains selected, and the control characteristic C+ remains selected. The transmission torque ΔT also remains at ΔT+, which is the smallest torque, and the drive force distribution to the front wheels becomes close to that of the rear wheel drive state where the drive force distribution is small.

(ロ)前後輪の回転速度差ΔNが零または負の場合 前後輪の回転速度差ΔNが零または負の場合。(b) When the rotational speed difference ΔN between the front and rear wheels is zero or negative When the rotational speed difference ΔN between the front and rear wheels is zero or negative.

つまりタイヤのすべりがない乾燥路等での直進走行時等
での制御作動の流れは、ステップ200→ステツプ20
1→ステツプ202→ステツプ2゜7という流れとなり
、制御信号(C)は零として出力され、後輪駆動状態が
維持される。
In other words, the flow of control operation when driving straight on a dry road where the tires do not slip is from step 200 to step 20.
1→Step 202→Step 2.7, the control signal (C) is output as zero, and the rear wheel drive state is maintained.

上述のように実施例では、アクセル開度Aを加速状態の
入力情報とし、アクセル開度Aが大きくなるに従って比
例定数Kが大きくなる制御特性が選択される装置とした
ため、アクセルペダルが踏み込まれ車両が急加速状態に
入った時には、比例定数にの大きな制御特性に基づくク
ラッチ締結力の制御、つまり4輪駆動に近い駆動力配分
制御が行なわれることになり、急発進時のホイールスリ
ップや急加速旋回時のスピンを防止することができる。
As described above, in the embodiment, the accelerator opening degree A is used as the input information of the acceleration state, and the control characteristic is selected such that the proportionality constant K increases as the accelerator opening degree A increases, so that when the accelerator pedal is depressed, the vehicle When the vehicle enters a sudden acceleration state, the clutch engagement force is controlled based on the large control characteristic of the proportional constant, that is, the drive force distribution control is similar to that of four-wheel drive, which reduces wheel slip during sudden starts and sudden acceleration. It is possible to prevent spin when turning.

また、緩加速時であってアクセルペダルへの踏み込み量
が小さい時には、比例定数にの小さな制御特性に基づく
クラッチ締結力の制御、つまり後輪駆動に近い駆動力配
分制御が行なわれることになり、緩加速旋回時のアンダ
ーステア傾向を軽減させることができる。
Furthermore, when the accelerator pedal is pressed down to a small extent during slow acceleration, the clutch engagement force is controlled based on a small control characteristic of the proportional constant, that is, the drive force distribution control is similar to rear wheel drive. It is possible to reduce the tendency of understeer when turning at slow acceleration.

このように、前後輪回転速度差に応じてなめらかに駆動
力配分を変化させることでステア特性を急変させない駆
動力配分制御が行なわれると共に、加速状態に応じた駆
動力配分制御を行なうことができる。
In this way, by smoothly changing the drive force distribution according to the difference in rotational speed between the front and rear wheels, it is possible to perform drive force distribution control that does not cause sudden changes in steering characteristics, and it is also possible to perform drive force distribution control according to the acceleration state. .

以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、実施例では後輪駆動車をベースにした°4輪駆
動車を示したが、前輪駆動車をベースにしたものであっ
てもよい、尚、その場合には、回転速度差ΔNはNf−
Nrとして演算すればよい。
For example, although the embodiment shows a four-wheel drive vehicle based on a rear-wheel drive vehicle, it may also be based on a front-wheel drive vehicle. In that case, the rotational speed difference ΔN is Nf −
It may be calculated as Nr.

また、実施例では、伝達トルクΔTと回転速度差ΔNの
比例関係による制御特性の一例を示したが、必ずしも実
施例に示した関係に限られるものではなく、例えば粘性
クラッチ特性を示すもの等、他の制御特性であってもよ
い。
Further, in the embodiment, an example of control characteristics based on the proportional relationship between the transmission torque ΔT and the rotational speed difference ΔN is shown, but the relationship is not necessarily limited to that shown in the embodiment. Other control characteristics may also be used.

また、加速状態センサとして実施例ではアクセル開度セ
ンサを示したが、エンジン吸気管に設けた負圧センサや
アクセルペダルの動作を検知するセンサ等を用いてもよ
い。
Furthermore, although an accelerator opening sensor is shown in the embodiment as an acceleration state sensor, a negative pressure sensor provided in the engine intake pipe, a sensor that detects the operation of an accelerator pedal, or the like may be used.

また、実施例では、複数の制御特性を予めテーブル(表
)の形で記憶させておいて、テーブルルックアップによ
り前輪側への伝達トルクΔTを求める例を示したが、制
御特性を演算式の形で記憶させておき、この演算式に比
例定数及び前後輪回転速度差を代入して演算により伝達
トルクΔTを求めるようにしてもよい。
In addition, in the embodiment, an example was shown in which a plurality of control characteristics were stored in advance in the form of a table, and the torque transmitted to the front wheels ΔT was determined by table lookup. Alternatively, the transmission torque ΔT may be determined by calculating the proportionality constant and the rotational speed difference between the front and rear wheels by substituting the proportionality constant and the rotational speed difference between the front and rear wheels into this calculation formula.

尚、この時、比例定数も実施例のように3通りの比例定
数に限らず、アクセル開度の値をそのまま比例定数とし
たり、アクセル開度から所定の演算・により比例定数を
求めるようにしてもよい。
In addition, at this time, the proportionality constant is not limited to three types of proportionality constants as in the embodiment, but the value of the accelerator opening may be used as the proportionality constant, or the proportionality constant may be determined from the accelerator opening by a predetermined calculation. Good too.

また、実施例では、比例定数Kを定める加速状jQの人
力情報としてアクセル開度を経時変化的に知ることがで
きるアクセル開度Aをそのまま用いる例を示したが、ア
クセル開度Aを時間で微分したアクセル開度微分値Aを
加速状態の入力情報と1−てもよいし、さらにアクセル
開度Aとアクセルて入力情報としてもよい。
In addition, in the embodiment, an example was shown in which the accelerator opening degree A, which allows the accelerator opening degree to be known over time, is used as it is as the human power information for the acceleration state jQ that determines the proportionality constant K, but the accelerator opening degree A can be changed over time. The differentiated accelerator opening degree differential value A may be used as the input information of the acceleration state by 1, or the accelerator opening degree A and the accelerator may be used as input information.

尚、アクセル開度微分個人の場合は、アクセル開度の変
化速度を知ることができ、αA+β人の場合は、定数で
あるα及びβの設定により、最も正確な加速状態を知る
ことが可能である。
In addition, in the case of the accelerator opening differential individual, it is possible to know the rate of change of the accelerator opening, and in the case of αA + β person, it is possible to know the most accurate acceleration state by setting the constants α and β. be.

また、クラッチ締結圧制御手段も、実施例の電磁比例式
リリーフバルブに限られず、他の手段を用いてもよい。
Further, the clutch engagement pressure control means is not limited to the electromagnetic proportional relief valve of the embodiment, and other means may be used.

また、回転センナの取付位置も、前輪側及び後輪側の駆
動伝達系に設けたものであれば、実施例の取付位置に限
定されない。
Further, the mounting position of the rotation sensor is not limited to the mounting position of the embodiment as long as it is provided in the drive transmission system of the front wheel side and the rear wheel side.

(発明の効果) 以上説明してきたように、本発明の四輪駆動車の駆動力
配分制御装置にあっては、制御手段に前後輪回転速度差
に対応してクラッチ締結力が大きくなる制御特性を設定
させ、加速状態センサによる加速状態が急加速を示すほ
ど制御定数の大きな制御特性に基づくクラッチ締結力の
制御を行なうようにしたため、駆動力配分が前後輪回転
速度差に応じてなめらかに変化しステア特性の急変がな
いと共に、急発進時のホイールスリップや急加速旋回時
のスピンが防止され、また、緩加速旋回時のアンダース
テア傾向が軽減され、加速状態に応じた駆動力配分制御
を行なうことができるという効果が得られる。
(Effects of the Invention) As explained above, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, the control means has a control characteristic in which the clutch engagement force increases in accordance with the difference in rotational speed between the front and rear wheels. is set, and the clutch engagement force is controlled based on a control characteristic in which the control constant is larger as the acceleration state detected by the acceleration state sensor indicates a sudden acceleration, so the drive force distribution changes smoothly according to the difference in rotational speed between the front and rear wheels. This eliminates sudden changes in steering characteristics, prevents wheel slip during sudden starts and spins during sudden acceleration turns, reduces understeer tendency during slow acceleration turns, and controls drive force distribution according to acceleration conditions. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム概念図、第2図は実施例の駆動力配分制御装
置を示す示す全体図、ff13図は実施例装置のトラン
スファを示す断面図、第4図は実施例装置のコントロー
ルユニットを示すブロック線図、第5図は実施例JA置
のコントロールユニットにおいて予め記憶させている制
御特性を示すマツプ、第6図は実施例装置におけるコン
トロールユニットでの作動の流れを示すフローチャート
図である。 l・・・前輪 2・・・後輪 3・・・Tj丁変トルククラッチ 4・・・アクチュエータ 5・・・入力センサ 501・・・前後輪回転速度差センサ 502・・・加速状態センサ 6・・・制御手段 特  許  出  願  人 日産自動車株式会社
FIG. 1 is a conceptual diagram of a claim showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention, FIG. 2 is an overall view showing a driving force distribution control device of an embodiment, and FIG. 4 is a block diagram showing the control unit of the embodiment device, FIG. 5 is a map showing the control characteristics stored in advance in the control unit of the embodiment JA, and FIG. 6 is the embodiment device. It is a flowchart figure showing the flow of operation in a control unit in . l... Front wheel 2... Rear wheel 3... Tj variable torque clutch 4... Actuator 5... Input sensor 501... Front and rear wheel rotation speed difference sensor 502... Acceleration state sensor 6... ... Control means patent application Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】 1)前後輪への駆動力伝達系の途中に設けられた可変ト
ルククラッチと、該可変トルククラッチを作動させるア
クチュエータと、入力センサからの入力信号に基づいて
、可変トルククラッチのクラッチ締結力を制御する制御
信号を前記アクチュエータに対して出力する制御手段と
、を備えた四輪駆動車の駆動力配分制御装置において、 前記入力センサとして、前後輪回転速度差センサと加速
状態センサとを含み、前記制御手段に前後輪回転速度差
に対応してクラッチ締結力が大きくなる制御特性を設定
させ、前記加速状態センサによる加速状態が急加速を示
すほど制御定数の大きな制御特性に基づくクラッチ締結
力の制御を行なうようにしたことを特徴とする四輪駆動
車の駆動力配分制御装置。
[Claims] 1) A variable torque clutch provided in the middle of the drive power transmission system to the front and rear wheels, an actuator that operates the variable torque clutch, and a variable torque clutch that operates based on an input signal from an input sensor. A driving force distribution control device for a four-wheel drive vehicle, comprising: a control means for outputting a control signal to the actuator to control a clutch engagement force of the four-wheel drive vehicle, wherein the input sensor includes a front and rear wheel rotational speed difference sensor and an acceleration state sensor. a sensor, the control means is configured to set a control characteristic in which the clutch engagement force increases in response to a difference in rotational speed between the front and rear wheels, and the control characteristic has a large control constant as the acceleration state detected by the acceleration state sensor indicates a sudden acceleration. 1. A driving force distribution control device for a four-wheel drive vehicle, characterized in that the clutch engagement force is controlled based on the following.
JP60208477A 1985-09-13 1985-09-20 Drive force distribution controller for four-wheel drive vehicle Expired - Lifetime JPH07108619B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60208477A JPH07108619B2 (en) 1985-09-20 1985-09-20 Drive force distribution controller for four-wheel drive vehicle
US06/906,309 US4773500A (en) 1985-09-13 1986-09-12 Driving torque distribution control system for 4WD vehicle
DE19863631180 DE3631180A1 (en) 1985-09-13 1986-09-12 CONTROL SYSTEM FOR DISTRIBUTING THE DRIVE TORQUE IN A 4-WHEEL DRIVE FOR A VEHICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208477A JPH07108619B2 (en) 1985-09-20 1985-09-20 Drive force distribution controller for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS6268135A true JPS6268135A (en) 1987-03-28
JPH07108619B2 JPH07108619B2 (en) 1995-11-22

Family

ID=16556815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208477A Expired - Lifetime JPH07108619B2 (en) 1985-09-13 1985-09-20 Drive force distribution controller for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH07108619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226444A (en) * 1988-03-05 1989-09-11 Mazda Motor Corp Transmission torque control device for 4-wheel drive car

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car
JPS6064035A (en) * 1983-09-19 1985-04-12 Fuji Heavy Ind Ltd Selection control device for four-wheel drive vehicle
JPS61155027A (en) * 1984-12-26 1986-07-14 Mazda Motor Corp Four wheel-drive vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car
JPS6064035A (en) * 1983-09-19 1985-04-12 Fuji Heavy Ind Ltd Selection control device for four-wheel drive vehicle
JPS61155027A (en) * 1984-12-26 1986-07-14 Mazda Motor Corp Four wheel-drive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226444A (en) * 1988-03-05 1989-09-11 Mazda Motor Corp Transmission torque control device for 4-wheel drive car

Also Published As

Publication number Publication date
JPH07108619B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US4846298A (en) Driving force distribution control system for 4WD vehicle
US4773500A (en) Driving torque distribution control system for 4WD vehicle
US4586583A (en) System for controlling a power transmission of a four-wheel drive vehicle
JPS63141831A (en) Driving force distribution controller for four-wheel drive vehicle
US4890685A (en) Device for controlling driving force distribution in four-wheel drive vehicle
JPH0424253B2 (en)
JPS61193931A (en) Driving force distributing controller for four wheel driving vehicle
JPH066407B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPS6268135A (en) Driving force distribution controller for 4-wheel-drive vehicle
EP0395304A1 (en) Transmission system including a differential in a motor vehicle
JPS61157439A (en) Drive power distribution control device in four wheel-drive vehicle
JPS61157438A (en) Drive power distribution control device in four wheel-drive vehicle
JPH0626938B2 (en) Vehicle drive force distribution control device
JP2534732B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0416740Y2 (en)
JPS6261829A (en) Drive power distribution control device for four wheel drive vehicle
JP2534723B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2502520B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2600716B2 (en) Vehicle driving force distribution control device
JPH0825399B2 (en) Vehicle drive system clutch control device
JP2507468B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0577534B2 (en)
JPS62191225A (en) Device for controlling distribution of driving force for 4-wheel-drive vehicle
JPS61247517A (en) Driving force distribution controller for four-wheel drive vehicle
JPH055689B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term