JPS61193931A - Driving force distributing controller for four wheel driving vehicle - Google Patents

Driving force distributing controller for four wheel driving vehicle

Info

Publication number
JPS61193931A
JPS61193931A JP3592385A JP3592385A JPS61193931A JP S61193931 A JPS61193931 A JP S61193931A JP 3592385 A JP3592385 A JP 3592385A JP 3592385 A JP3592385 A JP 3592385A JP S61193931 A JPS61193931 A JP S61193931A
Authority
JP
Japan
Prior art keywords
driving force
wheel
speed difference
rotational speed
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3592385A
Other languages
Japanese (ja)
Inventor
Genpei Naitou
原平 内藤
Shuji Torii
修司 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3592385A priority Critical patent/JPS61193931A/en
Publication of JPS61193931A publication Critical patent/JPS61193931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To prevent the wheel spin and the one sided wheel lock slip by increasing the distribution of driving force to the wheel which has small rotation number in accordance with increase of the difference of rotation number between the front and rear wheels. CONSTITUTION:A variable torque clutch 4 alters the distribution of driving force to a front wheel 1 and a rear wheel 2 by the control actuation of an actuator 3. On the other hand, the signals from rotation sensors 5, 6 provided in a driving force transmission system for the front wheel 1 and the rear wheel 2 are inputted to a control means 7, and the control means operates the difference between the rotation numbers in the driving force transmission system for the front wheel 1 and rear wheel 2. And the distribution of driving force to the wheel which has small rotation number is increased in accordance with increase of the difference of the rotation number, and the fastening force of the clutch is rapidly increased when exceeding given difference value of the rotation number. And the difference of the rotation number which starts the increase of fastening force of the clutch is increased in accordance with increase of vehicle speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪への駆動力配分を所定の制御条件によ
り制御させるようにした4輪駆動車の駆動力配分制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a driving force distribution control device for a four-wheel drive vehicle that controls the distribution of driving force to front and rear wheels according to predetermined control conditions.

(従来の技術) 従来の4輪駆動車の駆動力配分制御装置としては、例え
ti特開昭56−26636号公報に記載されているよ
うな装置が知られている。
(Prior Art) As a conventional drive force distribution control device for a four-wheel drive vehicle, a device such as that described in Japanese Patent Application Laid-Open No. 56-26636 is known.

この従来装置は、変速機において前後輪の一方へ直接動
力伝達し、油圧クラッチ式のトランスファクラッチを介
して上記前後輪の他方へも動力伝達すべく伝動構成し、
上記クラッチを通常はスプリングにより滑り可能な半ク
ラッチの保谷状態にし、上記前後輪の間でスリップを生
じた場合はピストンの抑圧により完全に一体化した係合
状態にするように2段に制御することを特徴とするもの
であった。
This conventional device has a transmission configuration in which power is directly transmitted to one of the front and rear wheels in a transmission, and power is also transmitted to the other of the front and rear wheels via a hydraulic clutch type transfer clutch,
Normally, the clutch is in a half-clutch state where it can slip using a spring, and if slippage occurs between the front and rear wheels, the clutch is controlled in two stages so as to be in a fully integrated engaged state by suppressing the piston. It was characterized by this.

従って、従来装置では、前後輪の間でスリップが所定値
以下の時は、トランスファクラッチが半クラッチ係合状
態で、トランスファクラッチを介してわずかに駆動力伝
達される駆動力配分状態(2輪駆動に近い状態)であり
、また、前後輪の間でスリップが所定値具りになると、
トランスファクラッチが完全係合をし、完全4輪駆動走
行状態になっていた。
Therefore, in the conventional device, when the slip between the front and rear wheels is less than a predetermined value, the transfer clutch is in a half-engaged state, and a driving force distribution state (two-wheel drive ), and when the slip between the front and rear wheels reaches a predetermined value,
The transfer clutch was fully engaged and the vehicle was in full four-wheel drive.

(発明が解決しようとする問題点) しかしながら、このような従来の駆動力配分制御装置に
あっては、第8図に示すように、所定のスリップ率ΔS
1を境に2輪駆動状態から4輪駆動状態へと0N−OF
F的に駆動力配分が切換わるものであったため、旋回時
にはステア特性が急変するし、必ずしも走行状態に応じ
た最良の駆動力配分となっているわけではなく、駆動ロ
スを生じる場合があるという問題点があった。
(Problems to be Solved by the Invention) However, in such a conventional driving force distribution control device, as shown in FIG.
0N-OF from 2-wheel drive state to 4-wheel drive state after 1
Because the drive force distribution was switched in a F-like manner, the steering characteristics suddenly changed when turning, and the drive force distribution was not necessarily the best depending on the driving condition, which could result in drive loss. There was a problem.

これに対し、本出願人は、上述の問題点を解決すること
を目的として1前後輪の回転数差が大きくなるに従って
回転数が小さい方の車輪への駆動力配分を増加させると
共に、所定の回転数差を超えたら急激にクラッチ締結力
を増大させるという内容の出願を先に行なった。(特願
昭59−27しかし、前後輪の回転数差ΔNが所定の回
転数差ΔNaになったらクラッチ締結力を増大させるよ
うにしたものであり、伝達トルク特性としては、第9図
に示すように、駆動力の大きさや車速に関係なく、一義
的に定まった特性を示すものであった。
On the other hand, in order to solve the above-mentioned problem, the present applicant increases the distribution of driving force to the wheel with the lower rotation speed as the rotation speed difference between the front and rear wheels increases, and also increases the driving force distribution to the wheel with the lower rotation speed. An application was previously filed in which the clutch engagement force is suddenly increased when the rotational speed difference is exceeded. (Japanese Patent Application No. 59-27 However, the clutch engagement force is increased when the rotational speed difference ΔN between the front and rear wheels reaches a predetermined rotational speed difference ΔNa, and the transmission torque characteristics are shown in FIG. 9. As such, it exhibited uniquely defined characteristics regardless of the magnitude of the driving force or vehicle speed.

このため、駆動力が大きいにもかかわらず回転数差ΔN
の小さい領域A(低車速時)では、伝達トルクが小さく
2輪駆動に近い状態にあることで、ホイールスピンを起
しやすく、また、駆動力が小、さいにもかかわらず回転
数差ΔNの大きい領域B(高車速時)では、伝達トルク
が大きく4輪駆動に近い状態にあることで、4輪がドリ
フトしてドリフトアウトしやすいという問題点を残して
いた。
Therefore, despite the large driving force, the rotational speed difference ΔN
In region A (at low vehicle speed), the transmitted torque is small and the state is close to two-wheel drive, which tends to cause wheel spin, and even though the driving force is small, the rotational speed difference ΔN In large region B (at high vehicle speeds), the transmission torque is large and the vehicle is in a state similar to four-wheel drive, leaving the problem that the four wheels tend to drift and drift out.

(問題点を解決するための手段) 本発明は、上述のような問題点を解決することを目的と
してなされたもので、この目的達成のために本発明では
、以下に述べるような解決手段とした。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the above-mentioned problems, and in order to achieve this purpose, the present invention employs the following solving means. did.

本発明の解決手段を第1図に示すクレーム概念図により
説明すると1前後輪1.2への駆動力伝達系の途中にト
ランスファを備えた4輪駆動車において、前記トランス
ファを7クチユエータ3の制御作動で前後輪1.2への
駆動力配分の変更が可能な可変トルククラッチ4とし、
前後輪1.2の駆動力伝達系に設けた回転センサ5,6
からの回転信号■、■を入力し1前後輪1.2の駆動力
伝達系の回転数差を演算し、回転差数が大きくなるに従
って回転数の小さい方の車輪への駆動力配分を増加させ
ると共に、所定の回転数差を超えたら急激にクラッチ締
結力を増大させる制御信号@を前記アクチュエータ3に
出力する制御手段7を設け、かつ、車速センサ8からの
車速信号■を入力し、前記クラッチ締結力の増大が開始
される回転数差を、車速が高くなるに従って小回転数差
から大回転数差へ変化させるようにした。
The solution of the present invention will be explained with reference to the conceptual diagram of the claim shown in FIG. A variable torque clutch 4 that can change the distribution of driving force to the front and rear wheels by actuation,
Rotation sensors 5 and 6 installed in the drive power transmission system of the front and rear wheels 1.2
Input the rotation signals ■ and ■ from , calculate the rotation speed difference of the drive power transmission system between the front and rear wheels 1 and 2, and increase the drive force distribution to the wheel with the lower rotation speed as the rotation difference increases. A control means 7 is provided which outputs a control signal @ to the actuator 3 to rapidly increase the clutch engagement force when a predetermined rotational speed difference is exceeded, and inputs a vehicle speed signal (2) from a vehicle speed sensor 8. The rotational speed difference at which the clutch engagement force starts to increase is changed from a small rotational speed difference to a large rotational speed difference as the vehicle speed increases.

(作 用) 従って、本発明の4輪駆動車の駆動力配分制御装置では
、上述のような手段としたことで、前後輪の駆動力伝達
系の回転数差に応じて前後輪の駆動力配分が制御され、
回転数差が大きくなるに従って完全4輪駆動に近づく駆
動力配分にすることができる。
(Function) Therefore, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, by using the above-mentioned means, the driving force between the front and rear wheels is adjusted according to the difference in the rotational speed of the driving force transmission system between the front and rear wheels. distribution is controlled,
As the rotational speed difference increases, the driving force distribution can be made closer to perfect four-wheel drive.

この駆動力配分制御によって、前後輪の回転数差の発生
度合に応じて駆動力配分がなめらかに変化し、旋回時に
ステア特性が急変することもなく、走行状態や路面状態
に応じた適切な駆動力配分が得られる。
This drive force distribution control allows the drive force distribution to change smoothly depending on the degree of rotational speed difference between the front and rear wheels, preventing sudden changes in steering characteristics when cornering, and providing appropriate drive according to the driving and road conditions. Power distribution is obtained.

さらに、所定の回転数差を超えたら急激にクラッチ締結
力を増大させて、伝達トルクを高めるようにしたため、
回転数差が非常に大きくなったり、回転数差の大きな状
態が長時間続くような場合であっても、可変トルククラ
・ンチのすべりによる発熱等を防止できる。
Furthermore, when a predetermined rotational speed difference is exceeded, the clutch engagement force is suddenly increased to increase the transmitted torque.
Even when the rotational speed difference becomes very large or the large rotational speed difference continues for a long time, heat generation due to slippage of the variable torque clutch can be prevented.

その上、車速に応じて、クラッチ締結力の増大が開始さ
れる回転数差を変化させるようにしたため、低車速時に
は、駆動力にかかわらず、回転数差が小さくても早期に
4輪駆動方向に駆動力配分の制御がなされるし、また、
高車速時には、駆動力にかかわらず1回転数差が大きく
ても4輪駆動への移行が遅れる駆動力配分の制御とする
ことができる。
In addition, the engine speed difference at which the clutch engagement force starts to increase is changed according to the vehicle speed, so at low vehicle speeds, regardless of the driving force, even if the engine speed difference is small, the rotation speed difference is changed, so that the 4-wheel drive direction is quickly turned on. The driving force distribution is controlled, and
At high vehicle speeds, the drive force distribution can be controlled so that the transition to four-wheel drive is delayed even if the difference in one rotational speed is large regardless of the drive force.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあたって、後輪駆動をベース
にした4輪駆動車の駆動力配分制御装置を例にとる。
In describing this embodiment, a driving force distribution control system for a four-wheel drive vehicle based on rear wheel drive will be taken as an example.

まず、第2図〜第5図に示す実施例についてその構成を
説明する。
First, the configuration of the embodiment shown in FIGS. 2 to 5 will be explained.

10は駆動力配分装置であって、第2図に示すように、
駆動入力軸11.トランスミッション12、入力軸13
.後輪側駆動軸14.多板摩擦クラッチ15.オイルポ
ンプ16.圧油吐出管17、オイル吸入管18.リザー
ブタンク19.ギヤトレーン20.前輪側駆動軸21を
備えている。
10 is a driving force distribution device, as shown in FIG.
Drive input shaft 11. Transmission 12, input shaft 13
.. Rear wheel side drive shaft 14. Multi-plate friction clutch 15. Oil pump 16. Pressure oil discharge pipe 17, oil suction pipe 18. Reserve tank 19. Gear train 20. A front wheel side drive shaft 21 is provided.

上記駆動入力軸11は、エンジン及びクラッチを経過し
た駆動力が入力される軸である。
The drive input shaft 11 is a shaft to which the driving force that has passed through the engine and the clutch is input.

上記トランスミッション12は、前記駆動入力軸11か
らの回転駆動力をシフト操作により選択した変速段位置
に応じて変速させるもので、実施例では平行な二本のシ
ャフトに異なるギヤ比の歯車組を設けたタイプのものを
用いている。
The transmission 12 changes the speed of the rotational driving force from the drive input shaft 11 according to a gear position selected by a shift operation, and in the embodiment, gear sets with different gear ratios are provided on two parallel shafts. I am using a similar type.

北記入力軸13は、トランスファとしての多板摩擦クラ
ッチ15へ前記トランスミッション12からの回転駆動
力を入力させる軸である。
The north input shaft 13 is a shaft for inputting the rotational driving force from the transmission 12 to the multi-disc friction clutch 15 as a transfer.

上記後輪側駆動軸14は、前記入力軸13と同芯上に直
結させたもので、入力軸13からの回転駆動力がそのま
ま伝達される。
The rear wheel drive shaft 14 is coaxially and directly connected to the input shaft 13, and the rotational driving force from the input shaft 13 is directly transmitted thereto.

上記多板摩擦クラッチ15は、クラッチ締結圧により前
輪側への伝達駆動力の変更が可能なりラッチで、前記入
力軸13及び後輪側駆動軸14に固定させたクラッチド
ラム15aと、該クラッチドラム15aに回転方向係合
させたフリクションプレート15bと、前記入力軸13
の外周部に回転可能に支持させたクラッチハブ15cと
、該クラッチハブ15cに回転方向係合させたフリクシ
ョンディスク15dと、交互に配置されるフリクション
プレート15bとフリクションディスク15dとの一端
側に設けられるクラッチピストン15eと、該クラッチ
ピストン15eと前記クラッチドラム15aとの間に形
成されるシリンダ室15fと、を備えている。
The multi-disc friction clutch 15 can change the driving force transmitted to the front wheels by means of clutch engagement pressure. 15a and a friction plate 15b that is rotationally engaged with the input shaft 13.
A clutch hub 15c rotatably supported on the outer periphery of the clutch hub 15c, a friction disk 15d rotationally engaged with the clutch hub 15c, and a friction plate 15b and a friction disk 15d arranged alternately. It includes a clutch piston 15e and a cylinder chamber 15f formed between the clutch piston 15e and the clutch drum 15a.

上記オイルポンプ16は、リザーブタンク19内のオイ
ルをオイル吸入管18から吸入し、加圧させて圧油吐出
管17に供給するポンプで、この圧油吐出管17は前記
シリンダ室15fに連通され、オイルポンプ16からの
加圧油供給時は、クラッチ締結圧Pをクラッチピストン
15eに付与して、フリクションプレート15bとフリ
クションディスク15dとを圧接させ、入力軸13から
の駆動力を前輪側へ伝達させる。
The oil pump 16 is a pump that sucks oil in the reserve tank 19 through an oil suction pipe 18, pressurizes it, and supplies it to a pressure oil discharge pipe 17, which is communicated with the cylinder chamber 15f. When pressurized oil is supplied from the oil pump 16, a clutch engagement pressure P is applied to the clutch piston 15e to press the friction plate 15b and the friction disc 15d into contact with each other, thereby transmitting the driving force from the input shaft 13 to the front wheels. let

上記ギヤトレーン20は、前記クラッチハブ15Cに設
けられた第1ギヤ20aと、中間シャフト20bに設け
られた第2ギヤ20cと、前輪側駆動軸21に設けられ
た第3ギヤ20dと、によって構成され、多板摩擦クラ
ッチ15の締結による前輪側への駆動力を伝達させる手
段である。
The gear train 20 includes a first gear 20a provided on the clutch hub 15C, a second gear 20c provided on the intermediate shaft 20b, and a third gear 20d provided on the front wheel drive shaft 21. , is means for transmitting the driving force to the front wheels by engaging the multi-disc friction clutch 15.

上記前輪側駆動軸21は、車両の前輪に回転駆動力を伝
達させる軸である。
The front wheel drive shaft 21 is a shaft that transmits rotational driving force to the front wheels of the vehicle.

尚、第3図はトランスファの具体例を示したもので、ト
ランスファケース22の中に前記多板摩擦クラッチ15
やギヤ類やシャフト類が納められている。
Incidentally, FIG. 3 shows a specific example of the transfer, in which the multi-disc friction clutch 15 is installed in the transfer case 22.
It houses gears, shafts, etc.

第3図中15gはディシュプレート、23はリターンス
プリング、24は制御圧油入力ボート。
In Figure 3, 15g is a dish plate, 23 is a return spring, and 24 is a control pressure oil input boat.

25は制御圧油路、26は後輪側出力軸、27は潤滑用
油路、28はスピードメータ用ピニオン。
25 is a control pressure oil passage, 26 is a rear wheel side output shaft, 27 is a lubricating oil passage, and 28 is a speedometer pinion.

29はオイルシール、30はベアリング、31はニード
ルベアリング、32はスラストベアリング、33は継手
フランジである。
29 is an oil seal, 30 is a bearing, 31 is a needle bearing, 32 is a thrust bearing, and 33 is a joint flange.

40は駆動力配分制御装置であって、前輪側回転センサ
41.後輪側回転センサ42.車速センサ43.比例定
数設定手段44.コントロールユニ7)45.バルブソ
レノイド46.電磁比例制御リリーフバルブ479分岐
ドレーン管48を備えている。
40 is a driving force distribution control device, which includes a front wheel rotation sensor 41. Rear wheel side rotation sensor 42. Vehicle speed sensor 43. Proportional constant setting means 44. Control Uni 7) 45. Valve solenoid 46. It is equipped with an electromagnetic proportional control relief valve 479 and a branch drain pipe 48.

前輪側回転センサ41及び後輪側回転センサ42は、そ
れぞれ前輪側駆動軸21及び後輪側駆動軸14の途中に
設けられたもので、軸に固定された回転板と、回転板の
孔位置に配置された光電管及び光電素子と、による回転
センサ等を用い、この内回転センサ41,42からは軸
回転に応じたパルス信号による回転信号(nf)、(n
r)が出力される。
The front wheel rotation sensor 41 and the rear wheel rotation sensor 42 are provided in the middle of the front wheel drive shaft 21 and the rear wheel drive shaft 14, respectively, and are connected to a rotary plate fixed to the shaft and the hole position of the rotary plate. The rotation sensors 41 and 42 generate rotation signals (nf) and (n
r) is output.

を記車速センサ43は、車両の速度を駆動系の回転に応
じたパルス信号により検出し、車速信号(V)を出力す
るもので、後輪駆動ベースの実施例では後輪側回転セン
サ42からの回転信号(nr)を用い、所定時間毎の回
転数を車速として代用してもよい。
The vehicle speed sensor 43 detects the speed of the vehicle using a pulse signal corresponding to the rotation of the drive system and outputs a vehicle speed signal (V). The rotation signal (nr) may be used to substitute the number of rotations for each predetermined time period as the vehicle speed.

上記比例定数設定手段44は、後輪の回転数Nrと前輪
の回転数Nfとの差ΔNが運転者の操作状態や路面摩擦
係数等に影響されることから、これらの影響要素に対応
′させることができるように設けられたものである。
Since the difference ΔN between the rotational speed Nr of the rear wheels and the rotational speed Nf of the front wheels is influenced by the operating conditions of the driver, the road surface friction coefficient, etc., the proportionality constant setting means 44 is adapted to take account of these influencing factors. It is set up so that it can be done.

尚、前輪側への伝達トルクΔTは、第5図に示すように
、回転数差ΔNの関数として次式のようにあられされ、
比例定数Kを変更させることで、伝達トルク八Tと回転
数差ΔNとの関係も変えることができる。
As shown in FIG. 5, the torque transmitted to the front wheels ΔT is expressed as a function of the rotational speed difference ΔN as shown in the following equation.
By changing the proportionality constant K, the relationship between the transmission torque 8T and the rotational speed difference ΔN can also be changed.

ΔT=に−func (ΔN)  K;比例定数具体的
な比例定数設定手段44としては、手動ダイヤルスイッ
チ等を用いて運転者が適宜に設定できるものであっても
よいし、路面摩擦係数センサ等を用いて自動的に比例定
数にの変更を行なうような手段であってもよい。
ΔT=−func (ΔN) K: Proportional constant The specific proportional constant setting means 44 may be one that can be set appropriately by the driver using a manual dial switch, etc., or a road surface friction coefficient sensor, etc. It may also be possible to use means to automatically change the proportionality constant using .

L記コントロールユニット45は、前記回転センサ41
,42からの回転信号(nf)、(nr)と車速センサ
43からの車速信号(V)と比例定数設定手段44から
の比例定数信号(k)を入力し、後輪の駆動軸14と前
輪の駆動軸?■との回転数差ΔNを演算し、回転数差Δ
Nが大きくなるに従って駆動力配分を4輪駆動状態に近
づけると共に、所定の回転数差ΔNnを超えたら急激に
クラッチ締結力を増大させて伝達トルクΔTを高くする
制御信号(C)を前記パルプソレノイド46に出力する
もので、第4rgJに示すように、カウント回路451
,452,458、クロック回路453、RAM454
、ROM455、CPU456、制御信号発生回路45
7を備えている。
The L control unit 45 includes the rotation sensor 41
, 42, the vehicle speed signal (V) from the vehicle speed sensor 43, and the proportional constant signal (k) from the proportional constant setting means 44. drive shaft? Calculate the rotation speed difference ΔN from ■, and calculate the rotation speed difference ΔN.
The pulp solenoid outputs a control signal (C) that brings the driving force distribution closer to a four-wheel drive state as N increases, and when a predetermined rotational speed difference ΔNn is exceeded, rapidly increases the clutch engagement force to increase the transmission torque ΔT. 46, as shown in the fourth rgJ, the count circuit 451
, 452, 458, clock circuit 453, RAM 454
, ROM455, CPU456, control signal generation circuit 45
It has 7.

尚、クラッチ締結力の増大が開始される前記所定の回転
数差ΔNnは、第5図に示すように、車速Vが高くなる
に従って小回転数差から大回転数差へ変化するように制
御される。
The predetermined rotational speed difference ΔNn at which the clutch engagement force starts to increase is controlled to change from a small rotational speed difference to a large rotational speed difference as the vehicle speed V increases, as shown in FIG. .

カウント回路451,452,458は、それぞれの回
転センサ41,42及び車速センサ43から入力される
回転信号(nf)、(nr)及び重速信号(V)をデジ
タル信号に変換し、CPU456での演算処理が行なえ
る信号とする回路である。
Count circuits 451, 452, 458 convert the rotation signals (nf), (nr) and heavy speed signal (V) input from the respective rotation sensors 41, 42 and vehicle speed sensor 43 into digital signals, and convert them into digital signals. This is a circuit that generates signals that can be processed by arithmetic operations.

上記クロック回路453は、時間指示を行ない、CPU
456での演算処理を所定時間毎に行なわせるための回
路である。
The clock circuit 453 gives time instructions and
This is a circuit for performing the arithmetic processing in 456 at predetermined time intervals.

上記RAM454 (ランダム・アクセス・メモリ)は
、書込み読出しのできるメモリで、こ(7)RAM45
4には、CPU456で演算処理が行なわれている間に
入力される回転信号(nf)。
The above RAM 454 (random access memory) is a memory that can be written to and read from.
4 is a rotation signal (nf) that is input while the CPU 456 is performing calculation processing.

(nr)及び車速信号(V)のカウント数を一時的に記
憶させておく回路である。
This is a circuit that temporarily stores the count number of the vehicle speed signal (nr) and the vehicle speed signal (V).

F記ROM455(リード・オンリー・メモリ)は読出
し専用のメモリで、このROM455には、第5図に示
すように、回転数差ΔNと前輪側への伝達トルクΔTと
の複数の関係(車速Vに応じて異なる)が表(テーブル
)の形で予め記憶されていて、CPU456で回転数差
ΔNが演算された後、テーブルルックアップが行われる
The F ROM 455 (read-only memory) is a read-only memory, and as shown in FIG. (varies depending on the speed) is stored in advance in the form of a table, and after the rotational speed difference ΔN is calculated by the CPU 456, a table lookup is performed.

尚、回転数差ΔNと伝達トルクΔTとの関係は、所定の
回転数差ΔNnまでは比例関係で同じ勾配による特性で
あるが、回転数差ΔNnを超えたら勾配が急に立ち上り
回転数差ΔNに対する伝達トルクΔTの上昇率が増大す
る。
The relationship between the rotational speed difference ΔN and the transmitted torque ΔT is a proportional relationship with the same slope up to a predetermined rotational speed difference ΔNn, but once the rotational speed difference ΔNn is exceeded, the slope suddenly rises and the rotational speed difference ΔN The rate of increase in the transmission torque ΔT increases.

上記cPU456 (セントラル・プロセシング・ユニ
ー、ト)は、演算処理を行なう中央処理装置で、このC
PU456では、前後輪の回転数差ΔNの演算や、RA
M454及びROM455からの読み出し等を行ない、
その結果信号を制御信号発生回路457に出力する。
The above cPU456 (Central Processing Unit) is a central processing unit that performs arithmetic processing.
PU456 calculates the rotation speed difference ΔN between the front and rear wheels, and calculates the RA
Performs reading from M454 and ROM455,
The resulting signal is output to the control signal generation circuit 457.

L記制御信号発生回路457は、アクチュエータである
バルブソレノイド46に対し、CPO456からの結果
信号に応じた制御信号(C)を出力する回路である。
The L control signal generation circuit 457 is a circuit that outputs a control signal (C) according to the result signal from the CPO 456 to the valve solenoid 46, which is an actuator.

上記バルブソレノイド46は、圧油吐出管17からリザ
ーブタンク19へ分岐連通させた分岐ドレーン管48の
途中に設けた電磁比例制御リリーフバルブ47を駆動さ
せるアクチュエータで、制御信号(C)の出力がない場
合は、チェック油路49からの油圧で前記リリーフバル
ブ47が開き、クラッチ開放状態となるが、制御信号(
C)の出力がある場合は、前記リリーフバルブ47が閉
じ方向に移動し、オイルポンプ16からの吐出圧を制御
信号(C)に応じたクラッチ締結圧Pとなす。
The valve solenoid 46 is an actuator that drives an electromagnetic proportional control relief valve 47 provided in the middle of a branch drain pipe 48 branched from the pressure oil discharge pipe 17 to the reserve tank 19, and does not output a control signal (C). In this case, the relief valve 47 is opened by the hydraulic pressure from the check oil passage 49 and the clutch is released, but the control signal (
When there is an output of C), the relief valve 47 moves in the closing direction, and the discharge pressure from the oil pump 16 is set to the clutch engagement pressure P according to the control signal (C).

尚、クラッチ締結圧Pは、次式であられされる。Note that the clutch engagement pressure P is expressed by the following formula.

P=ΔT/ (g・A−2n−Rm) ル:クラッチ板の摩擦係数  A:ピストンへの圧力作
用面積  n;フリクションディスク枚数 Rm;フリ
クションディスクのトルク伝達有効半径 従って、伝達トルクΔTを増大させると、クラッチ締結
圧Pも比例して増大する。
P=ΔT/ (g・A−2n−Rm) Le: Coefficient of friction of the clutch plate A: Area of pressure action on the piston n: Number of friction discs Rm: Effective radius of torque transmission of the friction discs Therefore, increase the transmitted torque ΔT Then, the clutch engagement pressure P also increases proportionally.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

(イ)前後輪の回転差がない場合 タイヤのすべりがない乾燥路等での直進走行時において
は、前後輪の回転数差がほとんど発生しすくコントロー
ルユニット45に入力される回転信号(nf)、、(n
r)にも差が生じない。
(b) When there is no rotation difference between the front and rear wheels When driving straight on a dry road where the tires do not slip, there is almost no difference in the rotation speed between the front and rear wheels, and the rotation signal (nf) input to the control unit 45 ,,(n
There is no difference in r) either.

このために、電磁比例リリーフバルブ47は、開いたま
まの状態となり、多板摩擦クラッチ15へは高い油圧の
供給がなく、クラッチ開放状態となる。
For this reason, the electromagnetic proportional relief valve 47 remains open, and high hydraulic pressure is not supplied to the multi-disc friction clutch 15, resulting in the clutch being in an open state.

従って、入力軸13からの駆動力は、多板摩擦クラッチ
15を介して前輪側へほとんど伝達されず、はぼ後輪駆
動状態となる。
Therefore, almost no driving force from the input shaft 13 is transmitted to the front wheels via the multi-disc friction clutch 15, resulting in a mostly rear wheel drive state.

(ロ)前後輪の回転差が生じる場合 急加速時や制動時や低摩擦係数路での走行時等において
は、一方の車輪にすべりやロックを発生して前後輪に回
転数差が生じ、コントロールユニー/ ト45に入力さ
れる回転信号(nf)、(nr)にも差が生じる。
(b) When a rotation difference occurs between the front and rear wheels: During sudden acceleration, braking, or when driving on a road with a low friction coefficient, one wheel may slip or lock, causing a rotation speed difference between the front and rear wheels. A difference also occurs in the rotation signals (nf) and (nr) input to the control unit 45.

このために、電磁比例リリーフバルブ47は、コントロ
ールユニット45からの制御信号(c)により、回転数
差ΔNに応じて閉じ、オイルポンプ16からの加圧油の
ドレーン量が調整され、クラッチ締結圧Pを高めてクラ
ッチ締結状態となす。
For this purpose, the electromagnetic proportional relief valve 47 is closed according to the rotational speed difference ΔN by the control signal (c) from the control unit 45, the drain amount of pressurized oil from the oil pump 16 is adjusted, and the clutch engagement pressure is P is increased to bring the clutch into the engaged state.

従って、−入力軸13からの駆動力は、多板摩擦クラッ
チ15を介して前輪側へも伝達され1前後輪の駆動力配
分は回転数差ΔNが大きければ大きい程、前輪側への駆
動力配分が増大して完全4輪駆動に近い状態になる。
Therefore, the driving force from the input shaft 13 is also transmitted to the front wheels via the multi-plate friction clutch 15, and the driving force distribution between the front and rear wheels is such that the larger the rotational speed difference ΔN, the more the driving force is directed to the front wheels. The distribution increases to a state close to full four-wheel drive.

この時、車速センサ43からの車速信号(V)によって
、多板摩擦クラッチ15による締結力の増大を開始する
回転数差ΔNnも制御されるもので、例えば、第5図に
示すように、車速■が低車速の時は回転数差ΔN1は小
さく、車速Vが高くなるに従って、回転数差ΔNnは、
ΔN1→ΔN2→ΔN3のように大きくなる。
At this time, the rotational speed difference ΔNn at which the multi-disc friction clutch 15 starts to increase the engagement force is also controlled by the vehicle speed signal (V) from the vehicle speed sensor 43. For example, as shown in FIG. When ■ is a low vehicle speed, the rotational speed difference ΔN1 is small, and as the vehicle speed V increases, the rotational speed difference ΔNn becomes
It increases as ΔN1 → ΔN2 → ΔN3.

この駆動力配分制御作用によって、駆動力が大きいにも
かかわらず回転数差ΔNが小さい低車速時には、回転数
差ΔNが小さくても早期に4輪駆動に近い状態に駆動力
配分制御がなされ、ホイールスピンを防止することがで
きるし、また、駆動力が小さいにもかかわらず回転数差
ΔNが大きい高車速時には1回転数差ΔNが大きくても
4輪駆動への移行が遅れる駆動力配分制御がなされ、4
輪がドリフトしてドリフトアウトすることを防止できる
Due to this driving force distribution control action, at low vehicle speeds where the rotational speed difference ΔN is small despite the large driving force, the driving force distribution control is quickly performed to a state close to four-wheel drive even if the rotational speed difference ΔN is small. Drive force distribution control can prevent wheel spin, and at high vehicle speeds where the rotation speed difference ΔN is large despite the low driving force, the transition to four-wheel drive is delayed even if the rotation speed difference ΔN is large. was done, 4
It is possible to prevent the wheels from drifting out.

尚、駆動力配分制御は、基本的には第6図に示すように
、回転数差ΔNの発生度合に応じて徐々に駆動力配分が
変化するものであるために、例えば旋回時にステア特性
が急変することもなく、さらに駆動ロスを生じることも
ない。
As shown in Fig. 6, driving force distribution control basically changes the driving force distribution gradually depending on the degree of occurrence of the rotational speed difference ΔN. There is no sudden change, and no drive loss occurs.

また、所定の回転数差ΔNnを超えた場合は、強いクラ
ッチ締結圧Pによって多板摩擦クラッチ15が締結され
るために1例えば回転数差ΔNが非常に大きくなったり
、回転数差ΔNの大きな状態が長時間続くようなことが
あっても、多板摩擦クラッチ15のすべりが防止でき、
すべりによる発熱や伝達トルクΔTの変動(所望する駆
動力配分比とならない)を低減させることができる。
In addition, if the predetermined rotational speed difference ΔNn is exceeded, the multi-disc friction clutch 15 is engaged by the strong clutch engagement pressure P, so for example, the rotational speed difference ΔN becomes very large, or Even if the condition continues for a long time, the multi-disc friction clutch 15 can be prevented from slipping.
Heat generation due to slipping and fluctuations in the transmitted torque ΔT (desired driving force distribution ratio not achieved) can be reduced.

次に、前述の駆動力配分制御作用を、コントロールユニ
ット45のCPU456での作動の流れを示すフローチ
ャート図(第7図)により説明する。
Next, the aforementioned driving force distribution control action will be explained with reference to a flowchart (FIG. 7) showing the flow of operations in the CPU 456 of the control unit 45.

まず、ステップ200においては、前輪側回転センサ4
1及び後輪側回転センサ42から入力された回転信号(
nf)、(nr)により、所定時間内におけるそれぞれ
のカウント数Nf、Nrを読み込むと共に、車速センサ
43からの車速信号(V)の所定時間内におけるカウン
ト数(車速をあられす)を読み込む。
First, in step 200, the front wheel rotation sensor 4
1 and the rotation signal input from the rear wheel side rotation sensor 42 (
nf) and (nr), the respective counts Nf and Nr within a predetermined time are read, and the count number (indicating the vehicle speed) of the vehicle speed signal (V) from the vehicle speed sensor 43 within a predetermined time is read.

ステップ201においては、前記ステップ200におい
て読み込んだカウント数Nf、Nrにより、回転数差Δ
Nを演算する。
In step 201, the rotation speed difference Δ is determined based on the count numbers Nf and Nr read in step 200.
Calculate N.

尚、演算式は、ΔN=Nr−Nfである。Note that the arithmetic expression is ΔN=Nr−Nf.

ステップ202においては、前記ステップ201により
演算された回転数差ΔNに基づいて、ROM455に予
め記憶させている回転数差ΔNと伝達トルクΔTとの複
数の関係表(第5図のグラフと同じ関係)から伝達トル
クΔTをテーブルルックアップする。
In step 202, based on the rotational speed difference ΔN calculated in step 201, a plurality of relational tables (same relationship as the graph in FIG. ), look up the transmitted torque ΔT in the table.

例えば、第5図に示すように1回転数差ΔNがΔNn1
であり低車速であれば、伝達トルクΔTはΔTrz と
なり、回転数差ΔNがΔN2であり高車速であれば、伝
達トルクΔTはΔTn2となる。
For example, as shown in FIG.
If the vehicle speed is low, the transmission torque ΔT will be ΔTrz, and if the rotational speed difference ΔN is ΔN2 and the vehicle speed is high, the transmission torque ΔT will be ΔTn2.

ステップ203においては、比例定数設定手段44から
の比例定数信号(k)を入力し、前記ステップ202で
の伝達トルクΔTを補正演算する。
In step 203, the proportional constant signal (k) from the proportional constant setting means 44 is input, and the transmitted torque ΔT in step 202 is corrected.

ステップ204においては、前記ステップ203におい
て補正された伝達トルクΔT′に応じた結果信号を制御
信号発生回路457に出力させる。
In step 204, the control signal generation circuit 457 is caused to output a result signal corresponding to the transmission torque ΔT' corrected in step 203.

尚、上述の処理はクロック回路453で、設定した所定
時間毎に繰り返しなされる。
Note that the above-described process is repeatedly performed by the clock circuit 453 at every set predetermined time.

以と、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. include.

例えば、実施例では後輪駆動車をベースにした4輪駆動
車を示したが、前輪駆動車をベースにしたものであって
もよい、尚、その場合には、回転数差ΔNはNf−Nr
として演算すればよい。
For example, although the embodiment shows a four-wheel drive vehicle based on a rear-wheel drive vehicle, it may also be a four-wheel drive vehicle based on a front-wheel drive vehicle. In that case, the rotational speed difference ΔN is Nf- Nr
It can be calculated as

また、実施例では、伝達トルクΔTと回転数差ΔNの関
係を、正比例の特性が得られるように設定したものであ
るが、特にこの関係に限る必要はなく、粘性クラッチ特
性等であってもよい。
In addition, in the embodiment, the relationship between the transmitted torque ΔT and the rotational speed difference ΔN is set so as to obtain a directly proportional characteristic, but it is not necessary to be limited to this relationship in particular, and even if it is a viscous clutch characteristic etc. good.

また、クラッチ締結圧の制御手段も、実施例の電磁比例
式リリーフバルブに限られず、他の手段を用いてもよい
Further, the clutch engagement pressure control means is not limited to the electromagnetic proportional relief valve of the embodiment, and other means may be used.

また、回転センサの取付位置も、前輪側及び後輪側の駆
動伝達系に設けたものであれば、実施例の取付位置に限
定されない。
Further, the mounting position of the rotation sensor is not limited to the mounting position of the embodiment as long as it is provided in the drive transmission system of the front wheel side and the rear wheel side.

(発明の効果) 以F説明してきたように、本発明の4輪駆動車の駆動力
配分制御装置にあっては、前後輪の回転数差が大きくな
るに従って1回転数の小さい方の重輪への駆動力配分を
増加させるように構成したため1回転数差が発生する走
行状態や走行条件等に応じて適切な駆動力配分にするこ
とができるという効果が得られる。
(Effects of the Invention) As explained hereafter, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, as the rotation speed difference between the front and rear wheels increases, the heavier wheel with the smaller rotation speed is Since the configuration is configured to increase the distribution of driving force to the two wheels, it is possible to achieve an effect that the distribution of driving force can be made appropriate depending on the driving state or driving conditions in which a difference in the number of revolutions occurs.

そして、上述の効果によって、急加速時や発進時におけ
るホイールスピン防止や、急制動時における片輪ロック
防止や、低摩擦係数路走行におけるスリップ防Wを図る
ことができ、しかも、駆動力配分の急変化による弊害の
発生もない。
As a result of the above-mentioned effects, it is possible to prevent wheel spin during sudden acceleration or starting, to prevent one wheel from locking during sudden braking, and to prevent slipping when driving on a road with a low friction coefficient. There are no adverse effects caused by sudden changes.

また、所定の回転数差を超えたら急激にクラッチ締結力
を増大させるようにしたため、回転数差が非常に大きく
なったり、回転数差の大きな状態が長時間続くような場
合であっても、可変トルククラッチのすべりを防止でき
、温度上昇による伝達トルクの変動防止や制御性能の向
上を図ることができる。
In addition, since the clutch engagement force is suddenly increased when a predetermined rotational speed difference is exceeded, even when the rotational speed difference becomes very large or a large rotational speed difference continues for a long time, It is possible to prevent the variable torque clutch from slipping, prevent fluctuations in transmission torque due to temperature rise, and improve control performance.

また、クラッチ締結力の増大が開始される回転数差を、
車速が高くなるに従って小回転数差から大回転数差へ変
化させるようにしたため、駆動力が大きいにもかかわら
ず回転数差が小さい低車速時に、ホイールスピンを防止
することができるし、さらに、駆動力が小さいにもかか
わらず回転数差が大きい高車速時に、4輪がドリフトし
てドリフトアウトすることを防出できる。
In addition, the rotation speed difference at which the clutch engagement force starts to increase is
As the vehicle speed increases, the rotation speed difference changes from a small rotation speed difference to a large rotation speed difference, so it is possible to prevent wheel spin at low vehicle speeds where the rotation speed difference is small despite the large driving force. It is possible to prevent the four wheels from drifting out at high vehicle speeds when the difference in rotational speed is large despite the small force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の4輪駆動車の駆動力配分制御装置を示
すクレーム概念図、第2図は実施例の駆動力配分制御装
置を示す示す全体図、第3図は実施例装置のトランスフ
ァを示す断面図、第4図は実施例装置のコントロールユ
ニー/ )を示すブロック線図、第5図は実施例装置の
コントロールユニートにおいて予め記憶させている回転
数差と伝達トルクとの関係を示すグラフ、第6図は実施
例装置における回転数差と駆動力配分比との関係を示す
グラフ、第7図は実施例装置におけるコントロールユニ
ットでの作動の流れを示すフローチャート図、第8図は
従来装置におけるスリップ率(回転数差)と駆動力配分
比との関係を示すグラフ、第9図は先行技術における伝
達トルク特性を示すグラフである。 l・・・前輪 2・・・後輪 3・・・アクチュエータ 4・・・可変トルククラッチ 5.6・・・回転センサ 7・・・制御手段 8・・・車速センサ (す、(ゆ・・・回転信号 ■・・・制御信号 ■・・・車速信号 特  許  出  願  人 日産自動車株式会社 第4図 第5図 (Nr−Nf ) ΔN (Nr−Nf) (ΔS) 回転数見 ΔN□
Fig. 1 is a conceptual diagram of a claim showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention, Fig. 2 is an overall view showing a driving force distribution control device of an embodiment, and Fig. 3 is a transfer diagram of the embodiment device. FIG. 4 is a block diagram showing the control unit of the embodiment device, and FIG. 5 shows the relationship between the rotational speed difference and the transmitted torque stored in advance in the control unit of the embodiment device. 6 is a graph showing the relationship between the rotational speed difference and the driving force distribution ratio in the embodiment device, FIG. 7 is a flowchart showing the flow of operation in the control unit in the embodiment device, and FIG. A graph showing the relationship between the slip rate (rotational speed difference) and the driving force distribution ratio in the conventional device, and FIG. 9 is a graph showing the transmission torque characteristics in the prior art. l...Front wheel 2...Rear wheel 3...Actuator 4...Variable torque clutch 5.6...Rotation sensor 7...Control means 8...Vehicle speed sensor・Rotation signal■...Control signal■...Vehicle speed signal Patent application Nissan Motor Co., Ltd. Figure 4 Figure 5 (Nr-Nf) ΔN (Nr-Nf) (ΔS) Rotation speed view ΔN□

Claims (1)

【特許請求の範囲】[Claims] 1)前後輪への駆動力伝達系の途中にトランスファを備
えた4輪駆動車において、前記トランスファをアクチュ
エータの制御作動で前後輪への駆動力配分の変更が可能
な可変トルククラッチとし、前後輪の駆動力伝達系に設
けた回転センサからの回転信号を入力し、前後輪の駆動
力伝達系の回転数差を演算し、回転数差が大きくなるに
従って回転数の小さい方の車輪への駆動力配分を増加さ
せると共に、所定の回転数差を超えたら急激にクラッチ
締結力を増大させる制御信号を前記アクチュエータに出
力する制御手段を設け、かつ、車速センサからの車速信
号を入力し、前記クラッチ締結力の増大が開始される回
転数差を、車速が高くなるに従って小回転数差から大回
転数差へ変化させるようにしたことを特徴とする4輪駆
動車の駆動力配分制御装置。
1) In a four-wheel drive vehicle equipped with a transfer in the middle of the drive power transmission system to the front and rear wheels, the transfer is a variable torque clutch that can change the drive power distribution to the front and rear wheels by control operation of an actuator. The rotation signal from the rotation sensor installed in the drive power transmission system of the front and rear wheels is input, the rotation speed difference between the front and rear drive power transmission systems is calculated, and as the rotation speed difference increases, the drive is directed to the wheel with the lower rotation speed. A control means is provided for outputting a control signal to the actuator that increases the force distribution and rapidly increases the clutch engagement force when a predetermined rotational speed difference is exceeded, and inputs a vehicle speed signal from a vehicle speed sensor to control the clutch engagement force. A driving force distribution control device for a four-wheel drive vehicle, characterized in that a rotational speed difference at which an increase in fastening force is started is changed from a small rotational speed difference to a large rotational speed difference as the vehicle speed increases.
JP3592385A 1985-02-25 1985-02-25 Driving force distributing controller for four wheel driving vehicle Pending JPS61193931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3592385A JPS61193931A (en) 1985-02-25 1985-02-25 Driving force distributing controller for four wheel driving vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3592385A JPS61193931A (en) 1985-02-25 1985-02-25 Driving force distributing controller for four wheel driving vehicle

Publications (1)

Publication Number Publication Date
JPS61193931A true JPS61193931A (en) 1986-08-28

Family

ID=12455551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3592385A Pending JPS61193931A (en) 1985-02-25 1985-02-25 Driving force distributing controller for four wheel driving vehicle

Country Status (1)

Country Link
JP (1) JPS61193931A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125920A (en) * 1985-11-27 1987-06-08 Toyota Motor Corp Method for controlling clutch for part-time type 4-wheel-drive device
JPH01145228A (en) * 1987-11-30 1989-06-07 Nissan Motor Co Ltd Driving power distribution-controller for four-wheel drive vehicle
US4874056A (en) * 1986-12-03 1989-10-17 Nissan Motor Company, Limited Driving force distribution control system for a 4 wheel drive vehicle
US4887689A (en) * 1987-11-30 1989-12-19 Nissan Motor Co., Ltd. Driving force distribution control system for 4WD vehicle
US4941541A (en) * 1987-10-08 1990-07-17 Nissan Motor Co., Ltd. Device for distributing drive power in the drive train of a four wheel drive vehicle
US5005131A (en) * 1987-09-29 1991-04-02 Nissan Motor Co., Ltd. Slip control device for differential
US5214636A (en) * 1988-10-21 1993-05-25 Sharp Kabushiki Kaisha Optical recording element having a plurality of thin film filtering layers and optical recording element having an electrically conductive layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125920A (en) * 1985-11-27 1987-06-08 Toyota Motor Corp Method for controlling clutch for part-time type 4-wheel-drive device
US4874056A (en) * 1986-12-03 1989-10-17 Nissan Motor Company, Limited Driving force distribution control system for a 4 wheel drive vehicle
US5005131A (en) * 1987-09-29 1991-04-02 Nissan Motor Co., Ltd. Slip control device for differential
US4941541A (en) * 1987-10-08 1990-07-17 Nissan Motor Co., Ltd. Device for distributing drive power in the drive train of a four wheel drive vehicle
JPH01145228A (en) * 1987-11-30 1989-06-07 Nissan Motor Co Ltd Driving power distribution-controller for four-wheel drive vehicle
US4887689A (en) * 1987-11-30 1989-12-19 Nissan Motor Co., Ltd. Driving force distribution control system for 4WD vehicle
US5214636A (en) * 1988-10-21 1993-05-25 Sharp Kabushiki Kaisha Optical recording element having a plurality of thin film filtering layers and optical recording element having an electrically conductive layer

Similar Documents

Publication Publication Date Title
US4846298A (en) Driving force distribution control system for 4WD vehicle
US4887689A (en) Driving force distribution control system for 4WD vehicle
JPH0424253B2 (en)
JPH0635261B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPS61193931A (en) Driving force distributing controller for four wheel driving vehicle
JPS61157439A (en) Drive power distribution control device in four wheel-drive vehicle
JPS61157438A (en) Drive power distribution control device in four wheel-drive vehicle
JPS62143720A (en) Driving force distribution control device for 4-wheel drive car
JPS63203421A (en) Driving force distribution controller for four-wheel-drive vehicle
JPH0626938B2 (en) Vehicle drive force distribution control device
JPH0416740Y2 (en)
JPH0425899B2 (en)
JPH0536249B2 (en)
JP2502520B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH07108619B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0825399B2 (en) Vehicle drive system clutch control device
JPH0514660B2 (en)
JPH0628984B2 (en) Vehicle drive system clutch control device
JPS6261829A (en) Drive power distribution control device for four wheel drive vehicle
JP2507468B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPS6246716A (en) Driving force distribution controller for four-wheel-drive vehicle
JP2600716B2 (en) Vehicle driving force distribution control device
JPS62191225A (en) Device for controlling distribution of driving force for 4-wheel-drive vehicle
JPS62265029A (en) Drive force distribution control device for four-wheel drive car
JPS61285135A (en) Control device for distributing driving force for 4-wheel drive vehicle