JPS62143720A - Driving force distribution control device for 4-wheel drive car - Google Patents

Driving force distribution control device for 4-wheel drive car

Info

Publication number
JPS62143720A
JPS62143720A JP28628185A JP28628185A JPS62143720A JP S62143720 A JPS62143720 A JP S62143720A JP 28628185 A JP28628185 A JP 28628185A JP 28628185 A JP28628185 A JP 28628185A JP S62143720 A JPS62143720 A JP S62143720A
Authority
JP
Japan
Prior art keywords
driving force
control
clutch
road surface
surface friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28628185A
Other languages
Japanese (ja)
Other versions
JPH066407B2 (en
Inventor
Harahira Naitou
原平 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60286281A priority Critical patent/JPH066407B2/en
Publication of JPS62143720A publication Critical patent/JPS62143720A/en
Publication of JPH066407B2 publication Critical patent/JPH066407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To enable execution of control responding to a driving force and a road surface friction factor, by a method wherein a device is constituted such that a clutch fastening force is increased depending upon a difference in a rotation speed between rear and front wheels, a fastening force is controlled in a manner that the more a driving force is increased and a road surface friction factor is decreased, the more a control constant is increased. CONSTITUTION:A controller unit 45 inputs front and rear wheel rotation speeds nf and nr, an accel opening (a), and a car speed (v). From plural control characteristics maps having different set proportional constants, a control characteristics map responding to the accel opening (a) is selected, and a control signal (c) based on the selected control characteristics map and a front and rear wheel rotation speed difference DELTAN is outputted to a valve solenoid 46 for controlling a clutch 15. In this case, a control constant is selected in a manner that the more a driving force is increased and a road surface friction factor is decreased, the more the control factor is increased. This constitution enables a clutch fastening force to be controlled depending upon the driving force and the road surface friction factor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前後輪への駆動力配分を所定の制御条件によ
り制御させるようにした四輪駆動車の駆動力配分制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a driving force distribution control device for a four-wheel drive vehicle that controls the distribution of driving force to front and rear wheels according to predetermined control conditions.

(従来の技術) 従来の四輪駆動車の駆動力配分制御装置としては、例え
ば特開昭56−26636号公報に記載されているよう
な装置が知られている。
(Prior Art) As a conventional driving force distribution control device for a four-wheel drive vehicle, a device as described in, for example, Japanese Unexamined Patent Publication No. 56-26636 is known.

この従来装置は、変速機において前後輪の一方へ直接動
力伝達し、油圧クラッチ式のトランスファクラッチを介
して上記前後輪の他方へも動力伝達すべく構成し、上記
クラッチを通常はスプリングにより滑り可能な半クラッ
チの保合状態にし、上記前後輪の間でスリップを生じた
場合はピストンの押圧により完全に一体化した係合状態
にするように2段に制御することを特徴とするものであ
った・ 従って、従来装置では、前後輪の間でスリップが所定値
以下の時は、トランスファクラッチが半クラツチ係合状
態で、トランスファクラッチを介してわずかに駆動力伝
達される駆動力配分状態(2輪駆動に近い状態)であり
、また、前後輪の間でスリップが所定値以上になると、
トランスファクラッチが完全係合をし、完全4輪駆動走
行状態になっていた。
This conventional device is configured to transmit power directly to one of the front and rear wheels in a transmission, and also to the other of the front and rear wheels via a hydraulic transfer clutch, and the clutch is usually slidable by a spring. The clutch is in a half-engaged state, and when slippage occurs between the front and rear wheels, a two-stage control is performed to bring the clutch into a fully integrated state by pressing a piston. Therefore, in the conventional device, when the slip between the front and rear wheels is below a predetermined value, the transfer clutch is in a half-clutch engaged state, and the drive force distribution state (2 (almost wheel drive), and if the slip between the front and rear wheels exceeds a predetermined value,
The transfer clutch was fully engaged and the vehicle was in full four-wheel drive.

(発明が解決しようとする問題点) しかしながら、このような従来の駆動力配分制御装置に
あっては、所定のスリップ率を境に2輪駆動状態から4
輪駆動状態へと0N−OFF的に駆動力配分が切換わる
ものであったため、直結4輪駆動状態では、旋回特性が
強アンダーステア傾向となり、また、2輪駆動状態では
、急発進時にホイールスリップしてしまい、さらに旋回
時にはスピンに至るという問題点があった。
(Problems to be Solved by the Invention) However, in such a conventional driving force distribution control device, it is difficult to switch from a two-wheel drive state to a four-wheel drive state after a predetermined slip ratio.
Because the drive force distribution was switched in an 0N-OFF manner to the wheel drive state, in the direct four-wheel drive state, the turning characteristics tended to have strong understeer, and in the two-wheel drive state, the wheels slipped when starting suddenly. Furthermore, there was a problem in that it could lead to a spin when turning.

これに対し、水出願人は、上述の問題点を解決すること
を目的として、前後輪の回転速度差に応じて最良の駆動
力配分が得られる内容の出願を先に行なった。(特願昭
59−276048)しかし、可変トルククラッチのク
ラッチ締結力を制御する制御特性の比例定数を設定する
比例定数設定手段が設けられているものの、車両の駆動
力状態や路面摩擦係数とは無関係に比例定数が設定され
てしまうものであったため、2輪駆動に近い駆動力配分
を示す小さな比例定数の制御特性に設定されている時に
、急発進を行なうとホイールスリップを生じやすいし、
急加速旋回を行なうとスピンを生じやすいし、特に低摩
擦係数路では早期にスリップ限界やスピン限界に達して
しまうものであったし、また、4輪駆動に近い駆動力配
分を示す大きな比例定数の制御特性に設定されている時
に、緩加速旋回を行なうとアンダーステア傾向の強い旋
回特性となってしまい、特に高摩擦係数路では強アンダ
ステア傾向を示すという問題点を残していた。
On the other hand, with the aim of solving the above-mentioned problems, the applicant previously filed an application with the content that the best driving force distribution can be obtained according to the difference in rotational speed between the front and rear wheels. (Japanese Patent Application No. 59-276048) However, although a proportional constant setting means for setting a proportional constant of the control characteristic for controlling the clutch engagement force of the variable torque clutch is provided, it is difficult to determine the driving force state of the vehicle or the road surface friction coefficient. Because the proportional constant was set unrelated to the control characteristic, if the control characteristic was set to a small proportional constant that indicates a drive force distribution similar to that of two-wheel drive, sudden starts would easily cause wheel slip.
Rapidly accelerating turns tend to cause spin, and the slip and spin limits are reached early, especially on roads with a low friction coefficient.Also, the vehicle has a large proportionality constant that indicates a driving force distribution similar to that of four-wheel drive. When the control characteristics are set to , if a slow acceleration turn is performed, the turning characteristics tend to have a strong understeer tendency, and the problem remains that the vehicle exhibits a strong understeer tendency especially on roads with a high friction coefficient.

(問題点を解決するための手段) 本発明は、上述のような問題点を解決することを目的と
してなされたもので、この目的達成のために本発明では
、以下に述べるような解決手段とした。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the above-mentioned problems, and in order to achieve this purpose, the present invention employs the following solving means. did.

本発明の解決手段を第1図に示すクレーム概念図により
説明すると、前後輪1,2への駆動力伝達系の途中に設
けられた可変トルククラッチ3と、該可変トルククラッ
チ3を作動させるアクチュエータ4と、状態検出手段5
からの入力信号に基づいて、可変トルククラッチ3のク
ラッチ締結力を制御する制御信袴を前記アクチュエータ
4に対して出力する制御手段6と、を備えた四輪駆動車
の駆動力配分制御装置において、前記状態検出手段5と
して、前後輪回転速度差検出手段501と駆動力状態検
出手段502と路面摩擦係数検出手段503を含み、前
記制御手段6に、前後輪回転速度差に対応してクラッチ
締結力が大きくなる制御特性を設定させ、前記駆動力状
態センサ502による駆動力状態が大駆動力を示すほど
、また、路面摩擦係数が低路面摩擦係数を示すほど制御
定数の大きな制御特性に基づくクラッチ締結力の制御を
行なうようにした。
The solution of the present invention will be explained with reference to the conceptual diagram of the claim shown in FIG. 1. A variable torque clutch 3 provided in the middle of the drive power transmission system to the front and rear wheels 1 and 2, and an actuator that operates the variable torque clutch 3 4, and state detection means 5
In a driving force distribution control device for a four-wheel drive vehicle, the control means 6 outputs a control signal for controlling the clutch engagement force of the variable torque clutch 3 to the actuator 4 based on an input signal from the variable torque clutch 3. , the state detection means 5 includes a front and rear wheel rotational speed difference detection means 501, a driving force state detection means 502, and a road surface friction coefficient detection means 503, and the control means 6 includes a clutch engagement function according to the front and rear wheel rotational speed difference. The clutch is based on a control characteristic in which a control characteristic is set such that the force increases, and the control constant is large as the driving force state detected by the driving force state sensor 502 indicates a large driving force and the road surface friction coefficient indicates a low road surface friction coefficient. The fastening force was controlled.

(作 用) 従って、本発明の四輪駆動車の駆動力配分制御装置では
、上述のような手段とじたこ左で、駆動力配分が前後輪
回転速度差に応じてなめらかに変化しステア特性の急変
がないと共に、低路面摩擦係数路での急加速時には、制
御定数の大きな制御特性に基づくクラッチ締結力の制御
が行なわれ、4輪駆動に近い駆動力配分制御となり、急
発進時のホイールスリップや急加速旋回時のスピンが防
止され、また、高路面摩擦係数路での緩加速時には、制
御定数の小さな制御特性に基づくクラッチ締結力の制御
が行なわれ、2輪駆動に近い駆動力配分制御となり、緩
加速旋回時のアンダーステア傾向が軽減され、駆動力状
態及び路面摩擦係数に応じた駆動力配分制御を行なうこ
とができる。
(Function) Therefore, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, the driving force distribution changes smoothly according to the difference in rotational speed between the front and rear wheels, and the steering characteristics are improved by using the means described above. There is no sudden change, and during sudden acceleration on a road with a low road friction coefficient, the clutch engagement force is controlled based on control characteristics with a large control constant, resulting in drive force distribution control similar to that of four-wheel drive, reducing wheel slip during sudden starts. During slow acceleration on roads with high road friction coefficients, clutch engagement force is controlled based on control characteristics with small control constants, resulting in drive force distribution control similar to that of two-wheel drive. Therefore, the understeer tendency during slow acceleration turns is reduced, and driving force distribution control can be performed in accordance with the driving force state and the road surface friction coefficient.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあたって、後輪駆動をベース
にした四輪駆動車の駆動力配分制御装置を例にとる。
In describing this embodiment, a driving force distribution control system for a four-wheel drive vehicle based on rear wheel drive will be taken as an example.

まず、第2図〜第7図に示す実施例についてその構成を
説明する。
First, the configuration of the embodiment shown in FIGS. 2 to 7 will be explained.

10は駆動力配分装置であって、第2図に示すように、
駆動入力軸11.トランスミッション12、入力軸13
.後輪側駆動軸14.多板摩擦クラッチ15.オイルポ
ンプ16.圧油吐出管17、オイル吸入管18.リザー
ブタンク19.ギヤトレーン20.前輪側駆動軸21を
備えている。
10 is a driving force distribution device, as shown in FIG.
Drive input shaft 11. Transmission 12, input shaft 13
.. Rear wheel side drive shaft 14. Multi-plate friction clutch 15. Oil pump 16. Pressure oil discharge pipe 17, oil suction pipe 18. Reserve tank 19. Gear train 20. A front wheel side drive shaft 21 is provided.

上記駆動入力軸11は、エンジン及びクラッチを経過し
た駆動力が入力される軸である。
The drive input shaft 11 is a shaft to which the driving force that has passed through the engine and the clutch is input.

上記トランスミッション12は、前記駆動入力軸11か
らの回転駆動力をシフト操作により選択した変速段位置
に応じて変速させるもので、実施例では平行な二本のシ
ャフトに異なるギヤ比の歯車組を設けたタイプのものを
用いている。
The transmission 12 changes the speed of the rotational driving force from the drive input shaft 11 according to a gear position selected by a shift operation, and in the embodiment, gear sets with different gear ratios are provided on two parallel shafts. I am using a similar type.

上記入力軸13は、トランスファとしての多板摩擦クラ
ッチ15へ前記トランスミッション12からの回転駆動
力を入力させる軸である。
The input shaft 13 is a shaft for inputting the rotational driving force from the transmission 12 to the multi-disc friction clutch 15 as a transfer.

上記後輪側駆動軸14は、前記入力軸13と同芯上に直
結させたもので、入力軸13からの回転駆動力がそのま
ま伝達される。
The rear wheel drive shaft 14 is coaxially and directly connected to the input shaft 13, and the rotational driving force from the input shaft 13 is directly transmitted thereto.

上記多板摩擦クラッチ15は、クラッチ締結圧により前
輪側への伝達駆動力の変更が可能なりラッチで、前記入
力軸13及び後輪側駆動軸14に固定させたクラッチド
ラム15aと、該クラッチドラム15aに回転方向係合
させたフリクションプレート15bと、前記入力軸13
の外周部に回転可能に支持させたクラッチハブ15cと
、該クラッチハブ15cに回転方向係合させたフリクシ
ョンディスク15dと、交互に配置されるフリクション
プレート15bとフリクションディスク15dとの一端
側に設けられるクラッチピストン15eと、該クラッチ
ピストン15eと前記クラッチドラム15aとの間に形
成されるシリンダ室15fと、を備えている。
The multi-disc friction clutch 15 can change the driving force transmitted to the front wheels by means of clutch engagement pressure. 15a and a friction plate 15b that is rotationally engaged with the input shaft 13.
A clutch hub 15c rotatably supported on the outer periphery of the clutch hub 15c, a friction disk 15d rotationally engaged with the clutch hub 15c, and a friction plate 15b and a friction disk 15d arranged alternately. It includes a clutch piston 15e and a cylinder chamber 15f formed between the clutch piston 15e and the clutch drum 15a.

上記オイルポンプ16は、リザーブタンク19内のオイ
ルをオイル吸入管18から吸入し、加圧させて圧油吐出
管17に供給するポンプで、この圧油吐出管17は前記
シリンダ室15fに連通され、オイルポンプ16からの
加圧油供給時は、クラッチ締結圧Pをクラッチピストン
15eに付与して、フリクションプレート15bとフリ
クションディスク15dとを圧接させ、入力軸13から
の駆動力を前輪側へ伝達させる。
The oil pump 16 is a pump that sucks oil in the reserve tank 19 through an oil suction pipe 18, pressurizes it, and supplies it to a pressure oil discharge pipe 17, which is communicated with the cylinder chamber 15f. When pressurized oil is supplied from the oil pump 16, a clutch engagement pressure P is applied to the clutch piston 15e to press the friction plate 15b and the friction disc 15d into contact with each other, thereby transmitting the driving force from the input shaft 13 to the front wheels. let

上記ギヤトレーン20は、前記クラッチハブ15Cに設
けられた第1ギヤ20aと、中間シャフト20bに設け
られた第2ギヤ20cと、前輪側駆動軸21に設けられ
た第3ギヤ20dと、によって構成され、多板摩擦クラ
ッチ15の締結による前輪側への駆動力を伝達させる手
段である。
The gear train 20 includes a first gear 20a provided on the clutch hub 15C, a second gear 20c provided on the intermediate shaft 20b, and a third gear 20d provided on the front wheel drive shaft 21. , is means for transmitting the driving force to the front wheels by engaging the multi-disc friction clutch 15.

上記前輪側駆動軸21は、車両の前輪に回転駆動力を伝
達させる軸である。
The front wheel drive shaft 21 is a shaft that transmits rotational driving force to the front wheels of the vehicle.

尚、第3図はトランスファの具体例を示したもので、ト
ランスファケース22の中に前記多板摩擦クラッチ15
やギヤ類やシャフト類が納められている。
Incidentally, FIG. 3 shows a specific example of the transfer, in which the multi-disc friction clutch 15 is installed in the transfer case 22.
It houses gears, shafts, etc.

第3図中15gはディシュプレート、23はリターンス
プリング、24は制御圧油入力ボート。
In Figure 3, 15g is a dish plate, 23 is a return spring, and 24 is a control pressure oil input boat.

25は制御圧油路、26は後輪側出力軸、27は潤滑用
油路、28はスピードメータ用ピニオン。
25 is a control pressure oil passage, 26 is a rear wheel side output shaft, 27 is a lubricating oil passage, and 28 is a speedometer pinion.

29はオイルシール、30はベアリング、31はニード
ルベアリング、32はスラストベアリング、33は継手
フランジである。
29 is an oil seal, 30 is a bearing, 31 is a needle bearing, 32 is a thrust bearing, and 33 is a joint flange.

40は駆動力配分制御装置であって、入力センサとして
前輪側回転センサ41.後輪側回転センサ42.アクセ
ル開度センサ43.車速センサ44を備え、制御手段と
してコントロールユニy )45を備え、アクチュエー
タとしてバルブソレノイド46を有する電磁比例制御リ
リーフバルブ47(分岐ドレーン管48に設けられてい
る)を備えている。
Reference numeral 40 denotes a driving force distribution control device, which includes a front wheel rotation sensor 41 as an input sensor. Rear wheel side rotation sensor 42. Accelerator opening sensor 43. A vehicle speed sensor 44 is provided, a control unit 45 is provided as a control means, and an electromagnetic proportional control relief valve 47 (provided in a branch drain pipe 48) having a valve solenoid 46 is provided as an actuator.

前輪側回転センサ41及び後輪側回転センサ42は、そ
れぞれ前輪側駆動軸21及び後輪側駆動軸14の途中に
設けられたもので、例えば、軸に固定された回転板と、
回転板の孔位置に配置された光電管及び光電素子と、に
よる回転センサ等を用い、この再回転センサ41,42
からは軸回転に応じた回転信号(nf)、(nr)が前
記コントロールユニット45内の前後輪回転速度差検出
手段45aへ出力される。
The front wheel rotation sensor 41 and the rear wheel rotation sensor 42 are provided in the middle of the front wheel drive shaft 21 and the rear wheel drive shaft 14, respectively, and include, for example, a rotary plate fixed to the shaft,
This re-rotation sensor 41, 42 is performed using a rotation sensor or the like based on a phototube and a photoelectric element arranged in the hole position of the rotary plate.
From there, rotation signals (nf) and (nr) corresponding to the shaft rotation are outputted to the front and rear wheel rotational speed difference detection means 45a in the control unit 45.

上記アクセル開度センサ(駆動力状態検出手段)43は
、アクセルの踏み込み度合を検出し、踏み込み度合に応
じたアクセル開度信号(a)を出力するセンサである。
The accelerator opening sensor (driving force state detection means) 43 is a sensor that detects the degree of depression of the accelerator and outputs an accelerator opening signal (a) according to the degree of depression.

車速センサ44は車両の速度Vに応じた車速信号(V)
を出力するものである。
The vehicle speed sensor 44 generates a vehicle speed signal (V) according to the speed V of the vehicle.
This outputs the following.

45bは、コントロールユニット45内に設ケた路面摩
擦係数検出手段で、上記車速センサ44で検出した車速
Vに対する前後輪の回転速度差ΔNの発生状況により路
面摩擦係数ルを間接的に検知するものである。
Reference numeral 45b denotes road surface friction coefficient detection means provided in the control unit 45, which indirectly detects the road surface friction coefficient based on the occurrence of the rotational speed difference ΔN between the front and rear wheels with respect to the vehicle speed V detected by the vehicle speed sensor 44. It is.

上記コントロールユニット45は、前記回転センナ41
.42からの回転信号(nf)、(nr)とアクセル開
度センサ43からのアクセル開度信号(a)と車速セン
サ44からの車速信号(V)を入力し、予め設定されて
いる比例定数(制御定数)の異なる複数の制御特性マツ
プの中から、制御起動毎にその時の車速V及びアクセル
開度Aに応じた制御特性マツプが選択され、その制御特
性マツプ及び前後輪回転速度差ΔNに基づいた制御信号
(c)を前記バルブソレノイド46に出力するもので、
第4図に示すように、入力回路451、クロック回路4
52、RAM453、ROM454、CPU455、出
力回路456を備えている。
The control unit 45 includes the rotation sensor 41
.. 42, the accelerator opening signal (a) from the accelerator opening sensor 43, and the vehicle speed signal (V) from the vehicle speed sensor 44. Each time the control is activated, a control characteristic map corresponding to the vehicle speed V and accelerator opening A at that time is selected from among a plurality of control characteristic maps with different control constants), and the control characteristic map is selected based on the control characteristic map and the front and rear wheel rotational speed difference ΔN. outputs a control signal (c) to the valve solenoid 46,
As shown in FIG. 4, an input circuit 451, a clock circuit 4
52, RAM 453, ROM 454, CPU 455, and output circuit 456.

入力回路451は、各入力センサ類41,42.43.
44から入力される入力信号をCPU455での演算処
理が行なえる信号とする回路である。
The input circuit 451 includes input sensors 41, 42, 43 .
This circuit converts an input signal inputted from 44 into a signal that can be processed by CPU 455.

クロック回路452は、時間指示を行ない、CPU45
5での演算処理を所定時間毎に行なわせるための回路で
ある。
The clock circuit 452 gives time instructions and the CPU 45
This is a circuit for performing the arithmetic processing in step 5 at predetermined time intervals.

RAM453(ランダム・アクセス・メモリ)は、書込
み読出しのできるメモリで、このRAM453には、C
PU455で演算処理が行なわれている間に入力される
入力信号や演算処理に必要な情報を一時的に記憶させて
おく回路である。
The RAM 453 (random access memory) is a memory that can be written to and read from.
This is a circuit that temporarily stores input signals input while the PU 455 is performing calculation processing and information necessary for the calculation processing.

ROM454(リード・オンリー・メモリ)は読出し専
用のメモリで、このROM454には、第5図に示す制
御特性マツプが表(テーブル)の形で予め記憶されてい
て、車速Vとアクセル開度Aにより1つの制御特性が選
択され、さらにCPU455で演算された回転速度差Δ
Nに基づいて、テーブルルックアップが行われる。
The ROM 454 (read-only memory) is a read-only memory, and a control characteristic map shown in FIG. 5 is stored in advance in the form of a table. One control characteristic is selected, and the rotation speed difference Δ calculated by the CPU 455 is
Based on N, a table lookup is performed.

尚、クラッチ締結圧P(前輪側への伝達トルクΔT)は
、回転速度差ΔN(ΔN=N r−N f) c7)関
数として次式のようにあられされる。
Note that the clutch engagement pressure P (transmission torque ΔT to the front wheel side) is expressed as a function of the rotational speed difference ΔN (ΔN=N r - N f ) c7) as shown in the following equation.

P=に−func(ΔN)   K、比例定数つまり、
比例定数にの変更によって複数の制御特性が設定できる
もので、実施例では、第5図に示すように、低速時(0
≦V<V+ )の制御特性マツプMl、中速時(V+≦
V<V2)の制御特性マツプM2 、高速時(V2≦V
)の制御特性マツプM3が設定され、それぞれのマツプ
M1 。
P = −func (ΔN) K, constant of proportionality, that is,
A plurality of control characteristics can be set by changing the proportionality constant, and in the embodiment, as shown in FIG.
≦V<V+) control characteristic map Ml, at medium speed (V+≦
Control characteristic map M2 for V<V2), at high speed (V2≦V
) control characteristic map M3 is set, and each map M1.

M2.M3において、アクセル開度Aの大きさによって
異なる比例定数に+  、に2 、に3  、Kaの制
御特性を設定させている。
M2. In M3, control characteristics of +, 2, 3, and Ka are set to proportional constants that vary depending on the magnitude of the accelerator opening A.

そして、この比例定数には、アクセル開度Aが大アクセ
ル開度を示すほど大きく、また、車速■が低車速を示す
ほど大きくしている。
This proportionality constant is made larger as the accelerator opening A indicates a large accelerator opening, and increases as the vehicle speed ■ indicates a low vehicle speed.

CPU455 (セントラル・プロセシング・ユニット
)は、演算処理を行なう中央処理装置で、このCPU4
55では、前後輪の回転速度差ΔNの演算や、RAM4
53及びROM454からの読み出し等を行ない、その
結果信号を出力回路456に出力する。
The CPU 455 (central processing unit) is a central processing unit that performs arithmetic processing.
55 calculates the rotational speed difference ΔN between the front and rear wheels, and
53 and the ROM 454, and outputs the resultant signal to the output circuit 456.

出力回路456は、アクチュエータであるバルブソレノ
イド46に対し、CPU455からの結果信号に応じた
制御信号(C)を出力する回路である。
The output circuit 456 is a circuit that outputs a control signal (C) according to a result signal from the CPU 455 to the valve solenoid 46, which is an actuator.

前記バルブソレノイド46は、圧油吐出管17からリザ
ーブタンク19へ分岐連通させた分岐ドレーン管48の
途中に設けた電磁比例制御リリーフバルブ47を駆動さ
せるアクチュエータで、信号圧油路49による油圧力と
電磁力との力のバランスで前記リリーフバルブ47を開
閉させることで制御信号(C)に応じたクラッチ締結圧
Pとなす。
The valve solenoid 46 is an actuator that drives an electromagnetic proportional control relief valve 47 provided in the middle of a branch drain pipe 48 that branches from the pressure oil discharge pipe 17 to the reserve tank 19, and is connected to the hydraulic pressure from the signal pressure oil path 49. By opening and closing the relief valve 47 in balance with the electromagnetic force, a clutch engagement pressure P corresponding to the control signal (C) is achieved.

尚、クラッチ締結圧Pは、次式であられされる。Note that the clutch engagement pressure P is expressed by the following formula.

P=ΔT/ (JL−S ・2n−Rm)ル;クラッチ
板の摩擦係数  S;ピストンへの圧力作用面積  n
:フリクションディスク枚数 Rm;フリクションディ
スクのトルク伝達有効半径 従って、クラッチ締結圧Pを増大させると、伝達トルク
ΔTも比例して増大する。
P=ΔT/ (JL-S ・2n-Rm) Le; Coefficient of friction of clutch plate S; Area of pressure action on piston n
: Number of friction disks Rm; Effective radius of torque transmission of the friction disks Therefore, when the clutch engagement pressure P is increased, the transmission torque ΔT also increases in proportion.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

まず、回転速度差ΔNへの影響要因について述べる。First, factors influencing the rotational speed difference ΔN will be described.

回転速度差ΔNは、次式であられされる。The rotational speed difference ΔN is expressed by the following equation.

AN=f1 (R,V)+f2 (Q、JL)R;旋回
半径 V;車速 Q;駆動力 用;路面摩擦係数 つまり、車速Vと回転速度差ΔNとの関係で示した場合
、路面摩擦係数ルによる影響は、第6図(a)に示すよ
うに、低路面摩擦係数であれば低車速にて高い回転速度
差ΔNとなり、旋回半径Rによる影響は、第6図(b)
に示すように、旋回半径が小さいほど低車速にて高い回
転速度差ΔNとなり、駆動力Qによる影響は、第6図(
e)に示すように、駆動力が大きいほど低車速にて高い
回転速度差ΔNとなる。
AN=f1 (R, V) + f2 (Q, JL) R; Turning radius V; Vehicle speed Q; For driving force; Road friction coefficient. As shown in Figure 6(a), the influence of turning radius R will be high rotational speed difference ΔN at low vehicle speeds if the road friction coefficient is low, and the influence of turning radius R will be as shown in Figure 6(b).
As shown in Fig. 6 (
As shown in e), the larger the driving force, the higher the rotational speed difference ΔN at lower vehicle speeds.

従って、これらの関係を全て満足した上で、回転速度差
ΔNに比例して2輪駆動状態から4輪駆動状態へ徐々に
移行する駆動力配分制御を行なうことが最も好ましい。
Therefore, it is most preferable to satisfy all of these relationships and then perform driving force distribution control that gradually shifts from the two-wheel drive state to the four-wheel drive state in proportion to the rotational speed difference ΔN.

尚、この影響要因の中で、車速■及び旋回半径Rに関し
ては、回転速度差ΔNを生じる基本的要因であるため、
車速V及び旋回半径Hの変化はそのまま回転速度差ΔN
の変化としてあられれるが、駆動力Q及び路面摩擦係数
用は、回転速度差ΔNの変動要因であるため、回転速度
差ΔNの検出値または演算値に対して駆動力Q及び路面
摩擦係数用がどの程度影響しているかを監視する必要が
ある。
Among these influencing factors, vehicle speed ■ and turning radius R are fundamental factors that cause the rotational speed difference ΔN, so
Changes in vehicle speed V and turning radius H remain as rotational speed difference ΔN
However, since the driving force Q and the road friction coefficient are fluctuation factors of the rotational speed difference ΔN, the driving force Q and the road friction coefficient are different from the detected value or the calculated value of the rotational speed difference ΔN. We need to monitor how much of an impact it is having.

そこで、実施例では、アクセル開度Aにより駆動力Qの
情報を取り入れると共に、車速Vに対する回転速度差Δ
Nの発生状況により路面摩擦係数ルの情報を取り入れて
いる。
Therefore, in the embodiment, information on the driving force Q is incorporated based on the accelerator opening degree A, and the rotational speed difference Δ with respect to the vehicle speed V is
Information on the road surface friction coefficient is incorporated depending on the N generation situation.

次に、実施例での駆動力配分制御作動の流れを、第7図
に示すフローチャート図により説明する。
Next, the flow of the driving force distribution control operation in the embodiment will be explained with reference to the flowchart shown in FIG.

(イ)前後輪の回転速度差ΔNが正の場合前後輪の回転
速度差ΔNが正の場合、つまり後輪スリップ状態での制
御作動の流れは、ステップ200→ステツプ201→ス
テツプ202→ステツプ203→ステツプ204→ステ
ツプ205→ステツプ206へと進む流れとなり、この
作動が繰り返される。
(a) When the rotational speed difference ΔN between the front and rear wheels is positive When the rotational speed difference ΔN between the front and rear wheels is positive, that is, when the rear wheels are slipping, the flow of control operation is as follows: Step 200 → Step 201 → Step 202 → Step 203 → Step 204 → Step 205 → Step 206, and this operation is repeated.

尚、ステップ200は前後輪回転速度Nf 、Nrの読
み込みステップであり、ステップ201は前後輪回転速
度差ΔN(ΔN=Nr−Nf)の演算ステップであり、
ステップ202はΔNが正か負かの判断ステップであり
、ステップ203は車速Vとアクセル開度Aの読み込み
ステップであり、ステップ204は車速Vとアクセル開
度Aにより第5図に示す制御特性群からいずれかの制御
特性を選択する選択ステップであり、ステップ205は
前後輪回転速度差ΔNにより選択した制御特性からクラ
ッチ締結圧Pをテーブルルックアップする検索ステップ
であり、ステップ206は前記ステップ205でテーブ
ルルックアップされたクラッチ締結圧Pが得られる制御
信号(C)を出力するステップである。
Note that step 200 is a step of reading the front and rear wheel rotational speeds Nf and Nr, and step 201 is a calculation step of the front and rear wheel rotational speed difference ΔN (ΔN=Nr−Nf).
Step 202 is a step for determining whether ΔN is positive or negative, step 203 is a step for reading vehicle speed V and accelerator opening A, and step 204 is a control characteristic group shown in FIG. 5 based on vehicle speed V and accelerator opening A. Step 205 is a search step of looking up the clutch engagement pressure P from the selected control characteristic based on the front and rear wheel rotation speed difference ΔN, and Step 206 is a search step of looking up the clutch engagement pressure P from the selected control characteristic based on the front and rear wheel rotational speed difference ΔN. This is a step of outputting a control signal (C) from which the table-lookup clutch engagement pressure P is obtained.

具体例として、低摩擦係数路でのアクセルペダルを踏み
込んでの急加速時で、前後輪回転速度差ΔNがΔN1で
ある時は、アクセル開度Aが大きくなるのに対して車速
Vの上昇が小さいため、第5図(a)に示すように、ア
クセル開度Aが%程度までになったら、クラッチ締結圧
Pは、P1→P2→P3→P4と変化し、短時間にてほ
ぼ4輪駆動状態となってしまう。
As a specific example, when the accelerator pedal is depressed and the accelerator pedal is pressed down on a road with a low friction coefficient for sudden acceleration, when the front and rear wheel rotational speed difference ΔN is ΔN1, the accelerator opening degree A increases, but the vehicle speed V increases. Therefore, as shown in Fig. 5(a), when the accelerator opening A reaches approximately %, the clutch engagement pressure P changes from P1 → P2 → P3 → P4, and almost all four wheels are pressed in a short time. It becomes a driving state.

また、高摩擦係数路で、アクセルペダルへの踏み込み量
が小さい緩加速時で、前述と同様に前後輪回転速度差Δ
NがΔN1である時は、アクセル開度Aの変化が小さい
のに対し、車速Vの上昇は大きいため、第5図(a)(
b)(c)に示すように、例えば、アクセル開度Aが1
/16→1/8→1/4へと上昇していくのに対し、車
速Vが低速→中速→高速へと上昇していった場合は、ク
ラッチ締結圧PはP2のままで変わらず、前輪側への駆
動力配分が小さな後輪駆動状態に近い駆動力配分となる
Also, on a road with a high friction coefficient, during slow acceleration with a small amount of depression on the accelerator pedal, the difference in rotational speed of the front and rear wheels Δ
When N is ΔN1, the change in accelerator opening A is small, but the increase in vehicle speed V is large;
b) As shown in (c), for example, when the accelerator opening A is 1
/16 → 1/8 → 1/4, whereas if the vehicle speed V increases from low speed → medium speed → high speed, clutch engagement pressure P remains unchanged at P2. , the distribution of driving force to the front wheels is close to that of a rear wheel drive state where the distribution of driving force to the front wheels is small.

(ロ)前後輪の回転速度差ΔNが零または負の場合 前後輪の回転速度差ΔNが零または負の場合、つまりタ
イヤのすべりがない乾燥路等での直進走行時等での制御
作動の流れは、ステップ200→ステツプ201→ステ
ツプ202→ステツプ2゜7という流れとなり、制御信
号(C)は零として出力され、後輪駆動状態が維持され
る。
(b) When the rotational speed difference ΔN between the front and rear wheels is zero or negative If the rotational speed difference ΔN between the front and rear wheels is zero or negative, that is, when driving straight on a dry road where the tires do not slip, etc. The flow is as follows: step 200→step 201→step 202→step 2.7, the control signal (C) is output as zero, and the rear wheel drive state is maintained.

上述のように実施例では、アクセル開度Aを駆動力の入
力情報とし、車速■に対する回転速度差ΔNの発生状況
を路面摩擦係数用の入力情報とし、アクセル開度Aが大
きくなるに従って、また、路面摩擦係数Wが小さくなる
に従って比例定数Kが大きくなる制御特性が選択される
装置としたため、低摩擦係数路で、アクセルペダルが踏
み込まれ車両が急加速状態に入った時には、比例定数に
の大きな制御特性に基づくクラッチ締結力の制御、つま
り4輪駆動に近い駆動力配分制御が行なわれることにな
り、急発進時のホイールスリップや急加速旋回時のスピ
ンを防止することができる。
As described above, in the embodiment, the accelerator opening degree A is used as the input information for the driving force, the generation status of the rotational speed difference ΔN with respect to the vehicle speed ■ is used as the input information for the road surface friction coefficient, and as the accelerator opening degree A increases, Since the device is designed to select a control characteristic in which the proportionality constant K increases as the road surface friction coefficient W decreases, when the accelerator pedal is depressed on a road with a low friction coefficient and the vehicle enters a sudden acceleration state, the proportionality constant The clutch engagement force is controlled based on a large control characteristic, that is, the driving force distribution control is similar to that of a four-wheel drive, and it is possible to prevent wheel slip during a sudden start and spin during a sudden acceleration turn.

また、高摩擦係数路での緩加速時であってアクセルペダ
ルへの踏み込み量が小さい時には、比例定数にの小さな
制御特性に基づくクラッチ締結力の制御、つまり後輪駆
動に近い駆動力配分制御が行なわれることになり、緩加
速旋回時のアンダーステア傾向を軽減させることができ
る。
In addition, when accelerating slowly on a road with a high friction coefficient and the amount of depression on the accelerator pedal is small, the clutch engagement force is controlled based on a small control characteristic of the proportional constant, that is, the drive force distribution control is similar to rear wheel drive. This makes it possible to reduce the tendency for understeer when turning at slow acceleration.

このように、前後輪回転速度差に応じてなめらかに駆動
力配分を変化させることでステア特性を急変させない駆
動力配分制御が行なわれると共に、駆動力状態及び路面
摩擦係数に応じた駆動力配分制御を行なうことができる
In this way, driving force distribution control is performed that does not cause sudden changes in steering characteristics by smoothly changing the driving force distribution according to the difference in rotational speed between the front and rear wheels, and driving force distribution control is performed according to the driving force condition and the road surface friction coefficient. can be done.

以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、実施例では後輪駆動車をベースにした4輪駆動
車を示したが、前輪駆動車をベースにしたものであって
もよい。尚、その場合には、回転速度差ΔNはNf−N
rとして演算すればよい。
For example, although the embodiment shows a four-wheel drive vehicle based on a rear-wheel drive vehicle, it may also be a four-wheel drive vehicle based on a front-wheel drive vehicle. In that case, the rotational speed difference ΔN is Nf-N
It may be calculated as r.

また、実施例では、クラッチ締結圧Pと回転速度差ΔN
の比例関係による制御特性の一例を示したが、必ずしも
実施例に示した関係に限られるものではなく、例えば粘
性クラッチ特性を示すもの等、他の制御特性であっても
よい。
In addition, in the embodiment, the clutch engagement pressure P and the rotational speed difference ΔN
Although an example of control characteristics based on the proportional relationship has been shown, the relationship is not necessarily limited to the relationship shown in the embodiment, and other control characteristics such as those showing viscous clutch characteristics may be used.

また、加速状態センサとして実施例ではアクセル開度セ
ンサを示したが、エンジン吸気管に設けた負圧センサや
アクセルペダルの動作を検知するセンサ等を用いてもよ
い。
Furthermore, although an accelerator opening sensor is shown in the embodiment as an acceleration state sensor, a negative pressure sensor provided in the engine intake pipe, a sensor that detects the operation of an accelerator pedal, or the like may be used.

また、実施例では、路面摩擦係数センサとして回転速度
差ΔNとの関係で路面摩擦係数ルを間接的に検知する車
速センサを示したが、直接に路面摩擦係数を検知するセ
ンナを用いてもよい。
Furthermore, in the embodiment, a vehicle speed sensor that indirectly detects the road surface friction coefficient in relation to the rotational speed difference ΔN is used as the road surface friction coefficient sensor, but a sensor that directly detects the road surface friction coefficient may also be used. .

また、実施例では、複数の制御特性を予めテーブル(表
)の形で記憶させておいて、テーブルルックアップによ
りクラッチ締結圧Pを求める例を示したが、制御特性を
演算式の形で記憶させておき、この演算式に比例定数及
び前後輪回転速度差を代入して演算によりクラッチ締結
圧Pを求めるようにしてもよいし、さらに、制御特性マ
ツプを1つとしく例えば第5図(C))、車速Vが設定
車速より低い場合には、補正値により比例定数を異なら
せてもよい。
In addition, in the embodiment, an example was shown in which a plurality of control characteristics are stored in advance in the form of a table and the clutch engagement pressure P is determined by table lookup, but the control characteristics are stored in the form of an arithmetic expression. Alternatively, the clutch engagement pressure P may be calculated by substituting the proportionality constant and the front and rear wheel rotational speed difference into this calculation equation, or by setting one control characteristic map, for example, as shown in Fig. 5 (C )), when the vehicle speed V is lower than the set vehicle speed, the proportionality constant may be varied depending on the correction value.

尚、この時、比例定数も実施例のように4通りの比例定
数に限らず、アクセル開度の値をそのまま比例定数とし
たり、アクセル開度から所定の演算により比例定数を求
めるようにしてもよい。
At this time, the proportionality constant is not limited to the four types of proportionality constants as in the embodiment, but the value of the accelerator opening may be directly used as the proportionality constant, or the proportionality constant may be calculated from the accelerator opening by a predetermined calculation. good.

また、実施例では、比例定数Kを定める駆動力状態の入
力情報としてアクセル開度を経時変化的に知ることがで
きるアクセル開度Aをそのまま用いる例を示したが、ア
クセル開度Aを時間で微分したアクセル開度微分値Aを
駆動力状態の入力情報としてもよいし、さらにアクセル
開度Aとアクセル開度微分値Aとを加えた値(αA+β
A)をもって入力情報としてもよい。
In addition, in the embodiment, an example was shown in which the accelerator opening degree A, which allows the accelerator opening degree to be known over time, is used as input information of the driving force state that determines the proportionality constant K, but the accelerator opening degree A can be changed over time. The differentiated accelerator opening degree differential value A may be used as input information for the driving force state, or the value obtained by adding the accelerator opening degree A and the accelerator opening degree differential value A (αA+β
A) may be used as input information.

尚、アクセル開度微分値Aの場合は、アクセル開度の変
化速度を知ることができ、αA+βへの場合は、定数で
あるα及びβの設定により、最も正確な駆動力状態を知
ることが可能である。
In addition, in the case of the accelerator opening differential value A, the rate of change of the accelerator opening can be known, and in the case of αA + β, the most accurate driving force state can be known by setting the constants α and β. It is possible.

また、クラッチ締結圧制御手段も、実施例の電磁比例式
リリーフバルブに限られず、他の手段を用いてもよい。
Further, the clutch engagement pressure control means is not limited to the electromagnetic proportional relief valve of the embodiment, and other means may be used.

また、回転センサの取付位置も、前輪側及び後輪側の駆
動伝達系に設けたものであれば、実施例の取付位置に限
定されない。
Further, the mounting position of the rotation sensor is not limited to the mounting position of the embodiment as long as it is provided in the drive transmission system of the front wheel side and the rear wheel side.

(発明の効果) 以上説明してきたように、本発明の四輪駆動車の駆動力
配分制御装置にあっては、前後輪回転速度差に対応して
クラッチ締結力が大きくなる制御特性を設定させ、駆動
力状態センサによる駆動力状態が大駆動力を示すほど、
また、路面摩擦係数が低路面摩擦係数を示すほど制御定
数の大きな制御特性に基づくクラッチ締結力の制御を行
なう手段としたため、駆動力配分が前後輪回転速度差に
応じてなめらかに変化しステア特性の急変がないと共に
、特に低摩擦係数路における急発進時のホイールスリッ
プや急加速旋回時のスピンが防止され、また、特に高摩
擦係数路における緩加速旋回時のアンダーズテア傾向が
軽減され、駆動力状態及び路面摩擦係数に応じた駆動力
配分制御を行なうことができるという効果が得られる。
(Effects of the Invention) As explained above, in the driving force distribution control device for a four-wheel drive vehicle of the present invention, a control characteristic is set in which the clutch engagement force increases in response to the difference in rotational speed between the front and rear wheels. , the greater the driving force state determined by the driving force state sensor, the greater the driving force is.
In addition, since the clutch engagement force is controlled based on a control characteristic in which the control constant is larger as the road friction coefficient indicates a lower road surface friction coefficient, the driving force distribution changes smoothly according to the difference in rotational speed between the front and rear wheels, resulting in steering characteristics. In addition to preventing sudden changes in driving force, wheel slips during sudden starts and spins during sudden acceleration turns are prevented, especially on roads with a low friction coefficient, and the tendency for understeer during slow acceleration turns is reduced, especially on high friction coefficient roads. The effect is that driving force distribution control can be performed according to the state and the road surface friction coefficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム概念図、第2図は実施例の駆動力配分制御装
置を示す示す全体図、第3図は実施例装置のトランスフ
ァを示す断面図、第4図は実施例装置のコントロールユ
ニットを示すブロック線図、第5図(a)(b)(c)
は実施例装置のコントロールユニットにおいて予め記憶
させている制御特性を示すマツプ、第6図(a)(b)
(C)は回転速度差に対する各影響要因の影響特性図、
第7図は実施例装置におけるコントロールユニットでの
作動の流れを示すフローチャート図である。 l・・・前輪 2・・・後輪 3・・・可変トルククラッチ 4・・・アクチュエータ 5・・・状態検出手段 501・・・前後輪回転速度差検出手段502・・・駆
動力状態検出手段 503・・・路面摩擦係数検出手段 6・・・制御手段 特  許  出  願  人 日産自動車株式会社 第5図 (a)  O%v<v。 (イ6 、虹!、) (b)   Vl ≦ v < Vl (4’L!−) (C)   Vl ≦V (息遣)
Fig. 1 is a conceptual diagram of a claim showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention, Fig. 2 is an overall view showing a driving force distribution control device of an embodiment, and Fig. 3 is a transfer diagram of the embodiment device. 4 is a block diagram showing the control unit of the embodiment device, and FIG. 5 (a), (b), and (c).
6(a) and 6(b) are maps showing control characteristics stored in advance in the control unit of the embodiment device.
(C) is an influence characteristic diagram of each influencing factor on the rotation speed difference,
FIG. 7 is a flowchart showing the flow of operations in the control unit in the embodiment device. l...Front wheel 2...Rear wheel 3...Variable torque clutch 4...Actuator 5...State detection means 501...Front and rear wheel rotational speed difference detection means 502...Driving force state detection means 503 Road surface friction coefficient detection means 6 Control means Patent application Nissan Motor Co., Ltd. Figure 5 (a) O%v<v. (I6, Rainbow!,) (b) Vl ≦ v < Vl (4'L!-) (C) Vl ≦V (breathing)

Claims (1)

【特許請求の範囲】 1)前後輪への駆動力伝達系の途中に設けられた可変ト
ルククラッチと、該可変トルククラッチを作動させるア
クチュエータと、状態検出手段からの入力信号に基づい
て、可変トルククラッチのクラッチ締結力を制御する制
御信号を前記アクチュエータに対して出力する制御手段
と、を備えた四輪駆動車の駆動力配分制御装置において
、 前記状態検出手段として、前後輪回転速度差検出手段と
駆動力状態検出手段と路面摩擦係数検出手段を含み、前
記制御手段に、前後輪回転速度差に対応してクラッチ締
結力が大きくなる制御特性を設定させ、前記駆動力状態
検出手段による駆動力状態が大駆動力を示すほど、また
、路面摩擦係数が低路面摩擦係数を示すほど制御定数の
大きな制御特性に基づくクラッチ締結力の制御を行なう
ようにしたことを特徴とする四輪駆動車の駆動力配分制
御装置。 2)前記路面摩擦係数検出手段は、車速を検出する車速
センサを有し、車速に対する前後輪回転速度差の値に基
づき路面の摩擦係数を判断する事を特徴とする特許請求
の範囲第1項記載の四輪駆動車の駆動力配分制御装置。
[Claims] 1) A variable torque clutch provided in the middle of the drive power transmission system to the front and rear wheels, an actuator that operates the variable torque clutch, and a variable torque control based on input signals from the state detection means. A driving force distribution control device for a four-wheel drive vehicle, comprising: control means for outputting a control signal for controlling a clutch engagement force of a clutch to the actuator, wherein the state detection means includes front and rear wheel rotational speed difference detection means. , a driving force state detecting means, and a road surface friction coefficient detecting means, the control means is configured to set a control characteristic in which the clutch engagement force increases in accordance with a difference in front and rear wheel rotational speeds, and the driving force by the driving force state detecting means is set. A four-wheel drive vehicle characterized in that the clutch engagement force is controlled based on a control characteristic having a larger control constant as the state indicates a larger driving force and as the road surface friction coefficient indicates a lower road surface friction coefficient. Driving force distribution control device. 2) The road surface friction coefficient detection means includes a vehicle speed sensor that detects vehicle speed, and determines the road surface friction coefficient based on a value of a difference in rotational speed of the front and rear wheels with respect to the vehicle speed. The driving force distribution control device for the four-wheel drive vehicle described above.
JP60286281A 1985-12-19 1985-12-19 Drive force distribution controller for four-wheel drive vehicle Expired - Lifetime JPH066407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286281A JPH066407B2 (en) 1985-12-19 1985-12-19 Drive force distribution controller for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286281A JPH066407B2 (en) 1985-12-19 1985-12-19 Drive force distribution controller for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS62143720A true JPS62143720A (en) 1987-06-27
JPH066407B2 JPH066407B2 (en) 1994-01-26

Family

ID=17702332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286281A Expired - Lifetime JPH066407B2 (en) 1985-12-19 1985-12-19 Drive force distribution controller for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH066407B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329343A2 (en) * 1988-02-16 1989-08-23 Fuji Jukogyo Kabushiki Kaisha Power transmission system for a four-wheel drive motor vehicle
US5215161A (en) * 1988-02-16 1993-06-01 Fuji Jukogyo Kabushiki Kaisha Power transmission system for a four-wheel drive motor vehicle
EP1359046A2 (en) * 2002-04-26 2003-11-05 Toyoda Koki Kabushiki Kaisha Drive-force distribution controller and drive-force distribution method for four-wheel-drive vehicle
JP2006528568A (en) * 2003-07-24 2006-12-21 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Control device for a motor vehicle driven at least part-time in four wheels
JP2011031828A (en) * 2009-08-05 2011-02-17 Honda Motor Co Ltd Drive force control device for vehicle
JP2012224305A (en) * 2011-04-22 2012-11-15 Nissan Motor Co Ltd Four-wheel-drive car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car
JPS6198631A (en) * 1984-10-12 1986-05-16 ドクトル・インジエニエール・ハー・ツエー・エフ・ポルシエ・アクチエンゲゼルシヤフト Device for power transmission control to shaft for whole-wheel drive automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car
JPS6198631A (en) * 1984-10-12 1986-05-16 ドクトル・インジエニエール・ハー・ツエー・エフ・ポルシエ・アクチエンゲゼルシヤフト Device for power transmission control to shaft for whole-wheel drive automobile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329343A2 (en) * 1988-02-16 1989-08-23 Fuji Jukogyo Kabushiki Kaisha Power transmission system for a four-wheel drive motor vehicle
US5215161A (en) * 1988-02-16 1993-06-01 Fuji Jukogyo Kabushiki Kaisha Power transmission system for a four-wheel drive motor vehicle
EP1359046A2 (en) * 2002-04-26 2003-11-05 Toyoda Koki Kabushiki Kaisha Drive-force distribution controller and drive-force distribution method for four-wheel-drive vehicle
EP1359046A3 (en) * 2002-04-26 2004-02-04 Toyoda Koki Kabushiki Kaisha Drive-force distribution controller and drive-force distribution method for four-wheel-drive vehicle
US6873896B2 (en) 2002-04-26 2005-03-29 Toyoda Koki Kabushiki Kaisha Drive-force distribution controller and drive-force distribution method for four-wheel-drive vehicle
JP2006528568A (en) * 2003-07-24 2006-12-21 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Control device for a motor vehicle driven at least part-time in four wheels
JP2011031828A (en) * 2009-08-05 2011-02-17 Honda Motor Co Ltd Drive force control device for vehicle
JP2012224305A (en) * 2011-04-22 2012-11-15 Nissan Motor Co Ltd Four-wheel-drive car

Also Published As

Publication number Publication date
JPH066407B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4846298A (en) Driving force distribution control system for 4WD vehicle
US4887689A (en) Driving force distribution control system for 4WD vehicle
US4773500A (en) Driving torque distribution control system for 4WD vehicle
US4890685A (en) Device for controlling driving force distribution in four-wheel drive vehicle
JPS63141831A (en) Driving force distribution controller for four-wheel drive vehicle
US5033329A (en) System for controlling distribution of torque to left and right wheels of a motor vehicle
JPH0424253B2 (en)
JPH0569010B2 (en)
JPS62143720A (en) Driving force distribution control device for 4-wheel drive car
JPS61193931A (en) Driving force distributing controller for four wheel driving vehicle
JPS63203421A (en) Driving force distribution controller for four-wheel-drive vehicle
JPS61157439A (en) Drive power distribution control device in four wheel-drive vehicle
JPH0626938B2 (en) Vehicle drive force distribution control device
JPS61157438A (en) Drive power distribution control device in four wheel-drive vehicle
JP2534723B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPS6261829A (en) Drive power distribution control device for four wheel drive vehicle
JPH07108619B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2502520B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPS61247517A (en) Driving force distribution controller for four-wheel drive vehicle
JPH0825399B2 (en) Vehicle drive system clutch control device
JP2659017B2 (en) Vehicle driving force distribution control device
JP2507468B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH051166B2 (en)
JPS62134339A (en) Device for controlling driving system clutch for vehicle
JP2600716B2 (en) Vehicle driving force distribution control device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term