JPS6267740A - Light converging optical system for recording and reproducing optical system of optical information storage medium - Google Patents

Light converging optical system for recording and reproducing optical system of optical information storage medium

Info

Publication number
JPS6267740A
JPS6267740A JP60208169A JP20816985A JPS6267740A JP S6267740 A JPS6267740 A JP S6267740A JP 60208169 A JP60208169 A JP 60208169A JP 20816985 A JP20816985 A JP 20816985A JP S6267740 A JPS6267740 A JP S6267740A
Authority
JP
Japan
Prior art keywords
lens
optical system
aberration
light source
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60208169A
Other languages
Japanese (ja)
Other versions
JPH07119889B2 (en
Inventor
Norikazu Arai
則一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP60208169A priority Critical patent/JPH07119889B2/en
Publication of JPS6267740A publication Critical patent/JPS6267740A/en
Publication of JPH07119889B2 publication Critical patent/JPH07119889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the image forming magnification by constituting the titled system by the 1st lens being a spherical signal lens having a specific condition and with the 2nd lens being an objective single lens. CONSTITUTION:The light converging optical system is constituted of the 1st lens being a spherical lens the 2nd lens being a single objective lens in order from the light source side, and the 2nd lens itself has the least wave aberration on the axis when the image forming magnification is m0' and the diffraction limit performance is provided. Let's the image forming magnification of the 2nd lens in the optical system comprising the 1st lens and the 2nd lens be m0, the refractive index and arrangement of the 1st lens are selected to satisfy the relation of 0.002<m0-m0'<0.12. Further, a magnification m0' satisfies the relation of -0.1<m0'<0.15 and -0.7<r2<n1f1<-0.4, where r2 is a radius of curvature of the face opposite to the light source of the 1st lens, n1 is a refractive index and f1 is the focus. Thus, the image forming magnification is reduced.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は、光源側の開口数の大きい、構成の簡略な光
情報記録・再生用集光光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial Field of Application) The present invention relates to a condensing optical system for recording and reproducing optical information that has a large numerical aperture on the light source side and has a simple configuration.

(従来技術) 光ディスク等の光情報記録媒体への記録・再生装fll
K用いられる集光光学系で最も一般的なものは、第3図
に示すように、光源4を出た光をコリメータレンズ6で
モ行光にし、対物レンズ2によって情報記録面lに集光
させるようにし友ものである。この光学系では、光ディ
スクの面振れ等による焦点ずれに対して対物レンズ2を
光軸方向に動かすことによってフォーカシングを行なっ
ている。
(Prior art) Recording/reproducing device for optical information recording media such as optical disks
The most common condensing optical system used is as shown in FIG. Let's make friends. In this optical system, focusing is performed by moving the objective lens 2 in the optical axis direction in response to a focal shift caused by surface wobbling of the optical disc or the like.

コンパクトディスク再生光学系における対物レンズの代
表的なものは、焦点距離が4.5 w 。
A typical objective lens in a compact disc playback optical system has a focal length of 4.5 W.

NAが0.45程度で、特開昭55−4068号公報に
代表されるような2群3枚構成のものである。一方、コ
リメータレンズは、焦点距離が1.7w%NAが0.1
4で1詳2枚構成のものが代表的である。これらの合成
系の結像倍率は−0,2647と小さい。
It has a NA of about 0.45 and has a three-element structure in two groups, as typified by Japanese Patent Laid-Open No. 55-4068. On the other hand, the collimator lens has a focal length of 1.7w% and a NA of 0.1.
A typical example is a 4 in 1 detailed 2-sheet configuration. The imaging magnification of these composite systems is as small as -0.2647.

近年、非球面を利用して対物レンズを曝レンズにするこ
とに成功し、広く利用され始めている(光学技術]ンタ
クトVO1,23、隘7  P。
In recent years, we have succeeded in making an objective lens into an aperture lens using an aspherical surface, and it has begun to be widely used (Optical Technology) Contact VO1, 23, 7 P.

465〜)、これによって対物レンズのコストは大幅に
低下したが、さらに一層のコストダウンのためにコリメ
ータヲ曝レンズとすることが要求されてきた。
465~), this has significantly reduced the cost of objective lenses, but in order to further reduce costs, there has been a demand for the collimator to be an exposure lens.

(この発明が解決しようとする間粗点)コリメータレン
ズを上記仕様のまま単レンズとするため、屈折率1.8
6888の硝材で最適設計したものの諸収差図を第4図
に示す0軸上波面収差は0.077λnm5(λ= 7
8 On1ll)とマレシャル許容@程度となり、光学
性能として゛は不十分である。
(The rough point that this invention attempts to solve) Since the collimator lens is made into a single lens with the above specifications, the refractive index is 1.8.
The 0-axis wavefront aberration is 0.077λnm5 (λ=7
8 On1ll), which is acceptable to Marechal, and the optical performance is insufficient.

コリメータの焦点距離を長< LNAを小さくすること
によってコリメータヲ曝レンズとしたものは知られてい
るが、この場合、光源光の利用効率の低下を補償するた
め、大出力の光源が必要となってしまう口 この発明は、尋レンズ対物レンズと球面レンズ1枚とい
う簡略な構成で、結像倍率が小さく、光源側の開口数の
大きい光情報記録・再生用集光光学系を得ようとするも
のである。
It is known that the collimator is made into an exposure lens by making the focal length of the collimator long < LNA small, but in this case, a high output light source is required to compensate for the decrease in the utilization efficiency of the light source light. This invention aims to obtain a condensing optical system for recording and reproducing optical information with a small imaging magnification and a large numerical aperture on the light source side with a simple configuration consisting of a wide-lens objective lens and one spherical lens. It is.

発明の構成 (問題を解決するための手段) この発明の集光光学系は、光源側から、球面頃レンズで
ある第1レンズ、対物屯レンズである第2レンズからな
り、第2レンズ単独では結像倍率が=。のとき軸上波面
収差が最も小さくて回折限界性li′!ft存しており
、第1レンズ、第2レンズの合成光学系における第2レ
ンズの結像倍率をmo  としたときに o、oo2<mo−m、<o、x2 −・・−(1)を
満足するように第1レンズの屈折力と配置とが選択され
る口 また2m0  は −0,1(町<:0.15      ・・・・・・セ
)第1レンズの光源と反対側の面の曲率半匝をr2、屈
折率をnl、焦点距離を11として−0,7(r2/n
、1.(−g、4    ・・・・・・(3)を満足す
ることが望ましい。
Structure of the Invention (Means for Solving the Problem) The condensing optical system of the present invention includes, from the light source side, a first lens that is a spherical lens, and a second lens that is an objective lens. The imaging magnification is =. When , the axial wavefront aberration is the smallest and diffraction limited li'! ft exists, and when the imaging magnification of the second lens in the composite optical system of the first lens and the second lens is mo, o, oo2<mo-m, <o, x2 -...-(1) The refractive power and arrangement of the first lens are selected so as to satisfy -0,7 (r2/n
, 1. (-g, 4...It is desirable to satisfy (3).

(作用) 周知のように光情報媒体の記録・再生光学系用の集光光
学系は回折限界性能を有する必要がある。すなわち、軸
上物点から発する光束に関して球面収差は十分に補正さ
れていなければならない。従来の光学系においては、コ
リメータ、対物レンズのそれぞれが回折限界性能を有し
ていた。
(Function) As is well known, a condensing optical system for a recording/reproducing optical system of an optical information medium needs to have diffraction-limited performance. That is, the spherical aberration of the light beam emitted from the axial object point must be sufficiently corrected. In conventional optical systems, each of the collimator and objective lens has diffraction-limited performance.

これに対してこの発明の光学系においては、第1レンズ
暎独では球面収差はアンダーであり、第2レンズでオー
バーな球面収差を発生させ、光学系全体で球面収差を良
好に補正する必要がある。
On the other hand, in the optical system of the present invention, the spherical aberration is undersized when the first lens is used alone, and excessive spherical aberration is generated in the second lens, so that it is necessary to properly correct the spherical aberration in the entire optical system. be.

このような集光系を考える際の通常の設計法は、第2レ
ンズを非球面レンズとする場合は、第2レンズの非球面
係数を変数として自動設計によるl!k11化を行うこ
とが考えられる。この場合、第2レンズ単独では収差が
発生しているため、拳独の検査は非球面を直接測定する
か、波面収差を測定しその収差成分を調べることが必要
であるため、量童には向かない。
The usual design method when considering such a condensing system is that when the second lens is an aspherical lens, l! is automatically designed using the aspherical coefficient of the second lens as a variable. It is possible to perform k11 conversion. In this case, since the second lens alone has aberrations, it is necessary to directly measure the aspherical surface or measure the wavefront aberration and investigate its aberration components. Not suitable.

現在重版されている非球面対物レンズは平行入射光に関
して回折限界性能を有]7ている(結は倍率富。=0)
。このような対物レンズを発散光もしくは収斂光で使用
する場合の球面収差変化量は、3次の球面収差に関して
も、池の収差(コマ収差、非点収差、ペラパール和、歪
曲収差、瞳の球面収差)の補正状態に依存しており、直
ち忙その量を推定することは出来ない。平行入射光に対
して収差補正された焦点距離4.5fi、NAo、45
の両面非球面拳レンズに関して、結像倍率m0  の変
化と波面収差の変化との関係を第5図に示す口このレン
ズは収斂光に対して球面収差がオーバーになっており、
結像倍率003でマレシャルの許容1m(0,07λ)
のオーバーな球面収差を発生していることがわかる。
The currently reprinted aspheric objective lens has diffraction-limited performance for parallel incident light]7 (result is magnification richness = 0).
. When such an objective lens is used with diverging or converging light, the amount of change in spherical aberration is determined by the amount of change in spherical aberration, including third-order spherical aberration, Ike's aberration (coma aberration, astigmatism, Perapart sum, distortion aberration, and pupil spherical aberration). It depends on the state of correction of aberrations), and it is not possible to immediately estimate the amount of aberrations. Focal length 4.5fi with aberration correction for parallel incident light, NAo, 45
Figure 5 shows the relationship between changes in imaging magnification m0 and changes in wavefront aberration for the double-sided aspherical lens.This lens has excessive spherical aberration for convergent light.
Marechal tolerance 1m (0.07λ) at imaging magnification 003
It can be seen that excessive spherical aberration is generated.

対物第2レンズを収斂光入射で使用するには、第1レン
ズで光源からの光束を収斂光束にする必要がある。発散
光を千行光にするよりも発散光を収斂光にするほうが球
面収差量は大となる。
In order to use the second objective lens for convergent light incidence, it is necessary to convert the light beam from the light source into a convergent light beam using the first lens. The amount of spherical aberration is larger when the diverging light is made into a convergent light than when the diverging light is made into a thousand line lights.

この発明の光学系では第1レンズは結像倍率によってあ
″!、シ収差が変化しないものであることが必要である
。この関係全第6図に示す。
In the optical system of this invention, it is necessary that the first lens has aberrations that do not change depending on the imaging magnification.This relationship is shown in FIG.

横軸に第2レンズの結は倍率m。を、縦軸に波面収差の
自乗平均モ方根WFErmsfとる。moと第2レンズ
の残留波面収差との関係を曲線11に、対応する第1レ
ンズの残留波面収差を曲線12.13とする。曲線12
のように第1レンズの収差が結像倍率によってあまり変
化しない場合、曲@11と12の交点近傍では両レンズ
の収差が互に相殺され全系の波面収差が非常に小さくな
る。一方、曲線13のように第1レンズの収差が結像倍
率によって大きく変化する場合は、曲線11との交点が
生じないか、生じたとしてもその@率が設計@車上非常
に離れている場合は、光学系として成立しなくなる。
The horizontal axis represents the magnification m of the second lens. The root mean square of the wavefront aberration WFErmsf is plotted on the vertical axis. The relationship between mo and the residual wavefront aberration of the second lens is represented by curve 11, and the corresponding residual wavefront aberration of the first lens is represented by curve 12.13. curve 12
When the aberration of the first lens does not change much depending on the imaging magnification as in the case shown in FIG. On the other hand, when the aberration of the first lens changes greatly depending on the imaging magnification as shown in curve 13, the intersection with curve 11 does not occur, or even if it does, its @ ratio is very far away on the design @ vehicle. In this case, the optical system no longer works.

第1レンズに関しても同様に、曲線12.13がどのよ
うな傾きになるかは、定置的には推定できない。そのた
め、具体的にどのような範囲でこの発明の光学系を実現
できるかを検討の結果、第2レンズ獣独で最も軸上波面
収差が小さいときの結像培率m。と、第1レンズおよび
第2レンズからなる光学系における范2レンズの結@@
率m0の間に(1)式を満足する必要があることが明ら
かKなつ友。
Similarly, regarding the first lens, the slope of the curve 12.13 cannot be estimated stationarily. Therefore, as a result of examining the specific range in which the optical system of the present invention can be realized, the imaging magnification m when the axial wavefront aberration is the smallest among the second lenses was determined. and the result of the two lenses in the optical system consisting of the first lens and the second lens.
It is clear that equation (1) must be satisfied between the rate m0.

この条件式の上限をこえると球面収差は良好であるが、
正弦条件が著しくオーバーとなシ、回折限界性能を有す
る像高範囲が小さくなる念め、光学系を高精度で組み立
てなければならなくなる。下限をこえると、@ルンズで
発生する球面収差を補正することが困難となる。
When the upper limit of this conditional expression is exceeded, the spherical aberration is good, but
If the sine condition is significantly exceeded, the optical system must be assembled with high precision in order to prevent the image height range in which diffraction-limited performance is achieved from becoming small. If the lower limit is exceeded, it becomes difficult to correct the spherical aberration that occurs in @luns.

条件(りの上限をこえると第1レンズでの球面収差発生
量が大きくなり、これを無理に第2レンスで補正しよう
とすると条# (1)の上限をこえてしまう結果となる
。第2レンズが回折限界性能を有する限り、mo  に
関して下限はない。
If the upper limit of condition (1) is exceeded, the amount of spherical aberration generated by the first lens increases, and if you try to forcefully correct this with the second lens, the upper limit of item # (1) will be exceeded.Second There is no lower limit on mo as long as the lens has diffraction limited performance.

しかし、条件(2)の下@をこえると第2レンズの設計
、製?rXが困難になる。また、軸外性能を良好にする
には、第2レンズは両面非球面レンズであることが望ま
しい口 また、第1レンズ単独でも球面収差の発生が少ない形状
であることが望ましく、その友め条件(3)を満足する
ものが良い。
However, if @ is exceeded under condition (2), the design and manufacture of the second lens? rX becomes difficult. In addition, in order to improve off-axis performance, it is desirable that the second lens be a double-sided aspherical lens.It is also desirable that the first lens alone has a shape that causes less spherical aberration. The one that satisfies (3) is good.

(実施例) 以下、この発明の実施例ft示す。(Example) Examples of the present invention will be shown below.

表中の記号は、以下のものを示す。The symbols in the table indicate the following.

r;:光源側からat番目のレンズ面の頂点曲率生色 di:光源側から第i番目のレンズ面間隔n、:光源側
から第i番目のレンズ材料の屈折率シミ:光源側から第
i番目のレンズ材料のd線に対するアツベ数 fi:第iレンズの焦点距離 f:第1レンズ、第2レンズの合成系の焦点距離 非球面形状は面の頂点全原点とし、光軸方向をX軸とし
た直交座標系において、頂点曲率生色を01円錐係数を
に1非球面係数をAi、非球面のべき数をPi(Pi)
0) とするときで表わす・ なお、表中にはディスクGに関する直も示しである。
r;: Vertex curvature of the atth lens surface from the light source side Color di: Distance between the i-th lens surfaces from the light source side n,: Refractive index of the i-th lens material from the light source side Spot: i-th lens surface from the light source side Atsbe number fi for the d-line of the th lens material: Focal length of the ith lens f: Focal length of the composite system of the 1st lens and the 2nd lens The aspherical shape has all the vertices of the surface as the origin, and the optical axis direction is the X axis. In the orthogonal coordinate system, the vertex curvature raw color is 01, the conic coefficient is 1, the aspherical coefficient is Ai, and the power of the aspherical surface is Pi (Pi).
0) Expressed as when ・In addition, the table also shows the direction regarding disk G.

実施例1 m。=00246   mo=O f、=15.95       f=6.3306  
   ω 非球面係数・べき数 n1!1 実施例2 m。=0.0138  mo=O f、=19.33      f=5.893r id
 in iv i 非球面係数・べき数 n1!1 実施例3 mo=00】o2  n′i0;。
Example 1 m. =00246 mo=O f,=15.95 f=6.3306
ω Aspheric coefficient/power number n1!1 Example 2 m. =0.0138 mo=Of,=19.33 f=5.893rid
in iv i Aspheric coefficient/power number n1!1 Example 3 mo=00]o2 n'i0;.

f、 =21.63      f=5.695非球面
係数・べき数 一=−0562 n1f。
f, =21.63 f=5.695 Aspherical coefficient/power number 1=-0562 n1f.

実施例4 m、=0.0872   m0=O f1=15.92        f=21.73非球
面係数・べき数 n、、y1 実施例5 mo=00301   m0==Q f、 =14.94        f=3.698非
球面係数・べき数 実施例6 m。=0.0089   rno二〇 f、 =21.4 Of=3.871 ridiniνl 非球面係数・べき数 n、j。
Example 4 m, =0.0872 m0=O f1=15.92 f=21.73 Aspheric coefficient/power number n,,y1 Example 5 mo=00301 m0==Q f, =14.94 f= 3.698 Aspheric coefficient/power number Example 6 m. =0.0089 rno20f, =21.4 Of=3.871 ridiniνl Aspheric coefficient/power number n, j.

発明の効果 実施例工ないし3は第1図示のように第1レンズと第2
レンズの間隔が8.Offである場合の例で、それぞれ
全系の結@倍率mTは−0,2647、−0,2222
、−〇、2である。
Effects of the Invention Embodiments 3 to 3 have a first lens and a second lens as shown in the first figure.
The distance between the lenses is 8. In the example when it is Off, the result @ magnification mT of the whole system is -0,2647 and -0,2222, respectively.
, -〇, 2.

実・施例4は第1レンズと第2レンズの間隔が16mと
実施例1ないし3に比して大きい場合で、mTニー0.
2647である。
In Example 4, the distance between the first lens and the second lens is 16 m, which is larger than in Examples 1 to 3, and the mT knee is 0.
It is 2647.

さらに、実施例5.6は第2図示のように写ルンズと第
2レンズの間隔が0.2tmの場合で、四社それぞれ−
0,2647、−02である。
Further, in Example 5.6, as shown in the second figure, the distance between the photo lens and the second lens is 0.2 tm, and each of the four companies -
0,2647, -02.

実施例1ないし4は、第2レンズft勢独で光軸方向に
移動させてフォーカシングさせる光学系に最適でちゃ、
実施例5.6は第1レンズと第2レンズを1体で鏡胴に
組込み、これ全光軸方向に動かしてフォーカシングさせ
る光学系にF&iである口 これらの各実施例の諸収差図を第7図ないし第12図に
示す。同図中WFErmsは光源波長全λ−780nm
 として波長単位で表わしである。これらの図から明ら
かなように、軸上球面収差は波面収差が0.01λrm
s以下と良好である。
Examples 1 to 4 are ideal for an optical system in which focusing is performed by moving the second lens ft in the optical axis direction.
In Examples 5 and 6, the first lens and the second lens are assembled into a lens barrel as one body, and the optical system is F&I for focusing by moving them in the entire optical axis direction. This is shown in FIGS. 7 to 12. In the same figure, WFErms is the total light source wavelength λ-780nm.
It is expressed in wavelength units as . As is clear from these figures, the axial spherical aberration has a wavefront aberration of 0.01λrm.
s or less, which is good.

また、軸外収差も実施例4が実用上の限界であると考え
られるaは良好である。
In addition, the off-axis aberration of Example 4 is good at a, which is considered to be at the practical limit.

更に、実施例1ないし4の築2レンズを光軸に垂直な方
向に移動させたときの波面収差の変化を第13図に示す
。図中tは対物レンズの移動量を表わす。実施例1ない
し3においては、十〇、31DIないし+0.5mのト
ラッキング全行なっても、波面収差ti0.07λ以下
と回折限界性能が医たれており、対物レンズをディスク
にモ行に駆動することによってトラッキング全行つ光学
系に用いても、トラッキングによる集光性能劣化が非常
に少ないことがわかる。
Furthermore, FIG. 13 shows changes in wavefront aberration when the two-structure lenses of Examples 1 to 4 are moved in a direction perpendicular to the optical axis. In the figure, t represents the amount of movement of the objective lens. In Examples 1 to 3, the wavefront aberration ti is 0.07λ or less and the diffraction limit performance is achieved even when all the tracking is performed from 10, 31 DI to +0.5 m, and the objective lens can be driven in the direction of the disk. It can be seen that even when used in an optical system that performs all tracking, there is very little deterioration in light collection performance due to tracking.

上記の実施例は、すべて乎行光入射を基準に設計した同
一の対物レンズを第2レンズとして用いており、−a類
の第2レンズによって様々な結潅倍率、物潅間距離の光
学系を容易に得ることが出来るので、種々の要求に対し
ても第2レンズを共通化して第1レンズだけを設計すれ
ばよいので、製作が困難な非球面レンズを何種類も作る
必要がないという効果も生じる口対物レンズとしての第
2レンズは、上記実施例のような通常の非球面レンズだ
けでなく、特開昭60−126616号公報記軟のよう
な非球面外側プロフィルを有する透明プラスチック層を
被着したガラス拳レンズ、不均質媒質レンズ、ホロレン
ズや従来用いられている例えば2群3枚構成のもの等を
用いることも出来る。
In all of the above embodiments, the same objective lens designed on the basis of incident light is used as the second lens. can be easily obtained, so even if various requirements are met, the second lens can be made common and only the first lens needs to be designed, so there is no need to make multiple types of aspherical lenses, which are difficult to manufacture. The second lens as the mouth objective lens that also produces the effect is not only an ordinary aspherical lens as in the above embodiment, but also a transparent plastic layer having an aspherical outer profile as described in JP-A-60-126616. It is also possible to use a glass fist lens coated with a glass lens, a heterogeneous medium lens, a hololens, or a conventionally used lens having, for example, a three-element structure in two groups.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の集光光学系の構成を示す断
面図、第3図は従来の集光光学系の構成図、第4図は薬
玉コリメータの諸収差図、第5図は非球面レンズの結像
倍率と軸上波面収差の関係図、第6図はこの発明の集光
光学系の説明図、第7図、第8図、第9図、第10図、
第11図、第12図はそれぞれ実施例1ないし6の諸収
差図、第13図は実施例1ないし4の第2レンズを光軸
と垂直方向に移動させ次ときの波面収差図である。 1:光ディスク(光情報記録媒体) 2:対物レンズ 3:カップリングレンズ 4:光源 5:絞り 6:コリメータレンズ 特許出願人  小西六写真工業株式会社出願人代理人 
弁理士 佐  藤  文  男(ほか1名ン 第1図 第2図 第4図 球面収差       正弦条件      非点収差
第   5   図 肩。 第6図 第   7   図 球面収差       正弦条件      非点収差
第   8   図 球面収差      正弦条件      非点収差W
t9図 球面収差       正弦条件      非点収差
第10図 球面収差       正弦条件      非点収差
第11図 球面収差       正弦条件      非点収差
第12図 球面収差       正弦条件      非点収差
第   13   図
Figures 1 and 2 are cross-sectional views showing the configuration of the condensing optical system of the present invention, Figure 3 is a configuration diagram of a conventional condensing optical system, Figure 4 is a diagram of various aberrations of the ball collimator, and Figure 5 is a diagram showing the relationship between the imaging magnification of an aspherical lens and the axial wavefront aberration, FIG. 6 is an explanatory diagram of the condensing optical system of the present invention, FIGS. 7, 8, 9, 10,
11 and 12 are aberration diagrams of Examples 1 to 6, respectively, and FIG. 13 is a wavefront aberration diagram when the second lens of Examples 1 to 4 is moved in a direction perpendicular to the optical axis. 1: Optical disk (optical information recording medium) 2: Objective lens 3: Coupling lens 4: Light source 5: Aperture 6: Collimator lens Patent applicant Roku Konishi Photo Industry Co., Ltd. Applicant agent
Patent attorney Fumi Sato (and 1 other person) Fig. 1 Fig. 2 Fig. 4 Spherical aberration Sine condition Astigmatism Fig. 5 Shoulder Fig. 6 Fig. 7 Spherical aberration Sine condition Astigmatism Fig. 8 Spherical aberration Sine condition Astigmatism W
t9 diagram Spherical aberration Sine condition Astigmatism Figure 10 Spherical aberration Sine condition Astigmatism Figure 11 Spherical aberration Sine condition Astigmatism Figure 12 Spherical aberration Sine condition Astigmatism Figure 13

Claims (1)

【特許請求の範囲】[Claims] 光源側から、球面単レンズである第1レンズ、対物単レ
ンズである第2レンズからなり、第2レンズ単独では結
像倍率が@m@_0のとき軸上波面収差が最も小さくて
回折限界性能を有しており、第1レンズ、第2レンズの
合成光学系における第2レンズの結像倍率をm_0とし
たときに0.002<m_0−@m@_0<0.12を
満足することを特徴とする光情報記録・再生光学系用集
光光学系
From the light source side, it consists of the first lens, which is a single spherical lens, and the second lens, which is a single objective lens.The second lens alone has the smallest axial wavefront aberration when the imaging magnification is @m@_0, and has diffraction-limited performance. When the imaging magnification of the second lens in the composite optical system of the first lens and the second lens is m_0, it satisfies 0.002<m_0−@m@_0<0.12. Features: Focusing optical system for optical information recording/reproducing optical system
JP60208169A 1985-09-20 1985-09-20 Condensing optical system for recording / reproducing optical system of optical information recording medium Expired - Lifetime JPH07119889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208169A JPH07119889B2 (en) 1985-09-20 1985-09-20 Condensing optical system for recording / reproducing optical system of optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208169A JPH07119889B2 (en) 1985-09-20 1985-09-20 Condensing optical system for recording / reproducing optical system of optical information recording medium

Publications (2)

Publication Number Publication Date
JPS6267740A true JPS6267740A (en) 1987-03-27
JPH07119889B2 JPH07119889B2 (en) 1995-12-20

Family

ID=16551799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208169A Expired - Lifetime JPH07119889B2 (en) 1985-09-20 1985-09-20 Condensing optical system for recording / reproducing optical system of optical information recording medium

Country Status (1)

Country Link
JP (1) JPH07119889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215222A (en) * 1986-03-17 1987-09-21 Canon Inc Condenser lens for optical memory

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545084A (en) * 1978-09-26 1980-03-29 Tokyo Optical Co Ltd High resolution lens
JPS5726815A (en) * 1980-07-25 1982-02-13 Tomioka Kogaku Kk Objective lens for video disk
JPS58219511A (en) * 1982-06-16 1983-12-21 Olympus Optical Co Ltd Lens for optical disc
JPS597917A (en) * 1982-07-06 1984-01-17 Minolta Camera Co Ltd Large-diameter condenser lens
JPS599619A (en) * 1982-07-07 1984-01-19 Minolta Camera Co Ltd Large diameter condenser lens
JPS5948724A (en) * 1982-09-13 1984-03-21 Olympus Optical Co Ltd Lens for optical disk
JPS5949512A (en) * 1982-09-14 1984-03-22 Olympus Optical Co Ltd Lens for optical disc
JPS5949513A (en) * 1982-09-14 1984-03-22 Olympus Optical Co Ltd Lens for optical disc
JPS5987417A (en) * 1982-11-11 1984-05-21 Minolta Camera Co Ltd Large aperture condensing lens for optical disc
JPS59140414A (en) * 1983-01-31 1984-08-11 Asahi Optical Co Ltd Objective lens for optical disk
JPS60153016A (en) * 1984-01-20 1985-08-12 Minolta Camera Co Ltd Objective lens for optical disk
JPS60154223A (en) * 1984-01-23 1985-08-13 Minolta Camera Co Ltd Objective lens for optical disk

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545084A (en) * 1978-09-26 1980-03-29 Tokyo Optical Co Ltd High resolution lens
JPS5726815A (en) * 1980-07-25 1982-02-13 Tomioka Kogaku Kk Objective lens for video disk
JPS58219511A (en) * 1982-06-16 1983-12-21 Olympus Optical Co Ltd Lens for optical disc
JPS597917A (en) * 1982-07-06 1984-01-17 Minolta Camera Co Ltd Large-diameter condenser lens
JPS599619A (en) * 1982-07-07 1984-01-19 Minolta Camera Co Ltd Large diameter condenser lens
JPS5948724A (en) * 1982-09-13 1984-03-21 Olympus Optical Co Ltd Lens for optical disk
JPS5949512A (en) * 1982-09-14 1984-03-22 Olympus Optical Co Ltd Lens for optical disc
JPS5949513A (en) * 1982-09-14 1984-03-22 Olympus Optical Co Ltd Lens for optical disc
JPS5987417A (en) * 1982-11-11 1984-05-21 Minolta Camera Co Ltd Large aperture condensing lens for optical disc
JPS59140414A (en) * 1983-01-31 1984-08-11 Asahi Optical Co Ltd Objective lens for optical disk
JPS60153016A (en) * 1984-01-20 1985-08-12 Minolta Camera Co Ltd Objective lens for optical disk
JPS60154223A (en) * 1984-01-23 1985-08-13 Minolta Camera Co Ltd Objective lens for optical disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215222A (en) * 1986-03-17 1987-09-21 Canon Inc Condenser lens for optical memory

Also Published As

Publication number Publication date
JPH07119889B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
JPH0442650B2 (en)
JPS62269922A (en) Optical system for recording and reproducing optical information medium
JPS62119512A (en) Lens for optical disc
JPS58219511A (en) Lens for optical disc
JPH0428282B2 (en)
JPH03155515A (en) Objective lens system for optical information recording and reproducing device
JPH10104507A (en) Objective lens and recording and reproducing device
JPS6267740A (en) Light converging optical system for recording and reproducing optical system of optical information storage medium
JPH0453285B2 (en)
JP2613761B2 (en) Condensing optical system for optical information recording media
JPH0462564B2 (en)
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPS62116915A (en) Condenser lens for optical memory
JPS6214109A (en) Objective lens for recording/reproducing optical information recording medium
JP2727373B2 (en) Finite system large aperture imaging lens
JPS61177409A (en) Objective lens for recording and reproducing of optical information recording medium
JPS61179409A (en) Objective of optical information reader
JP2511279B2 (en) Optical system for recording / reproducing optical information media
JPS61177405A (en) Objective lens for recording and reproducing of optical information recording medium
JPH0462565B2 (en)
JPH01130115A (en) Lens system for laser beam
JPH0462563B2 (en)
JPS6298317A (en) Condenser lens for optical memory
JPS62194212A (en) Objective for optical information reader
JPS61198115A (en) Objective for recording and reproduction of optical information recording medium