JPS6214109A - Objective lens for recording/reproducing optical information recording medium - Google Patents

Objective lens for recording/reproducing optical information recording medium

Info

Publication number
JPS6214109A
JPS6214109A JP15128885A JP15128885A JPS6214109A JP S6214109 A JPS6214109 A JP S6214109A JP 15128885 A JP15128885 A JP 15128885A JP 15128885 A JP15128885 A JP 15128885A JP S6214109 A JPS6214109 A JP S6214109A
Authority
JP
Japan
Prior art keywords
lens
spherical
objective lens
light source
aspherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15128885A
Other languages
Japanese (ja)
Inventor
Norikazu Arai
則一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP15128885A priority Critical patent/JPS6214109A/en
Publication of JPS6214109A publication Critical patent/JPS6214109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct the spherical aberration of an objective lens by constituting the objective lens by joining a transparent material having aspherical surfaces with the light source side surface of a glass lens having projected spherical surfaces on its both sides and satisfying the objective lens with specific conditions. CONSTITUTION:The objective lens is constituted by joining the transparent material having the aspherical surfaces with the light source side of the glass lens having the projected spherical surfaces on both sides and satisfied with the conditions of (1) -5.0<r3/f<-1.0... and (2) 1.6<n2...; provided that (f) is the composite focal distance of the whole system, r3 is the radius of curvature on the opposite side surface of the spherical glass lens to the light source and n2 is the refractive index of the spherical glass lens and it is preferable that the lens is satisfied with the condition of the shown formulas; provided that NA is an numerical aperture on the image side, DELTA1 is an optical direction difference between the aspherical surface on the most peripheral side of the effective diameter on the surface closest to the optical source side and a reference spherical surface having r1 radius of curvature of a vortex and becomes a positive value when said aspherical surface is displaced to the optical source side in accordance with the separating distance from the optical axis and d2 is the thickness of the spherical lens.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は光デイスク用対物レンズ、特に光源と情報記
録面との距離が比較的小さい場合に用いるに適した単レ
ンズで構成された対物レンズに関する。
[Detailed Description of the Invention] Purpose of the Invention (Field of Industrial Application) The present invention is an objective lens for optical disks, which is composed of a single lens suitable for use in particular when the distance between the light source and the information recording surface is relatively small. This invention relates to an objective lens.

(従来技術) 光ディスク等の情報記録媒体への記録・再生装置に用い
られる光学系で、近年量も一般的なものは第9図に示す
ように、光源4を出た光をコリメータレンズ3で平行光
にし、対物レンズ2によって情報記録面1に集光させる
ものである。この光学系では、光ディスク等の面振れに
対しては対物レンズ2を光軸方向に動かすことによって
フォーカシングを行っている。この方式は、対物レンズ
2を動かしても光学系の性能が不変であるという長所を
持っている反面、対物レンズ2とコリメータレンズ3と
2つのレンズを必要とするため光学系が高価になるとい
う問題がある。
(Prior art) An optical system used in recording/reproducing devices for information recording media such as optical disks, which has become common in recent years, is one that converts light emitted from a light source 4 through a collimator lens 3, as shown in FIG. The parallel light is made into parallel light and focused on the information recording surface 1 by the objective lens 2. In this optical system, focusing is performed by moving the objective lens 2 in the optical axis direction in response to surface wobbling of an optical disc or the like. This method has the advantage that the performance of the optical system remains unchanged even if the objective lens 2 is moved, but on the other hand, the optical system becomes expensive because it requires two lenses: the objective lens 2 and the collimator lens 3. There's a problem.

これに対して、第10図に示すようにコリメータレンズ
を用いずに光源4からの光を対物レンズ2で直接に情報
記録面1に集光する方式も知られてい−る。この方式の
ものはフォーカシングは対物レンズのみの移動で行うが
、移動によって対物しンズの開口数、性能が変化するた
め、あまり結像倍率を大きくすることが出来ず、基準結
像倍率は・−1/40〜−1/8程度であった。
On the other hand, as shown in FIG. 10, a method is also known in which the light from the light source 4 is directly focused onto the information recording surface 1 using the objective lens 2 without using a collimator lens. With this method, focusing is performed by moving only the objective lens, but since the numerical aperture and performance of the objective lens change due to movement, it is not possible to increase the imaging magnification very much, and the standard imaging magnification is - It was about 1/40 to -1/8.

近年、コンパクト・ディスク再生用光学系においては、 (1)光学系のコンパクト化が要求されること。In recent years, in optical systems for compact disc playback, (1) The optical system must be made more compact.

(2)コンパクト・ディスクの品質向上によりフォーカ
シング可能範囲が狭くても実用上問題がなくなってきた
(2) Due to the improvement in the quality of compact discs, there is no longer a practical problem even if the focusable range is narrow.

等の理由により、光学系を見立した結果、第10図に示
す光学系を基準結像倍率−178〜−1/4程度で使用
可能であることが明らかとなってきた。
For these reasons, after examining the optical system, it has become clear that the optical system shown in FIG. 10 can be used at a standard imaging magnification of about -178 to -1/4.

この光学系において、対物レンズ2が2枚構成となると
レンズの組み込み、調整に工数がかかり。
In this optical system, if the objective lens 2 is composed of two lenses, it takes a lot of man-hours to assemble and adjust the lenses.

かえって第9図示の光学系を対物レンズ2、コリメータ
レンズ3のそれぞれを単レンズで構成したものの方が低
コストとなるので、単レンズで構成しなければならない
On the contrary, it would be cheaper to construct the optical system shown in FIG. 9 by constructing each of the objective lens 2 and collimator lens 3 by a single lens, so they must be constructed by a single lens.

光情報記録媒体の記録再生用対物レンズであって単レン
ズ構成のものは種々提案されているが。
Various types of objective lenses for recording and reproducing optical information recording media having a single lens structure have been proposed.

その中では非球面を利用したものが最も多く、両面が非
球面化されたプラスチックレンズおよび球面ガラスレン
ズの上に非球面を有する透明な材料を接合した単レンズ
が実用化されている。  (MICRo 0PTIC3
NEWS Vol 3.No、1.p、20およびp、
15)これらのレンズは、第9図に示す光学系の対物レ
ンズとして開発されたものであるが、同様な製造方法で
第10図に示す光学系の対物レンズを製造することが実
用上有利である。この内1両面を非球面化したプラスチ
ックレンズは安価であるという長所があるが、耐熱温度
が低いこと、複屈折性が大きいこと、温度湿度により性
能が変化すること等の欠点がある。一方、球面ガラスレ
ンズの上に非球面を有する透明な材料を接合した単レン
ズは、製造コス1〜はプラスチック単レンズより高くな
るが、透明材料を適切に選べば上記の欠点は解消される
Among them, the most common ones are those that utilize aspherical surfaces, and plastic lenses with aspherical surfaces on both sides and single lenses in which a transparent material having an aspherical surface is bonded onto a spherical glass lens have been put into practical use. (MICRo 0PTIC3
NEWS Vol 3. No, 1. p, 20 and p,
15) These lenses were developed as objective lenses for the optical system shown in Figure 9, but it is practically advantageous to manufacture the objective lenses for the optical system shown in Figure 10 using a similar manufacturing method. be. Among these, plastic lenses with one surface aspherical have the advantage of being inexpensive, but have drawbacks such as low heat resistance, high birefringence, and performance changes depending on temperature and humidity. On the other hand, a single lens in which a transparent material having an aspherical surface is bonded onto a spherical glass lens has a manufacturing cost of 1~ higher than that of a plastic single lens, but the above-mentioned drawbacks can be overcome if the transparent material is appropriately selected.

特開昭59−12412号公報には球面ガラスレンズの
上に非球面を有する透明な材料を接合した単レンズが記
載されているが、これは、第9図の光学系用のもので、
第10図に示す光学系に用いるためのこの種の対物レン
ズはみあたらない。
JP-A-59-12412 describes a single lens in which a transparent material having an aspherical surface is bonded onto a spherical glass lens, but this is for the optical system shown in Fig. 9.
This type of objective lens for use in the optical system shown in FIG. 10 cannot be found.

(この発明が解決しようとする問題点)この発明は第1
0図に示す光学系に用いるに適した結像倍率の大きい対
物レンズを球面ガラスレンズの上に非球面を有する透明
な材料を接合した単レンズとして実現しようとするもの
である。
(Problems to be solved by this invention) This invention is the first
This objective lens has a large imaging magnification and is suitable for use in the optical system shown in FIG.

発明の構成 (問題点を解決するための手段) この発明においては第1図に示すように、対物レンズは
両凸球面ガラスレンズの光源側面に非球面を有する透明
材料を接合して構成された単レンズで 5、0<ra/ f <−1,0・・・(1)1.6<
n、           ・ ・ ・ (2)の条件
を満足することを特徴とする。
Structure of the Invention (Means for Solving Problems) In this invention, as shown in FIG. 1, the objective lens is constructed by bonding a transparent material having an aspherical surface to the light source side of a biconvex spherical glass lens. Single lens: 5,0<ra/f<-1,0...(1)1.6<
n, ・ ・ ・ It is characterized by satisfying the condition (2).

但し f ;全系の合成焦点距離 r3 4球面ガラスレンズの光源とは反対側の面の曲率
半径 n2 :球面ガラスレンズの屈折率 さらにこのレンズは ()、15<44−”<0. 45−・(3)(NA)
   f 0.6く−も―     ・・・ (4)(n2−1)
f の条件を満足することが望ましい。
However, f: Combined focal length of the entire system r3 Radius of curvature of the surface of the 4-spherical glass lens opposite to the light source n2: Refractive index of the spherical glass lens Furthermore, this lens is (), 15<44-"<0.45-・(3)(NA)
f 0.6 spider... (4) (n2-1)
It is desirable to satisfy the condition f.

但し NA:像側の開口数 Δ、:最も光源側の面の有効径最周辺(上記NAの周辺
光線が入射する光源側の面上の位tiI)における非球
面と頂点曲率半径r、を有する基準球面との光軸方向の
差で、光軸から遠ざかるほど該非球面が光源側へ変位し
ている場合を正とする。
However, NA: image-side numerical aperture Δ;: aspherical surface and apex radius of curvature r at the most peripheral effective diameter of the surface closest to the light source (position tiI on the surface on the light source side where the peripheral rays of the above NA enter) The difference in the optical axis direction from the reference spherical surface is defined as positive if the aspherical surface is displaced toward the light source as the distance from the optical axis increases.

d2 二球面レンズの厚さ く作用) この発明の蛤物レンズにおいては、開口数の大きい発散
光を収斂光に変える必要がある。このとき接〜合面で発
生する球面収差は小さいが、球面ガラスレンズの光源と
は反対側の面では大きな球面収差が発生するので、これ
を可能な限り小さくすることが望まわる。条件(1)は
このためのものである。この発明のレンズにおいては、
光源側の面を非球面化しているので、球面収差補正は原
理的に可能であるが、球面ガラスレンズの光源とは反対
側の面の曲率半径r、が条件(1)の範囲を外れると、
球面収差を補正するには非球面量を大きくする必要が生
ずる。通常の成型によって作られる非球面レンズは金型
が加工できれば非球面量の大小は成型上は問題がない、
しかし、この発明のような接合レンズの場合は、非球面
量が大きいとき、非球面を形成する透明材料の線膨張係
数と球面レンズのガラス材料の線膨張係数が大きく異な
る場合、レンズの使用環境の変化にともない、非球面が
変形し性能が変化するという致命的な欠陥が現れる。従
って非球面を形成する透明材料にはプラスチック材料等
のガラスと膨張率が大幅に異なる材料を使用することが
出来ず、製造上いちじるしく不利となる。
d2 Effect of Thickening of Bispherical Lens) In the shell lens of the present invention, it is necessary to convert diverging light with a large numerical aperture into convergent light. At this time, the spherical aberration generated at the articulating surface is small, but a large spherical aberration occurs at the surface of the spherical glass lens opposite to the light source, so it is desirable to reduce this as much as possible. Condition (1) is for this purpose. In the lens of this invention,
Since the surface on the light source side is aspheric, correction of spherical aberration is possible in principle, but if the radius of curvature r of the surface of the spherical glass lens on the opposite side from the light source falls outside the range of condition (1). ,
In order to correct spherical aberration, it is necessary to increase the amount of aspherical surface. For aspherical lenses made by normal molding, if the mold can be processed, the amount of aspherical surface does not matter when molding.
However, in the case of a cemented lens such as the one of this invention, when the amount of aspherical surface is large, and when the linear expansion coefficient of the transparent material forming the aspherical surface and the linear expansion coefficient of the glass material of the spherical lens are significantly different, the use environment of the lens may be affected. As , the aspheric surface deforms and the performance changes, which is a fatal flaw. Therefore, as the transparent material forming the aspherical surface, it is not possible to use a material such as a plastic material whose expansion coefficient is significantly different from that of glass, which is a significant disadvantage in manufacturing.

条件(2)は正弦条件の補正に関する。下限を越えると
正弦条件の中間輪帯における脹らみが大きくなり、軸外
性能が悪化する。光情報記録媒体の情報記録面に平行に
対物レンズを移動してトラッキングを行う場合、第9図
の光学系では常に軸上光束を使うので原理的に軸外収差
の補正は不要である。しかし、第10図の光学系ではト
ラッキングをすることで光源が対物レンズの光軸から外
れるため軸外性能も補正する必要がある。この条件の範
囲外では、結像倍率が大きいとき、実用上問題が生ずる
Condition (2) relates to correction of the sine condition. If the lower limit is exceeded, the swell in the intermediate annular zone under the sine condition increases, and off-axis performance deteriorates. When tracking is performed by moving the objective lens parallel to the information recording surface of the optical information recording medium, the optical system shown in FIG. 9 always uses an axial light beam, so in principle there is no need to correct off-axis aberrations. However, in the optical system shown in FIG. 10, tracking causes the light source to deviate from the optical axis of the objective lens, so off-axis performance must also be corrected. Outside the range of this condition, practical problems occur when the imaging magnification is large.

条件(3)は条件(1)を前提として球面収差を補正す
るための条件である。収差論から明らかなように、3の
次球面収差は波面収差で考えると。
Condition (3) is a condition for correcting spherical aberration based on condition (1). As is clear from aberration theory, third-order spherical aberration is considered as wavefront aberration.

開口の4乗に比例する。このため非球面量は開口数の4
乗で正規化する必要がある。球面ガラスレンズの屈折率
n2が高い程、球面収差補正のための非球面量は示さく
なる。光源側の軸上物点に関する周縁光線に対する非球
面量を1/(n、−1)’、(NA)’、fで正規化し
た量 ユlピ」ユ3aよ (NA)’  f が正で大きな程球面収差をオーバーにする効果が大とな
る。上限を越えて大となると球面収差がオ・−バーとな
り、下限を越えて小となると球面収差はアンダーとなる
It is proportional to the fourth power of the aperture. Therefore, the aspherical amount is 4 of the numerical aperture.
It is necessary to normalize by multiplying. The higher the refractive index n2 of the spherical glass lens, the greater the amount of asphericity for correcting spherical aberration. The aspheric amount for the peripheral ray regarding the axial object point on the light source side is normalized by 1/(n, -1)', (NA)', f. The larger the value, the greater the effect of overcoming spherical aberration. When the spherical aberration becomes large beyond the upper limit, the spherical aberration becomes over, and when it becomes small beyond the lower limit, the spherical aberration becomes under.

条件(4)は非点収差に関する条件である。前述のよう
に、第10図に示す光学系においては。
Condition (4) is a condition regarding astigmatism. As mentioned above, in the optical system shown in FIG.

軸外収差を補正する必要があるため、球面収差。Spherical aberration because off-axis aberrations need to be corrected.

正弦条件の他に非点収差も良好に補正しておくことが望
ましい。下限を越えると非点収差が大きくアンダーにな
り、正弦条件が良好に補正されていでも軸外の波面収差
が悪化する。
In addition to the sine condition, it is also desirable to properly correct astigmatism. When the lower limit is exceeded, astigmatism becomes significantly undervalued, and even if the sine condition is well corrected, off-axis wavefront aberration worsens.

(実施例) 以下この発明の実施例を示す0表中の記号はriH光源
側から第1番目のレンズ面の頂点曲率半径 di:光源側から第1番目のレンズ面間隔ni:光源側
から第1番目のレンズ材料の屈折率シ1:光源側から第
1番目のレンズ材料のアツベ数 をそれぞれ示す、また、非球面形状は面の頂点を原点と
し、光軸方向をX軸とした直交座標系において頂点曲率
をC1円錐定数をK、非球面係数をA + 、非球面の
べき数をPi (Pi>2.0)としたとき φ;ノy  +z で表される。
(Example) The symbols in Table 0 showing examples of the present invention are as follows: riH Vertex curvature radius di of the first lens surface from the light source side: Distance ni of the first lens surface from the light source side: The first lens surface distance from the light source side Refractive index of the first lens material 1: Indicates the Atsube number of the first lens material from the light source side, and the aspherical shape is a rectangular coordinate with the apex of the surface as the origin and the optical axis direction as the X axis. In the system, when the apex curvature is C1, the conic constant is K, the aspherical coefficient is A + , and the power of the aspherical surface is Pi (Pi>2.0), it is expressed as φ;noy +z.

このとき、非球面量△、は光源側の面における周縁光線
の高さをH工として Δ−XSP−XAS 但し C,=1/r。
At this time, the aspherical amount Δ is Δ−XSP−XAS, where the height of the peripheral ray on the surface on the light source side is H, where C, = 1/r.

なお、表中にはフェースプレートGの値も示しである。In addition, the value of face plate G is also shown in the table.

実1例1 f=I   NA O,453倍率−1/4.51  
    r+      di      ni   
  νi1    1.19335  0.0278 
  1.48595  55.0非球面係数・べき数 第1面 K ニー1.460760+OO A、=−1,665930−01P、=4.0000A
2=−1,22055D−01P、=6.0OOOA、
=−1,24128D−01P、=8.0O00A4=
1.29532D−02P4=lO,0000)1□、
  0.548 実施例2 f=l    NA 0.451    倍、率 −1
153−2,109600,6042 非球面係数・べき数 第1面 K = −1,475920÷00 A□=−1,58541D−01P1=4.0000A
2=−1,39464D−01P2:6.0000A、
、−9,98946D−02P、=8.0000A、=
−2,23087D−03P4=10.0O0011□
=  0.535 実施例3 f=I   NA 0.451   倍率−175i 
     rI       di       nl
     V iI    L15412 0.014
7  1.48595 55.02   0.9778
0 0.8823  1.74411 27.53  
−1.53008 0.6221非球面係数・べき数 第1面 K = −1,562840+OO A、=−2,020880−01Pよ=4.0000A
、=−2,23316D−01P、=6.0OOOA3
.−1.563921)−01P、=8.0000A4
=−3,960880−02P4=10.0OO011
□=  0.530 実施例4 f=I   NA 0.451   倍率−178i 
     ri      di      旧V i
l    1.15032 0.0062  1.48
595 55.02   0.86702 0,900
0  1.74411 27.53  −1.6639
8 0.5583非球面係数・べき数 第1面 K = −1,44436D+OO 八〇=−1,76685D−01Pよ=4.0000A
、= −2,28214D−01P、= 6.0000
A、=−1,934990−01P、=8.0O00A
4=−7,17142D−02P4=10.0O00H
1=  G、5QO 実施例5 f”l   NA O,451倍率−178i    
   rI       di       nt  
    ν11     1.19030  0.00
62   1.57300  30.02    0.
76849  0,9000   1.74411  
27.53    −1.59430  0.5665
非球面係数・べき数 第1面 K =−1,370510+00 Ai=−1,608850−01Pl=4.0000A
、=−2,13539D−01Pよ=6.0000A、
=−1,74260D−01P、=8.0000A4=
−1,77711D−01P4=10.0OOOH,=
  0.500 実施例6 f=I   NA O,451倍率−178i    
  ri       di       ni   
  ヤ11   0.99945 0.0062  1
.48595 55.0j   O,821690,8
2491,6498850,53−1,353290,
5868 非球面係数・べき数 第1面 H,=0.501 」ム二Eノ・配−・ 0.200 (NA)’  f (n、−1)f”  1°269 実施例7 f=I   NA O,452倍率−178非球面係数
・べき数 第1面 A、”  −4,159120−Of    P4”1
0.0000+11=  0.504 1にエピ−虹・ 0.325 (NA)’   f 発明の効果 この発明の対物レンズは、第2図ないし第8図の諸収差
図に示すように、結像倍率が従来のものに比して大きい
にもかかわらず、カバーガラスGを含めて球面収差は殆
ど完全に補正され、しかも正弦条件も良好である。
Actual example 1 f = I NA O, 453 Magnification - 1/4.51
r+ di ni
νi1 1.19335 0.0278
1.48595 55.0 Aspheric coefficient/power number 1st surface K Knee 1.460760+OO A, =-1,665930-01P, =4.0000A
2=-1,22055D-01P,=6.0OOOA,
=-1,24128D-01P, =8.0O00A4=
1.29532D-02P4=lO,0000)1□,
0.548 Example 2 f=l NA 0.451 times, rate -1
153-2, 109600, 6042 Aspheric coefficient/power number 1st surface K = -1,475920÷00 A□=-1,58541D-01P1=4.0000A
2=-1,39464D-01P2:6.0000A,
, -9,98946D-02P, =8.0000A, =
-2,23087D-03P4=10.0O0011□
= 0.535 Example 3 f=I NA 0.451 Magnification -175i
rI di nl
V iI L15412 0.014
7 1.48595 55.02 0.9778
0 0.8823 1.74411 27.53
-1.53008 0.6221 Aspheric coefficient/power number 1st surface K = -1,562840+OO A, =-2,020880-01P = 4.0000A
,=-2,23316D-01P,=6.0OOOA3
.. -1.563921) -01P, =8.0000A4
=-3,960880-02P4=10.0OO011
□=0.530 Example 4 f=INA 0.451 Magnification -178i
ri di old V i
l 1.15032 0.0062 1.48
595 55.02 0.86702 0,900
0 1.74411 27.53 -1.6639
8 0.5583 Aspheric coefficient/power number 1st surface K = -1,44436D+OO 80=-1,76685D-01P=4.0000A
, = -2,28214D-01P, = 6.0000
A, =-1,934990-01P, =8.0O00A
4=-7,17142D-02P4=10.0O00H
1=G, 5QO Example 5 f”l NA O, 451 Magnification -178i
rI dint
ν11 1.19030 0.00
62 1.57300 30.02 0.
76849 0,9000 1.74411
27.53 -1.59430 0.5665
Aspheric coefficient/power number 1st surface K = -1,370510+00 Ai=-1,608850-01Pl=4.0000A
,=-2,13539D-01P=6.0000A,
=-1,74260D-01P, =8.0000A4=
-1,77711D-01P4=10.0OOOH,=
0.500 Example 6 f=I NA O, 451 magnification -178i
ri di ni
Ya11 0.99945 0.0062 1
.. 48595 55.0j O,821690,8
2491,6498850,53-1,353290,
5868 Aspherical coefficient/power number 1st surface H, = 0.501 ``Muni Eno/distribution - 0.200 (NA)' f (n, -1)f'' 1°269 Example 7 f=I NA O,452 Magnification -178 Aspheric coefficient/power number 1st surface A, "-4,159120-Of P4"1
0.0000+11=0.504 1 to epi-rainbow・0.325 (NA)' f Effects of the Invention The objective lens of this invention has an imaging magnification as shown in the various aberration diagrams in FIGS. 2 to 8. is larger than the conventional one, spherical aberration including the cover glass G is almost completely corrected, and the sine condition is also good.

このレンズによって光デイスク用光学系を最も簡単な形
式とすることが可能となり、大幅なが可能になった。 
光デイスク用光学系においては、対物レンズの光源側に
偏光ビームスプリンタ等の光学素子を配−することが多
いが、上記実施例の若干の設計変更によって対応が可能
である。
This lens made it possible to create an optical system for optical discs in the simplest form, making it possible to achieve a significant improvement.
In optical systems for optical discs, an optical element such as a polarizing beam splinter is often arranged on the light source side of the objective lens, but this can be accommodated by making some design changes to the above embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の対物レンズの1実施例の構成を示す
断面図、第2図、第3図、第4図、第5図、第6図、第
7図、第8図はそれぞれ実施例1ないし実施例7の収差
曲線図、第9図は従来のコリメータレンズを用いる光デ
イスク光学系の配置図、第10図はこの発明の対物レン
ズを用いる光学系の配置図。 1:光ディスク(光情報記録媒体) 2:対物レンズ 3:コリメータレンズ 4:光源 特許出願人 小西六写真工業株式会社 出願人代理人 弁理士 佐藤文男 ほか2名 @1図 第2図 球面収差      正弦条件      非点収差第
   3   図 球面収差      正弦条件      非点収差第
4図 球面収差      正弦条件      非点収差纂
5図 球面収差      正弦条件      非点収差第
6図 球面収差      正弦条件      非点収差第
7図 −0,00200,002−0,0200112−0,
00200,002球面収差      正弦条件  
    非点収差筒   8   図
FIG. 1 is a cross-sectional view showing the configuration of one embodiment of the objective lens of the present invention, and FIGS. Aberration curve diagrams of Examples 1 to 7, FIG. 9 is a layout diagram of an optical disk optical system using a conventional collimator lens, and FIG. 10 is a layout diagram of an optical system using an objective lens of the present invention. 1: Optical disk (optical information recording medium) 2: Objective lens 3: Collimator lens 4: Light source Patent applicant Konishi Roku Photo Industry Co., Ltd. Applicant agent Patent attorney Fumio Sato and 2 others @1 Figure 2 Spherical aberration Sine condition Astigmatism Figure 3 Spherical Aberration Sine Condition Astigmatism Figure 4 Spherical Aberration Sine Condition Astigmatism Figure 5 Spherical Aberration Sine Condition Astigmatism Figure 6 Spherical Aberration Sine Condition Astigmatism Figure 7 - 0,00200 ,002-0,0200112-0,
00200,002 Spherical aberration sine condition
Astigmatism tube 8 Figure

Claims (1)

【特許請求の範囲】 両凸球面ガラスレンズの光源側面に非球面を有する透明
材料を接合して構成された単レンズで −5.0<r_3/f<−1.0 1.6<n_2 の条件を満足することを特徴とする光情報記録媒体の記
録再生用対物レンズ 但し f:全系の合成焦点距離 r_5:球面ガラスレンズの光源とは反対側の面の曲率
半径 n_2:球面ガラスレンズの屈折率
[Claims] A single lens constructed by bonding a transparent material having an aspherical surface to the light source side of a biconvex spherical glass lens, with -5.0<r_3/f<-1.0 1.6<n_2. Objective lens for recording and reproducing optical information recording media characterized by satisfying the following conditions: f: composite focal length of the entire system r_5: radius of curvature of the surface of the spherical glass lens opposite to the light source n_2: of the spherical glass lens refractive index
JP15128885A 1985-07-11 1985-07-11 Objective lens for recording/reproducing optical information recording medium Pending JPS6214109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15128885A JPS6214109A (en) 1985-07-11 1985-07-11 Objective lens for recording/reproducing optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15128885A JPS6214109A (en) 1985-07-11 1985-07-11 Objective lens for recording/reproducing optical information recording medium

Publications (1)

Publication Number Publication Date
JPS6214109A true JPS6214109A (en) 1987-01-22

Family

ID=15515405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15128885A Pending JPS6214109A (en) 1985-07-11 1985-07-11 Objective lens for recording/reproducing optical information recording medium

Country Status (1)

Country Link
JP (1) JPS6214109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216513A (en) * 1988-07-05 1990-01-19 Olympus Optical Co Ltd Single-group objective
JP2002107674A (en) * 2000-09-28 2002-04-10 Fuji Photo Optical Co Ltd Collimator lens and optical scanner
WO2004053557A1 (en) * 2002-12-10 2004-06-24 Asahi Glass Company, Limited Objective lens for optical information recording media

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216513A (en) * 1988-07-05 1990-01-19 Olympus Optical Co Ltd Single-group objective
JP2002107674A (en) * 2000-09-28 2002-04-10 Fuji Photo Optical Co Ltd Collimator lens and optical scanner
JP4689805B2 (en) * 2000-09-28 2011-05-25 富士フイルム株式会社 Optical scanning device
WO2004053557A1 (en) * 2002-12-10 2004-06-24 Asahi Glass Company, Limited Objective lens for optical information recording media
JPWO2004053557A1 (en) * 2002-12-10 2006-04-13 旭硝子株式会社 Objective lens for optical information recording media
US7123424B2 (en) 2002-12-10 2006-10-17 Asahi Glass Company, Limited Objective lens for optical information recording medium
CN100454074C (en) * 2002-12-10 2009-01-21 旭硝子株式会社 Objective lens for optical information recording medium
JP4586538B2 (en) * 2002-12-10 2010-11-24 旭硝子株式会社 Objective lens for optical information recording media

Similar Documents

Publication Publication Date Title
JPH0442650B2 (en)
JP2003167187A (en) Objective lens, optical pickup apparatus, and recording and/or reproducing apparatus
JPH0428282B2 (en)
JPS6214109A (en) Objective lens for recording/reproducing optical information recording medium
JPS613110A (en) Objective for recording and reproducing optical information
JP4364328B2 (en) Objective lens for high-density optical recording media
JPS61177408A (en) Objective lens for recording and reproducing of optical information recording medium
JPH0453285B2 (en)
JP2003015031A5 (en)
JPS61259215A (en) Objective lens for optical disc
JP2727373B2 (en) Finite system large aperture imaging lens
JPS61177409A (en) Objective lens for recording and reproducing of optical information recording medium
JPS61177407A (en) Objective lens for recording and reproducing of optical information recording medium
JPH0462565B2 (en)
JPS60149016A (en) Element for recording and reproducing optical information
JPS6267740A (en) Light converging optical system for recording and reproducing optical system of optical information storage medium
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPH01130115A (en) Lens system for laser beam
JPS62116915A (en) Condenser lens for optical memory
JPS62135802A (en) Objective for recording and reproduction of optical information recording medium
JPS61177405A (en) Objective lens for recording and reproducing of optical information recording medium
JP2511279B2 (en) Optical system for recording / reproducing optical information media
JPH0575091B2 (en)
JPH0312618A (en) Objective lens for optical information recording and reproduction
JPS6064318A (en) Objective lens for recording and reproducing light information