JPS599619A - Large diameter condenser lens - Google Patents

Large diameter condenser lens

Info

Publication number
JPS599619A
JPS599619A JP11887382A JP11887382A JPS599619A JP S599619 A JPS599619 A JP S599619A JP 11887382 A JP11887382 A JP 11887382A JP 11887382 A JP11887382 A JP 11887382A JP S599619 A JPS599619 A JP S599619A
Authority
JP
Japan
Prior art keywords
lens
aspherical
diameter
lenses
aspherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11887382A
Other languages
Japanese (ja)
Inventor
Mitsuru Saito
満 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11887382A priority Critical patent/JPS599619A/en
Publication of JPS599619A publication Critical patent/JPS599619A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use

Abstract

PURPOSE:To reduce eccentric error sensitivity even when an aspherical lens is molded out of plastics, by using two positive lenses whose 1st surface only is made aspherical, and specifying the condition of the aspherical surface. CONSTITUTION:The condenser lens 1 for an optical disk consists of the 1st lens 2 and the 2nd lens 3 which are both positive lenses; the 1st surface of the 1st lens 2 on a light source side is an aspherical surface 2a, and the 2nd surface and the 3rd and 4th surfaces of the 2nd lens 3 are spherical surfaces 2b, and 3a and 3b. The 1st and the 2nd lenses 2 and 3 differ in diameter slightly and are fitted fixedly in a lens barrel 4 in the same direction; and the center curvatures, refractive indexes, focal lengths, etc., are determined so that the 1st aspherical surface satisfies a conditional inequality.

Description

【発明の詳細な説明】 この発明は、光の回折限界で決定される程度の点像にな
るように収差が補正された大口径非球面レンズ、特に、
光デイスク用集光レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a large-diameter aspherical lens whose aberrations are corrected to form a point image determined by the diffraction limit of light.
This invention relates to a condensing lens for optical disks.

近年、マイクロオプティックス分野の技術が急速に進歩
しており、上記の集光レンズは、この分野の光学素子と
して広く用いられるに至っている。
In recent years, technology in the field of micro-optics has progressed rapidly, and the above-mentioned condensing lens has come to be widely used as an optical element in this field.

特に、ヒデオディスクやデジタル オーディオディスク
では、レーザーピックアップにこの種の集光レンズが用
いられている。
In particular, this type of condensing lens is used in laser pickups for video discs and digital audio discs.

この光デイスク用集光レンズは、解像力としてOT F
のカットオフ周波数が1,000本/ mm以上である
ことが要求されているため、NAは0.4〜0.5でな
ければならず、軸上及び軸外(±1〜2゜)の収差も回
折限界内(所謂レーレ−リミットでλ/4以内)となる
ように補正がなされていなければならない。
This condensing lens for optical discs has an OT F as a resolution.
Since the cutoff frequency of 1,000 lines/mm or more is required, the NA must be 0.4 to 0.5, and the on-axis and off-axis (±1 to 2°) Aberrations must also be corrected so that they are within the diffraction limit (so-called Leley limit, within λ/4).

従来より、この種の集光レンズとしては、ガラスレンズ
を3枚以上用いたものが使用されているが、その場合に
は、レンズそのもの並びにレンズ鏡胴の工作精度を極め
て高精度なものとしなければならない難点があった。
Traditionally, this type of condensing lens has used three or more glass lenses, but in this case, the lens itself and the lens barrel must be manufactured with extremely high precision. There was an unavoidable difficulty.

かかる難点を解消するため、非球面レンズを用い、レン
ズ枚数を減らした集光レンズか提案されている(特開昭
50−156945号公報、特開昭55−45084号
公報、特開昭57−76512号公報参照)。
In order to solve this problem, a condensing lens using an aspherical lens and reducing the number of lenses has been proposed (Japanese Patent Application Laid-Open Nos. 156945-1984, 45084-1984, 45084-1980, and 57-1982). (See Publication No. 76512).

特開昭50−156945号公報や特開昭57−765
12号公報に開示されている集光レンズでは、両面とも
非球面を使用しているため、レンズ加工上の問題が存在
する。即ち、プラスチックや水和ガラスの非球面の金型
加工の問題として、非球面金型をNC旋削する場合にお
いては、旋盤の送り機構が不可避的に有する“ガタ″゛
によって金型面にうねりが生じ、また研磨による時間制
御加工においても研磨量の″バラツキ”によりサブミク
ロンのうねりが生じる。このようなうねりは、集光レン
ズの光学性能、例えは波面収差4λ/4(λ=0.8μ
の場合、0.2μ以下)に悪影響を与える。因みに、球
面金型の場合には、加工の特性上、かかるうねりの発生
の余地はない。
JP-A-50-156945 and JP-A-57-765
The condensing lens disclosed in Japanese Patent No. 12 uses aspheric surfaces on both surfaces, which poses problems in lens processing. In other words, a problem with machining aspherical molds made of plastic or hydrated glass is that when aspherical molds are subjected to NC turning, the mold surface is undulated due to the unavoidable "backlash" of the feed mechanism of the lathe. Submicron waviness also occurs in time-controlled polishing due to variations in the amount of polishing. Such waviness affects the optical performance of the condensing lens, for example, the wavefront aberration of 4λ/4 (λ=0.8μ
0.2μ or less). Incidentally, in the case of a spherical mold, there is no room for such waviness to occur due to processing characteristics.

従って、非球面を使用する面は可能な限り少ない方がよ
い。特開昭55−45084号公報は非球面を1面のみ
とし、2枚の正レンズにより構成された集光レンズであ
る。しかしながら、特開昭55−45084号公報にお
いて開示されている集光レンズは、NAo、45で倍率
を有限物点に対して1/20として、f二8.4 mm
とい゛つたように焦点距離が長く、前述のデジタル・オ
ーディオディスクに好適な焦点距離f二4〜5朋まで短
かくして小型化を図ると、十分な作動距離(W、Dワー
キンクデイスタンス)が得られないといった難点がある
。さらに、第1面と第2面の平行偏心誤差感度が比較的
大きく、成型時の精度を充分保たなければ性能の安定し
た量産を実現できない。
Therefore, it is better to use as few aspherical surfaces as possible. Japanese Patent Laid-Open No. 55-45084 discloses a condensing lens that has only one aspherical surface and is composed of two positive lenses. However, the condensing lens disclosed in Japanese Patent Application Laid-Open No. 55-45084 has an NAo of 45 and a magnification of 1/20 with respect to a finite object point, and has an f2 of 8.4 mm.
As mentioned above, the focal length is long, and if the focal length is shortened to f24-5, which is suitable for the digital audio disc mentioned above, and the size is reduced, a sufficient working distance (W, D working distance) can be obtained. There are some drawbacks such as not being able to do so. Furthermore, the sensitivity to parallel eccentricity errors between the first and second surfaces is relatively large, and mass production with stable performance cannot be achieved unless sufficient precision is maintained during molding.

この発明は、2枚の正レンズで構成され、非球面の面数
を1面とし、しかも焦点距離を5 am以下としたとき
にも十分な作動距離を確保することができるうえ、非球
面レンズをプラスチック成形によって製造する場合にお
いてもその偏心誤差感度を小さくすることができる大「
1径集光レンズを提供することを目的としている。
This invention is composed of two positive lenses, has one aspherical surface, and can secure a sufficient working distance even when the focal length is 5 am or less. Even when manufacturing by plastic molding, the sensitivity to eccentricity error can be reduced.
The purpose is to provide a single diameter condensing lens.

即ち、本発明の要旨とするところは、2個の正レンズよ
りなり、第1面のみを非球面とし、その非球面が以下の
条件を謂足することを特徴とする大口径集光レンズにあ
る。
That is, the gist of the present invention is to provide a large-diameter condensing lens consisting of two positive lenses, with only the first surface being an aspherical surface, and the aspherical surface satisfying the following conditions. be.

tl)  0.1<(C1+2A1)(n−1)f<0
.6C1非球面の中心曲率 nl   第ルンズのン、=soonmに対する屈折率 f  全系の焦点距離 A□ 非球面の頂点の接平面から入射高Yにおける接平
面までの距離をX としたときの非球面の展開式; におけるYの展開係数。
tl) 0.1<(C1+2A1)(n-1)f<0
.. 6C1 Central curvature of aspherical surface nl Refractive index f for the second run = soon m Focal length of the entire system A Expansion formula of; Expansion coefficient of Y in .

まず2枚の正レンズを用いた大口径集光レンズにおいて
非球面を1面のみ採用する場合、これを第1面に採用し
たことの効果について説明する。
First, when using only one aspherical surface in a large-diameter condensing lens using two positive lenses, the effect of using this as the first surface will be explained.

結論的に言うと、第ルンズにおける第1面と第2面の平
行偏芯誤差感度が小さくなり、設計性能を充分実現でき
るとともに、正弦条件が良好となりコマの補正が改善さ
れる。上記の効果は第1面を非球面として試行錯誤によ
り最適の非球面形状を求めた場合と、第2面を非球面と
してやはり試行錯誤により最適の非球面形状を求めた場
合とを比較することにより明らかになった。すなわち、
平行偏芯誤差感度に関しては前者は後者の場合のほぼ半
分になり、また、正弦条件に関しては、後者の場合で可
能な最良の状態よりもさらに改善を行うことが1j訂者
により可能であることがわかった。
In conclusion, the parallel eccentricity error sensitivity between the first and second surfaces of the first lens is reduced, the design performance can be fully realized, and the sine condition is favorable, resulting in improved coma correction. The above effects can be seen by comparing the case where the first surface is an aspherical surface and the optimal aspherical shape is determined through trial and error, and the case where the second surface is an aspherical surface and the optimal aspherical shape is determined through trial and error. This became clear. That is,
Regarding the parallel eccentricity error sensitivity, the former case is almost half that of the latter case, and regarding the sine condition, it is possible for the 1j corrector to make further improvements over the best possible situation in the latter case. I understand.

次に上記の条件(1)について説明する。条件(1)に
おいて、下限を越えると正弦条件が満足できなくなり、
軸外のコマが大きく発生する。一方、上限を越えると正
弦条件はほぼ満足されるが、非球面を有する第ルンズの
両面の平行偏芯誤差感度が偏芯量±0.01+++iに
対しでコマ2〜3μ程度となり非常に大きくなる。この
ような場合、プラスチック成型あるいはモールドガラス
成型時において±0.005m+l+以下の金型芯合せ
精度が必要で成型が困難であり、仮に成型ができたとし
ても、レンズを鏡胴にセットする際±0.005+nm
以下の精度が要求され、実用上製造が不可能である。
Next, the above condition (1) will be explained. In condition (1), if the lower limit is exceeded, the sine condition cannot be satisfied,
Large off-axis frames occur. On the other hand, when the upper limit is exceeded, the sine condition is almost satisfied, but the parallel eccentricity error sensitivity of both surfaces of the second lun, which has an aspherical surface, becomes extremely large, reaching about 2 to 3 microns for eccentricity ±0.01+++i. . In such cases, mold alignment accuracy of ±0.005 m+l+ or less is required during plastic molding or molded glass molding, making molding difficult. 0.005+nm
The following precision is required, making it practically impossible to manufacture.

さらに本発明の実施番とあたっては、全系の焦点距離を
fとするとき次の条件を満足することが望ましい。
Furthermore, when implementing the present invention, it is desirable that the following conditions be satisfied, where f is the focal length of the entire system.

+2+  0.1<d2/f<0.7 上記の条件(2)において上限を越えると作動距離が少
なくなり、1ピツクアツプとしては実用上使えなくなる
。一方、下限を越えると偏芯誤差感度か大きくなりすき
、量産にあたって性能の安定したレンズ系を提供できな
くなる。
+2+ 0.1<d2/f<0.7 In the above condition (2), if the upper limit is exceeded, the working distance decreases, making it practically unusable as a single pick-up. On the other hand, if the lower limit is exceeded, the eccentricity error sensitivity tends to increase, making it impossible to provide a lens system with stable performance in mass production.

なお、上記の条件(2)については、作動距離の充分な
確保の点で、さらに望ましくはd2/fの範囲を下記の
ように設定するとよい。
Regarding the above condition (2), in order to ensure a sufficient working distance, it is more desirable to set the range of d2/f as shown below.

+2)  0.1 < d2’/f< 0.6また、本
発明の実施にあたって満足することが望ましい条件とし
てはさらに次のものがある。
+2) 0.1 <d2'/f< 0.6 In addition, the following conditions are further desirable to be satisfied in implementing the present invention.

ただし、k3は第3面の曲率半径、n2は第2レンズの
屈折率である。条件(3)の下限を越えると充分な作動
距離がとれなくなり、一方上限を越えると偏芯誤差感度
が大きくなる。
However, k3 is the radius of curvature of the third surface, and n2 is the refractive index of the second lens. If the lower limit of condition (3) is exceeded, a sufficient working distance cannot be obtained, while if the upper limit is exceeded, the eccentricity error sensitivity increases.

以下、本発明にかかる大口径集光レンズの構成を説明す
ると、第1図において、1は夫々正レンズからなる第ル
ンズ2、第2レンズ3とで構成する光ディスク用集光し
ン女である。
The structure of the large-diameter condensing lens according to the present invention will be explained below. In FIG. 1, reference numeral 1 denotes a condensing lens for an optical disc, which is composed of a second lens 2 and a second lens 3, each of which is a positive lens. .

光源側の第ルンズは、第1面としての非球面2aと、第
2面としての球面2bとを有し、第2レンズ3は第3面
、第4面として2つの球面3a。
The first lens on the light source side has an aspherical surface 2a as a first surface and a spherical surface 2b as a second surface, and the second lens 3 has two spherical surfaces 3a as a third surface and a fourth surface.

3bを有する。第1、第2レンズ2,3は口径を若干具
ならせており、鏡胴4内に同一の方向から嵌合固定する
。この場合の嵌合固定要領は、以下の通りとすることが
好ましい。まず、口径の小さい第2レンズ3を光源側か
ら鏡胴4内に挿入し、鏡胴4の光デイスク5側に設けた
小径の嵌合段部6に嵌合し、嵌合段部6の次に設けたリ
ング溝7にリングバネ8を嵌合して、第2レンズ3の第
4面3bを嵌合段部6のレンズ当たり而6aに当接させ
た状態で第2レンズ3を固定する。次いで、第ルンズ2
を光源側から鏡胴4PL91こ嵌合し、鏡胴4の中間部
に設けた大径の向合段部9に嵌合したうえで、リンクバ
ネ10をリンク溝11に嵌合して第ルンズ2を固定する
3b. The first and second lenses 2 and 3 have slightly different apertures, and are fitted and fixed into the lens barrel 4 from the same direction. In this case, the fitting and fixing procedure is preferably as follows. First, the second lens 3 with a small diameter is inserted into the lens barrel 4 from the light source side, and is fitted into the small diameter fitting step 6 provided on the optical disk 5 side of the lens barrel 4. Next, the ring spring 8 is fitted into the ring groove 7 provided, and the second lens 3 is fixed with the fourth surface 3b of the second lens 3 in contact with the lens abutment 6a of the fitting step 6. . Next, Runs 2
is fitted into the lens barrel 4PL91 from the light source side, and fitted into the large-diameter opposing step 9 provided at the middle part of the lens barrel 4, and then the link spring 10 is fitted into the link groove 11 to form the lens barrel 4PL91. Fix 2.

このように、第ルンズ2、第2レンズ3を同一方向から
挿入することができる構造を採用すれば、鏡胴4のレン
ズ当たり面5a、9aと嵌合部6b、gbとの同時加工
か可能となり加工センタを一致させることができる。従
って、光学的にも光軸が一致しやすく、偏芯が生しにく
い。
In this way, by adopting a structure in which the second lens 2 and the second lens 3 can be inserted from the same direction, it is possible to simultaneously process the lens contact surfaces 5a, 9a of the lens barrel 4 and the fitting parts 6b, gb. Therefore, the machining centers can be matched. Therefore, the optical axes are easily aligned optically, and eccentricity is less likely to occur.

また、特に偏芯誤差感度が大きい第2レンズ3の第4面
を嵌合段部6のレンズ当たり面6aに当接させることに
より、第4面の偏芯誤差をほぼ零にできる利点がある。
Furthermore, by bringing the fourth surface of the second lens 3, which is particularly sensitive to eccentricity error, into contact with the lens contact surface 6a of the fitting step 6, there is an advantage that the eccentricity error of the fourth surface can be reduced to almost zero. .

すなわち、このように第2レンズ3を保持すると、仮に
鏡胴4に対する第2レンズ3の組立誤差があって第2レ
ンズ3に傾き偏芯が生ずるとしても第4面は球面又は平
面であるから、第4面そのものに偏芯は生じない。ただ
、この場合第2レンズ全体は偏芯しているので、第3面
は偏芯する。しかしながら、第3面の偏芯誤差感度は小
さいので問題はない。これを逆に、第3面を鏡胴の当た
り面に当接させてレンズ2を保持しようとすると、第3
面の偏芯はなくなるが、今度は第4面が偏芯することに
なり、全体として第2レンズの偏芯による光学性能の劣
化が大きくなる。
In other words, if the second lens 3 is held in this way, even if there is an assembly error of the second lens 3 with respect to the lens barrel 4 and the second lens 3 is tilted or decentered, the fourth surface is a spherical or flat surface. , eccentricity does not occur on the fourth surface itself. However, in this case, since the entire second lens is decentered, the third surface is decentered. However, there is no problem because the eccentricity error sensitivity of the third surface is small. Conversely, if you try to hold lens 2 by bringing the third surface into contact with the contact surface of the lens barrel, the third surface
Although the eccentricity of the surface is eliminated, the fourth surface is now eccentric, and as a whole, the optical performance deteriorates significantly due to the eccentricity of the second lens.

次に、第1面の非球面について説明すると、第1面の頂
点における接平面から、入射高Yにおける接平面までの
距離Xは、 という一般公式で表わされる。ここでεは2次曲面関係
数である。
Next, explaining the aspheric surface of the first surface, the distance X from the tangential plane at the vertex of the first surface to the tangential plane at the incident height Y is expressed by the following general formula. Here, ε is a quadratic surface relation coefficient.

上式のεとAiを適当に選択することにより、球面収差
を補正し、正弦条件を満足し、軸外のコマ収差を少なく
することができる。
By appropriately selecting ε and Ai in the above equation, it is possible to correct spherical aberration, satisfy the sine condition, and reduce off-axis coma aberration.

次に本発明の集光レンズの実施の際における形状の一般
的な決め方について説明する。
Next, a general method of determining the shape when implementing the condensing lens of the present invention will be explained.

(410,7</□#2<2.6 +51 0.8ψくψ3く3ψ ただし、fl、f2はそれぞれ第1、第2レンズの焦点
距離、ψ3は第3面の屈折力、ψは全系の屈折力(−丁
)である。
(410,7</□ #2<2.6 +51 0.8ψ × ψ3 × 3ψ However, fl and f2 are the focal lengths of the first and second lenses, respectively, ψ3 is the refractive power of the third surface, and ψ is the total It is the refractive power (-d) of the system.

まず、条件(4)を満足するよう@ルンズと第2レンズ
の屈折力配分を決める。条件(4)の上限を越えると第
2レンズの屈折力が大きくなりすぎ、正弦条件を満足す
ることができなくなる。一方、下限を越えると非球面を
有する第ルンズの屈折力が大きくなりすぎ、偏芯誤差感
度が大になる。
First, the refractive power distribution of the @luns and the second lens is determined so as to satisfy condition (4). If the upper limit of condition (4) is exceeded, the refractive power of the second lens becomes too large, making it impossible to satisfy the sine condition. On the other hand, if the lower limit is exceeded, the refractive power of the aspherical lens becomes too large, and the sensitivity to eccentricity error increases.

このようにして第ルンズと$2レンズの屈折力配分が決
められるが、前述の条件(1)は第ルンズの屈折力を第
1面と第2面にどのように配分するかを決めるものであ
る。
In this way, the distribution of refractive power between the first lens and the $2 lens is determined, but the above-mentioned condition (1) determines how the refractive power of the first lens is distributed between the first and second surfaces. be.

一方条件(5)は第2レンズの屈折力を第3面と第4面
にどのように配分するかを決める。条件(5)において
下限を越えると作動距離が短かくなり、一方上限を越え
ると偏芯誤差感度が大きくなるとともに球面収差とコマ
の補正のバランスが悪くなる。
On the other hand, condition (5) determines how the refractive power of the second lens is distributed between the third and fourth surfaces. In condition (5), if the lower limit is exceeded, the working distance will be shortened, while if the upper limit is exceeded, the eccentricity error sensitivity will increase and the balance between correction of spherical aberration and coma will deteriorate.

また、前述の条件(3)を満足するよう、第3面の屈折
力との関係で第ルンズと第2レンズの間の空気間隔d2
を決める。空気間隔d2の決定にあたっては、全系の焦
点距離fとの関係で条件(2)をも満足するようにする
In addition, in order to satisfy the above-mentioned condition (3), the air distance d2 between the first lens and the second lens is determined in relation to the refractive power of the third surface.
decide. In determining the air gap d2, the condition (2) is also satisfied in relation to the focal length f of the entire system.

本発明にかかるレンズの具体的な設計例を以下に示し、
収差図を第2図〜第8図に示す。
Specific design examples of the lens according to the present invention are shown below,
Aberration diagrams are shown in FIGS. 2 to 8.

〔実施例1〕 NAo、45.画角1”  、W、D 1.65非球面
係数 ε=I  A1=OA2=−0,15646X1
0−”A3−0.59111X10−’、 A4−−O
A4967刈O−〔実施例2〕 NAo、45.画角1  、W、D2.OR15,80
6 dll、2  n1=1.63 R214,24 非球面係数 ε=I  AI=0.OA2=  0.8
8700X10−”A3−−0.26545刈0−4.
A4ン0.21850刈o6〔実施例3〕 NAo、45  画角1°  W、1.) 2.1非球
面係数 ε=l A□=OA2=−0,19349xl
O−2A3=−0,87682刈0−’、’A4=−0
.80132x105〔実施例4〕 NAo、45  画角1°  W、Dl、64非球面係
数 ε=I AI=0.OA2=−0,23481x1
0A3=−0,93051xlOA4=−0,5678
6X10=〔実施例5〕 NAo、45  画角1°  W、D 、1.98非球
面係数 ε=I  AI=0.0 A2−−0.165
54刈0−2A3−−0.14091×10−4 A4
ニー0.80188刈0−5〔実施例6〕 NA  Q、45  画角1”   W、Dl、52非
球面係数 ε二1  AI=0.OA2−0.1276
5xlO−2A3−−0.49010刈0−’ 、 A
4=−0,33964xlO−5上述実施例の非球面係
数は次の場合でもよい。
[Example 1] NAo, 45. Angle of view 1", W, D 1.65 Aspheric coefficient ε=I A1=OA2=-0,15646X1
0-"A3-0.59111X10-', A4--O
A4967 Kari O- [Example 2] NAo, 45. Angle of view 1, W, D2. OR15,80
6 dll, 2 n1=1.63 R214,24 Aspheric coefficient ε=I AI=0. OA2=0.8
8700X10-”A3--0.26545 mowing 0-4.
A4 0.21850 mowing o6 [Example 3] NAo, 45 Angle of view 1° W, 1. ) 2.1 Aspheric coefficient ε=l A□=OA2=-0,19349xl
O-2A3=-0,87682 mowing 0-','A4=-0
.. 80132x105 [Example 4] NAo, 45 Angle of view 1° W, Dl, 64 Aspheric coefficient ε=I AI=0. OA2=-0,23481x1
0A3=-0,93051xlOA4=-0,5678
6X10=[Example 5] NAo, 45 Angle of view 1° W, D, 1.98 Aspheric coefficient ε=I AI=0.0 A2--0.165
54 mowing 0-2A3--0.14091×10-4 A4
Knee 0.80188 Mowing 0-5 [Example 6] NA Q, 45 Angle of view 1" W, Dl, 52 Aspherical coefficient ε21 AI=0.OA2-0.1276
5xlO-2A3--0.49010 0-', A
4=-0,33964xlO-5 The aspheric coefficient of the above embodiment may be as follows.

(1)ε=OAl”0.OA2=0.22277刈0−
8A3=−0,12806xlO−4,A4=−0,1
3715刈0−5(2)  ε”OA1”’0.0  
A2二0.24371刈0−8A3= 0.23839
X10−4 (3)ε−−I  AI=0.0  A2=0.172
48刈0−2A3 =−0,54611xlO−4 即ち、同一非球面形状の係数の組み合わせは幾通りも可
能である。
(1) ε=OAl”0.OA2=0.22277 mochi0-
8A3=-0,12806xlO-4,A4=-0,1
3715 mowing 0-5 (2) ε"OA1"'0.0
A22 0.24371 cutting 0-8A3 = 0.23839
X10-4 (3) ε--I AI=0.0 A2=0.172
48K0-2A3 = -0,54611xlO-4 That is, many combinations of coefficients of the same aspherical shape are possible.

〔実施例7〕 NAo、45  画角1°  W、D2.2非球面係数
 ε=1゜OA1=O,o A2=−0,2012xl
O−2A3補、14853刈0−5. A4=−0,1
0072刈0−4
[Example 7] NAo, 45 Angle of view 1° W, D2.2 Aspheric coefficient ε=1°OA1=O,o A2=-0,2012xl
O-2A3 supplementary, 14853 mowing 0-5. A4=-0,1
0072 mowing 0-4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる大口径集光レンズの構成を示す
断面説明図、第2図、第3図、第4図、第5図、第6図
、第7図、第8図は夫々本発明の実施例1.2,3,4
,5,6.7のレンズ系の収差図である。 2・・・第ルンズ、2a・・非球面、3・・第2レンズ
、4・・・鏡胴、6a・レンズ当り面。 特 許 出 願 人  ミノルタカメラ株式会社代  
埋  人  弁理士 青 山 葆ほか2名第1図 りO
FIG. 1 is a cross-sectional explanatory diagram showing the configuration of a large-diameter condensing lens according to the present invention, and FIGS. 2, 3, 4, 5, 6, 7, and 8 are respectively Examples 1.2, 3, 4 of the present invention
, 5, 6.7 is an aberration diagram of the lens system. 2...No. 1 lens, 2a...Aspherical surface, 3...Second lens, 4... Lens barrel, 6a...Lens contact surface. Patent applicant: Minolta Camera Co., Ltd.
Buried patent attorney Aoyama Ao and two others 1st plan O

Claims (1)

【特許請求の範囲】 (1)2個の正レンズよりなり、第1面のみを非球面と
し、その非球面が、以下の条件を満足することを特徴と
する大口径集光レンズ; o、i < (C,+2A、)・(n−1)f < 0
.6C□ ・・・非球面の中心曲率 nl  ・・・第ルンズのλ:800nmに対する屈折
率 f ・・・全系の焦点距離 八〇  ・非球面の頂点の接平面から入射高Yにおける
接平面までの距離をXとし たときの非球面の展開式; におけるY の展開係数。 (2、特許請求の範囲第1項記載の大口径集光レンズに
おいて。 両レンズ間の空気間隔d2と全系の焦点距離のfの関係
を以下のように選んだ大口径集光レンズ=0.1 <d
2/f < 0.7 (3)特許請求の範囲第1項又は第2項記載の大口径集
光レンズにおいて、 両レンズ間の空気間隔d2と第3面の曲率半径に3と第
2レンズの屈折率n2の関係を以下のように選んだ大口
径集光・レンズ: (4)特許請求の範囲第1項記載の大口径集光レンズに
おいて、 第2レンズの第4面を鏡胴に当接させたことを特徴とす
る大口径集光レンズ。 (5)特許請求の範囲第2項記載の大口径集光レンズに
おいて、 第1、第2レンズの両方を同一方向より鏡胴に挿入しう
るようにしたことを特徴とする大口径集光レンズ。
[Scope of Claims] (1) A large-diameter condensing lens consisting of two positive lenses, with only the first surface being an aspherical surface, and the aspherical surface satisfying the following conditions; o. i < (C, +2A,)・(n-1)f < 0
.. 6C□ ... Central curvature of the aspherical surface nl ... Refractive index f for λ of the th lens: 800 nm ... Focal length of the entire system 80 - From the tangential plane at the apex of the aspherical surface to the tangential plane at the incident height Y Expansion formula of aspherical surface when the distance of is set to X; Expansion coefficient of Y in . (2. In the large-diameter condensing lens described in claim 1. The relationship between the air distance d2 between both lenses and the focal length f of the entire system is selected as follows for the large-diameter condensing lens = 0 .1 <d
2/f < 0.7 (3) In the large-diameter condensing lens according to claim 1 or 2, the air distance d2 between both lenses and the radius of curvature of the third surface is 3 and the second lens. A large-diameter condensing lens whose refractive index n2 is selected as follows: (4) In the large-diameter condenser lens according to claim 1, the fourth surface of the second lens is attached to the lens barrel. A large-diameter condensing lens that is characterized by being in contact with each other. (5) The large-diameter condenser lens according to claim 2, characterized in that both the first and second lenses can be inserted into the lens barrel from the same direction. .
JP11887382A 1982-07-07 1982-07-07 Large diameter condenser lens Pending JPS599619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887382A JPS599619A (en) 1982-07-07 1982-07-07 Large diameter condenser lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887382A JPS599619A (en) 1982-07-07 1982-07-07 Large diameter condenser lens

Publications (1)

Publication Number Publication Date
JPS599619A true JPS599619A (en) 1984-01-19

Family

ID=14747227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887382A Pending JPS599619A (en) 1982-07-07 1982-07-07 Large diameter condenser lens

Country Status (1)

Country Link
JP (1) JPS599619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247212A (en) * 1984-05-14 1985-12-06 Alps Electric Co Ltd Objective lens for optical pickup
JPS6267740A (en) * 1985-09-20 1987-03-27 Konishiroku Photo Ind Co Ltd Light converging optical system for recording and reproducing optical system of optical information storage medium
US4767202A (en) * 1984-01-20 1988-08-30 Minolta Camera Kabushiki Kaisha Objective lens system for optical recording type disks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767202A (en) * 1984-01-20 1988-08-30 Minolta Camera Kabushiki Kaisha Objective lens system for optical recording type disks
JPS60247212A (en) * 1984-05-14 1985-12-06 Alps Electric Co Ltd Objective lens for optical pickup
JPS6267740A (en) * 1985-09-20 1987-03-27 Konishiroku Photo Ind Co Ltd Light converging optical system for recording and reproducing optical system of optical information storage medium

Similar Documents

Publication Publication Date Title
US7075734B2 (en) Zoom lens system
US4027952A (en) Single optical lens with large aperture and large field
US5424869A (en) Zoom lens
JPH0442650B2 (en)
US4645311A (en) Scanning objective
JP2739651B2 (en) Glass molded aspheric single lens
JPS5923313A (en) Large aperture condenser lens
US4572623A (en) Objective lens for optical disc
KR100506565B1 (en) Objective lens for an optical disk
JPS61275809A (en) Bright wide-angle zoom lens
JPS599619A (en) Large diameter condenser lens
JPS5912412A (en) Large-diameter condenser lens
JP2725198B2 (en) Glass molded aspheric single lens
US5204781A (en) Infinite large-aperture lens system with aspherical surfaces
US5004330A (en) Aspherical glass lens element formed by a low dispersion glass material
JP2727373B2 (en) Finite system large aperture imaging lens
JPS61277913A (en) Image forming lens
JPS597917A (en) Large-diameter condenser lens
US5414560A (en) Single lens
JPS60250321A (en) Large aperture single lens
JP2863185B2 (en) Large aperture aspheric lens
JPS62123419A (en) Focusing lens
JPH07181379A (en) Imaging lens system
JPH0651198A (en) Single plano-convex aspherical cllimator lens
JPS60172010A (en) Refractive index distribution type lens for optical pickup