JPS62108217A - Objective lens for optical disk - Google Patents

Objective lens for optical disk

Info

Publication number
JPS62108217A
JPS62108217A JP24754585A JP24754585A JPS62108217A JP S62108217 A JPS62108217 A JP S62108217A JP 24754585 A JP24754585 A JP 24754585A JP 24754585 A JP24754585 A JP 24754585A JP S62108217 A JPS62108217 A JP S62108217A
Authority
JP
Japan
Prior art keywords
lens
single lens
radius
curvature
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24754585A
Other languages
Japanese (ja)
Inventor
Sachiko Takamura
高村 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP24754585A priority Critical patent/JPS62108217A/en
Priority to US06/926,644 priority patent/US4765723A/en
Publication of JPS62108217A publication Critical patent/JPS62108217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To directly receive the light form a semiconductor laser without requiring a collimator lens by forming a single lens of which the face on a light source side is formed as an aspherical face having positive refracting power and the face on a disk side has positive refracting power in such a manner as to satisfy prescribed conditions. CONSTITUTION:The face on the light source side of this single L is constituted of the aspherical face having positive refracting power and the face on the disk side has the positive refracting power. Said lens is used within the -1/2<beta<1/8 range of projection magnification beta and the lens is so formed as to satisfy the various conditions expressed by formula I - formula III. In formulas, N1: the refractive index of the single lens L, r1: the radius of paraxial curvature of the face on the light source side of the single lens L, f: the focal length of the single lens L, d1: the core thickness of the single lens.

Description

【発明の詳細な説明】 本発明はDAD等ディスクの情報を再生するために用い
るピックアップ光学系の対物レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an objective lens of a pickup optical system used for reproducing information from a disk such as a DAD.

従来、この種のピックアップ光学系には、第3図に示す
ように対物レンズが単レンズで構成されていても、入射
する光束を平行光束にするために、対物レンズ以外にコ
リメータレンズ(C)を必要とした。あるいは、コリメ
ータレンズを必要としない場合は、第4図に示すように
、対物レンズが4枚で構成されていた、第3図において
コリメータレンズは固定状態で使用されるが対物レンズ
は可動状態で使用されるので、2本のレンズ鏡胴が必要
であり、全体の光学系としての光軸の調整が大変である
。ここで対物レンズが単レンズである場合、このレンズ
は通常非球面レンズであるので、偏心に対す・る性能劣
下が著しく大きく光軸の調整にはきびしい精度が必要と
なる。一方、第4図のように対物レンズが複数のレンズ
より構成される場合、性能劣下を避けるために鏡胴のき
びしい精度が必要となる。また、単レンズて比べて、鏡
胴面積も犬きくせねばならず、温度変化による鏡胴のひ
ずみからレンズに偏心がおこり、性能が劣下するという
問題が生じる、 本発明は、これらの問題を軽減するために、コリメータ
レンズを必要とせず、半導体レーザからの光を直接うけ
とり、ディスクに集光させる単レンズを具体的に提供す
ることを目的とする。
Conventionally, this type of pickup optical system has a collimator lens (C) in addition to the objective lens in order to convert the incident light beam into a parallel light beam, even if the objective lens is composed of a single lens as shown in Fig. 3. required. Alternatively, if a collimator lens is not required, the objective lens is composed of four lenses, as shown in Figure 4. In Figure 3, the collimator lens is used in a fixed state, but the objective lens is in a movable state. Since this type of optical system is used, two lens barrels are required, and it is difficult to adjust the optical axis of the entire optical system. If the objective lens is a single lens, this lens is usually an aspherical lens, so the performance deteriorates significantly with respect to eccentricity, and the adjustment of the optical axis requires strict precision. On the other hand, when the objective lens is composed of a plurality of lenses as shown in FIG. 4, strict accuracy of the lens barrel is required to avoid performance deterioration. In addition, compared to a single lens, the area of the lens barrel must be larger, and the distortion of the lens barrel due to temperature changes causes eccentricity of the lens, resulting in a decrease in performance.The present invention solves these problems. In order to reduce this, the present invention specifically aims to provide a single lens that directly receives light from a semiconductor laser and focuses it on a disk without requiring a collimator lens.

以下、本発明について、さらに詳細に詳明する。The present invention will be explained in more detail below.

本発明に係る対物レンズは、コリメータレンズを使用し
ないので投影倍率βが一山′〈β〈−の範′28 凹円で収差が良好に補正されている。倍率が一丁を越え
て大きくなると、光源からディスクまでの距離を十分に
短くすることができず、光学系のコンパクト化を達成で
きない。また倍率がm−を越えて小さくなると、ビーム
スプリッタ等の光学系を支配する余地がとれず、また対
物レンズが傾いてとりつけられた場合に収差を良好に補
正する為に必要な像高範囲が十分得られない。従って、
本発明に係る対物レンズは、−H<β<−−Hの範囲内
で用いられる。
Since the objective lens according to the present invention does not use a collimator lens, aberrations are well corrected by a concave circle in which the projection magnification β is one peak'<β<<-. If the magnification increases beyond one lens, the distance from the light source to the disk cannot be sufficiently shortened, and the optical system cannot be made more compact. Furthermore, if the magnification becomes smaller than m-, there will not be enough room to control the optical system such as a beam splitter, and if the objective lens is mounted at an angle, the image height range necessary to properly correct aberrations will be reduced. I can't get enough. Therefore,
The objective lens according to the present invention is used within the range of -H<β<--H.

ここで、β−0の状態で収差補正された従来の対物レン
ズを、そのまま、コリメータレンズを必要としないピッ
クアップ光学系の対物レンズとして、倍率−7くβ<−
−Hの範囲内で用いると、開口数NAが減少するので1
μmの分解能を得ることができない。つまりβ−〇のと
きの開口数をNAωとし、βくOのときの開口数をNA
βとするとN A p −N Aoo/ (1−β)、
が成立するが、NAω−0,45の対物レンズをβ=−
7で用いると、NAβ−0,36となり、その結果β−
−7では1μmの分解能を得ることができない。
Here, we use a conventional objective lens with aberrations corrected in the β-0 state as it is as an objective lens for a pickup optical system that does not require a collimator lens, with a magnification of -7 and β<-
If used within the range of −H, the numerical aperture NA decreases, so 1
It is not possible to obtain μm resolution. In other words, the numerical aperture when β−〇 is NAω, and the numerical aperture when β×O is NAω.
If β is N A p -N Aoo/ (1-β),
holds true, but if the objective lens with NAω-0,45 is set to β=-
7 gives NAβ-0.36, resulting in β-
-7, it is not possible to obtain a resolution of 1 μm.

そこで、有限物点に対するNAβを大きくするために、
レンズの口径を拡大すると、軸上において球面収差が軸
外においてコマ収差が著しく発生し、これらの収差補正
が困難である。
Therefore, in order to increase NAβ for finite object points,
When the aperture of the lens is enlarged, spherical aberration significantly occurs on the axis, and comatic aberration occurs significantly off-axis, making it difficult to correct these aberrations.

そこで、本発明に関わる対物レンズは、半導体レーザか
らの光を直接単レンズでうけとるために光源側の開口数
で決ま、る値以上の倍率を有し、その際必然的に発生す
る軸外における著しい非収差及びコマ収差を補正するた
めに、以下のような構成を有する。つまりこの対物レン
ズは、光源側の面が正の屈折力を有する非球面によって
構成され、ディスク側の面が正の屈折力を有する単レン
ズで、投影倍率βが一一≦β<−7の範囲内で用いられ
、以下の条件を満足することを特徴とする光ディスク用
対物レンズである。
Therefore, the objective lens according to the present invention has a magnification equal to or higher than the value determined by the numerical aperture on the light source side in order to directly receive light from a semiconductor laser with a single lens, and has In order to correct significant aberrations and comatic aberrations, the following configuration is used. In other words, this objective lens is composed of an aspherical surface whose surface on the light source side has positive refractive power, and a single lens whose surface on the disk side has positive refractive power, and the projection magnification β is 11≦β<−7. This is an objective lens for an optical disc, which is used within the scope of the present invention and is characterized by satisfying the following conditions.

(130,9≦(Nl−1) rl/f、り3.9<2
)  1.4≦dt rl/72<4.0(3)  1
.4≦d12/f2(Nl −1)≦4.0但し、ここ
で f :単レンズの焦点距離 d1=単レンズの芯厚 である。
(130,9≦(Nl-1) rl/f, ri3.9<2
) 1.4≦dt rl/72<4.0(3) 1
.. 4≦d12/f2 (Nl −1)≦4.0, where f: focal length of a single lens d1=core thickness of a single lens.

ここで、条件(1)から条件(3)は収差をよく補正す
るための条件である。
Here, conditions (1) to (3) are conditions for well correcting aberrations.

条件(1)の下限を超えて、光源側の面の曲率半径が小
さくなるとコマ収差の補正が困難になる。、また条件(
1)の下限を超えて、単レンズの屈折率が少さくなると
、所定の値の焦点距離を確保するためには、光源側の面
の曲率半径あるいはディスク側の面の曲率半径の絶対値
を少さくせねばならないが、そのどちらを行ってもコマ
収差の補正が困難となる。このように、光源側の面の曲
率半径あるいは単レンズの屈折率のいずれかが条件(1
)の下限を越えて小なくなると、コマ収差の補正が困難
になる。一方、本発明のようなレンズでは、光源側の面
の曲率半径が大きくなると瞳の周辺で著しいコマフレア
ーが発生する。これは高屈折率ガラスを使うことによっ
て補正することができるが、光源側の面の曲率半径と屈
折率の組み合わせが条件(υの上限を越えるような値に
なると非点収差が発生して軸外性能を良好に保つことが
できなくなる、条件(2)の下限を越えて芯厚が小さく
なるかあるいは光源側の面の曲率半径が少さくなると、
所定の焦点距離を保つためにディスク側の面の曲率半径
の絶対値を大きくせねばならないが、その結果非点収差
の補正が困難になる、一方条件(2)の上限を越えて、
芯厚が大きくなるかあるいは光源側の面の曲率半径が大
きくなると、所定の焦点距離を保つためにディスク側の
面の曲率半径の絶対値を小さくせねばならないが、その
結果非球面効果を持ってしてもコマ収差の補正が困難に
なる。
If the radius of curvature of the surface on the light source side becomes smaller than the lower limit of condition (1), it becomes difficult to correct comatic aberration. , and also the condition (
1) If the refractive index of the single lens decreases beyond the lower limit, in order to secure a prescribed value of focal length, the absolute value of the radius of curvature of the surface on the light source side or the radius of curvature of the surface on the disk side must be increased. It is necessary to reduce the aberration, but either of these methods makes it difficult to correct coma aberration. In this way, either the radius of curvature of the surface on the light source side or the refractive index of the single lens is the condition (1
), it becomes difficult to correct coma aberration. On the other hand, in the lens of the present invention, when the radius of curvature of the surface on the light source side becomes large, significant coma flare occurs around the pupil. This can be corrected by using high refractive index glass, but under the condition that the combination of the radius of curvature and the refractive index of the surface on the light source side (if the value exceeds the upper limit of υ, astigmatism will occur and the axial If the core thickness becomes smaller beyond the lower limit of condition (2), or the radius of curvature of the light source side surface becomes smaller, it becomes impossible to maintain good external performance.
In order to maintain a predetermined focal length, it is necessary to increase the absolute value of the radius of curvature of the disk side surface, but as a result, it becomes difficult to correct astigmatism, and on the other hand, if the upper limit of condition (2) is exceeded,
As the core thickness increases or the radius of curvature of the surface on the light source side increases, the absolute value of the radius of curvature of the surface on the disk side must be reduced in order to maintain a predetermined focal length, but this results in an aspherical effect. However, it becomes difficult to correct coma aberration.

条件(3)の下限を超えて芯厚が小さくなるかあるいは
屈折率が大きくなると、光源側あるいはディスク側の面
の曲率半径の絶対値を大きくせねばならない。ここで、
ディスク側の面の曲率半径の絶対値を大きくすると非点
収差の補正が困難になる、また光源側の面の曲率半径を
大きくするとコマフレアーが発生し、非球面効果を利用
してもコマ収差の補正が困難になる。一方条件(3)の
上限を越えて芯厚が大きくなるかあるいは屈折率が小さ
くなると、どち、らかの面の曲率半径の絶対値を小さく
せねばならず、この結果コマ収差が発生して非球面効果
をもってしても補正することができなら。
If the core thickness decreases or the refractive index increases beyond the lower limit of condition (3), the absolute value of the radius of curvature of the surface on the light source side or the disk side must be increased. here,
If you increase the absolute value of the radius of curvature of the surface on the disk side, it becomes difficult to correct astigmatism, and if you increase the radius of curvature of the surface on the light source side, coma flare occurs, and even if you use the aspherical effect, coma aberration correction becomes difficult. On the other hand, if the core thickness increases beyond the upper limit of condition (3) or the refractive index decreases, the absolute value of the radius of curvature of the round surface must be decreased, and as a result, coma aberration occurs. If it can be corrected even with aspherical effects.

なお、コマ収差を良好に補正するためには、次の条件を
満足することが望ましい。
Note that in order to satisfactorily correct coma aberration, it is desirable to satisfy the following conditions.

(4)  O<f(N12−Nt −1)/l r21
<1.2但し、ここで f :単レンズの焦点距離 r2:単レンズのディスク側の面の曲率半径N1:単レ
ンズの屈折率 である。
(4) O<f(N12-Nt-1)/l r21
<1.2, where f: focal length of the single lens r2: radius of curvature N1 of the disk-side surface of the single lens: refractive index of the single lens.

条件(4)の下限を越えて屈折率が小さくなると、光源
側あるいはディスク側の面の曲率半径の絶対値を小さく
せねばならず、この結果コマ収差を補正することができ
ない、さらにディスク側の面が非球面の場合、この面の
曲率半径の絶対値が小さくなることにより、近軸曲率半
径の絶対値が小さくなるため、非球面の頂点における接
平面からの変位量が非常に増大して、金型の製作や成形
の過程で必要な精度をだすことが困難になるという難し
さもある。一方条件(夷の上限を越えてディスク側の面
の曲率半径の絶対値が小さくなる。と、コマ収差の補正
が困難になる。
When the refractive index becomes smaller than the lower limit of condition (4), the absolute value of the radius of curvature of the surface on the light source side or the disk side must be reduced, and as a result, coma cannot be corrected, and furthermore, the radius of curvature of the surface on the light source side or the disk side must be reduced. If the surface is aspheric, the absolute value of the radius of curvature of this surface becomes smaller, and the absolute value of the paraxial radius of curvature becomes smaller, so the amount of displacement from the tangent plane at the apex of the aspheric surface increases significantly. Another problem is that it becomes difficult to achieve the necessary precision in the mold manufacturing and molding process. On the other hand, under the condition (the absolute value of the radius of curvature of the disk-side surface becomes smaller than the upper limit), it becomes difficult to correct comatic aberration.

さらに、ディスク側の面を球面として光源側の面のみ非
球面とする場合、コマ収差をよりよく補正するために、
より屈折率の高いガラスを使うことが望ましい。このた
め次の条件を満足することが望ましい。
Furthermore, when the disk side surface is spherical and only the light source side surface is aspherical, in order to better correct coma aberration,
It is desirable to use glass with a higher refractive index. Therefore, it is desirable to satisfy the following conditions.

(5)  1.4<(Nt−1)rt/f≦3.9(6
)  1.6≦dsrt/f2<4、O但し、ここで f :単レンズの焦点距離 である。
(5) 1.4<(Nt-1)rt/f≦3.9(6
) 1.6≦dsrt/f2<4, O where f: focal length of a single lens.

以上の条件を満足することにより、半導体レーザからの
光を直接うけとり軸外まで収差が良好に補正された単レ
ンズが得られる。この単レンズは、両面が非球面あるい
は非球面と球面との組み合わせで構成され、各々の面の
光軸が合致すれば単レンズの外径精度はゆるくてすみ、
芯取りの必要度は軽減され孟。また、鏡胴の精度面での
要求度も低く、その単レンズを保持する鏡胴に平行、傾
き、偏心に対する調整機構を設ければ、単レンズがもつ
性能を保持することが可能である。この結果、低コスト
化を達成することができる。なお、この単レンズの非球
面は、球面ガラス上に非球面形状の樹脂層を形成するこ
とによっても達成されうる、以下、本発明の実施例を示
す。
By satisfying the above conditions, it is possible to obtain a single lens which directly receives light from the semiconductor laser and whose aberrations are well corrected even off-axis. This single lens is composed of aspheric surfaces on both sides or a combination of an aspheric surface and a spherical surface, and as long as the optical axes of each surface match, the precision of the outer diameter of the single lens can be relaxed.
The need for core removal is reduced. Further, the requirements for precision of the lens barrel are low, and if the lens barrel that holds the single lens is provided with an adjustment mechanism for parallelism, inclination, and eccentricity, it is possible to maintain the performance of the single lens. As a result, cost reduction can be achieved. Note that the aspherical surface of this single lens can also be achieved by forming an aspherical resin layer on a spherical glass. Examples of the present invention will be shown below.

実施例中、rgl 、 1g2は半導体レーザのカバー
ガラス(g)の曲率半径、rl 、 r2は単レンズ(
L)の光源側から数えた面の曲率半径、rpl 、 r
p2はディスク(P)の曲率半径である。dgx 、 
dgz 。
In the examples, rgl and 1g2 are the radius of curvature of the cover glass (g) of the semiconductor laser, rl and r2 are the single lens (
radius of curvature of the surface counted from the light source side of L), rpl, r
p2 is the radius of curvature of the disk (P). dgx,
dgz.

(do) 、 dl、 d2. dpは光源側から順に
数えた軸上面間隔を示し、Ng e (No) ? N
1 * NPはそれぞれ波長800nmにおけるカバー
ガラス(g) 、 (樹脂層(a) ) 、単レンズ(
L)、ディスク(p)の屈折率である。*は、非球面を
示しその形状は下式にて定義される。
(do), dl, d2. dp indicates the axial surface spacing counted in order from the light source side, and Nge (No)? N
1*NP is a cover glass (g), (resin layer (a)), and a single lens (respectively) at a wavelength of 800 nm.
L) is the refractive index of the disk (p). * indicates an aspherical surface, and its shape is defined by the following formula.

但し、Xは光軸との交点において光軸に垂直な平面から
の光軸方向の距離、Sは光軸に垂直方向の距離、COは
該交点における近軸曲率(−1/r)、εは2次曲面半
径、Ciは非球面係数である。なお、NAは開口数、f
は単レンズ(L)の焦点距離、βは投影倍率である。
However, X is the distance in the optical axis direction from the plane perpendicular to the optical axis at the intersection with the optical axis, S is the distance in the direction perpendicular to the optical axis, CO is the paraxial curvature (-1/r) at the intersection, ε is the quadratic surface radius, and Ci is the aspheric coefficient. Note that NA is numerical aperture, f
is the focal length of the single lens (L), and β is the projection magnification.

(以下余白) 〔実施例1〕  第1図 NA−0,47f−1,0β=−0,17曲率半径  
   軸上面間隔   屈折率非球面係数 r12ε;10 CI=O,OC2=−0,62371X10−1Ca=
−0,35855xlO−’C4=−0.34573X
10−’  Cs−−0,10152XIO−2r2“
ε=1,0 Cミニ0.OC2−0,94476X10−1C3−0
,31391C4==−0,34388xlO−’  
C5=0.26302XLO−’(N1−1 ) r 
1/f−1,40d1r1/f2=1.73 ch2/f2cN1−1)−1,68 f(N12−NZ−1)lr21−0.36〔実施例2
〕  第2図 NA−0,47f−1,0β−−0,17曲率半径  
  軸上面間隔    屈折率非球面係数 ra  ε=1.0 C1−Q、OC2−0,20762C3−0,1317
3C4−−0,64485xlO−’   Cs−0,
36803X10−2(Nl−1)rl/、?”=1.
89 dlrl、#2=2.36 d12/f”(N1−1)−1,77 f(Nl2−Nt−t)/l rzl−o、、73〔実
施例3〕  第1図 NA−0,471−1,0β−−0,17曲率半径  
   軸上面間隔    屈折率非球面係数 r 14F  C!1.0 Ct=Q、Q  C2=−0,96:367X10−’
   Ca=−0,48541刈0−IC4=−0,5
7170xlO−’   C5=−Q、34961X1
0−”(N1−1 ) r 1/f−1,89dtrt
/f2−2.36 ch2/f2cN1−1 )−1,77f (N12−
N1−1 )/ I rl l =0.73〔実施例4
〕  第1図 NA−0,471=1.Oβ−−0,17曲率半径  
  軸上面間隔     屈折率非球面係数 r12  ε=1.0 C1−0,0C2=−0,51488X10−1C3−
0,26625xlO−1C4=−0,11890X1
0−’   C5−0,69239X10−3(Nl−
1) r 1/f−2,43 dIrl/f2−2.97 d12/f2(N1−1 )=2.08f(N12−N
l−1)/l rz l −0,79〔実施例5〕  
 第1図 NA−Q、47  f−1,0β−−0,22曲率半径
    軸上面間隔      屈折率非球面係数 rl  ε=1.0 C1−0,0,C2−0,71690X10−1Ca譚
−〇、29855刈0−IC4−−0,50256xl
O””   C5=−0,16435刈o−2r2  
ε−1,0 CI −Q、OC2−0,13636C3=−0,32
847C4=0.57220X10””   C5−0
,36914X10−’(Nt −1) 11/f−1
,31 dirt/f2=1.66 d12/f2(Nl−1)−1,68 f(Nl2−Nx−1)/巨・月−〇、39〔実施例6
〕   第2図 NA、Q。47  f−1,0β−−0,22曲率半径
   軸上面間隔      屈折率非球面係数 ra” ε=1.0 CI=0.0  C2=−0,14089C3=−0,
57431X10−”C4−−0,56260刈0−”
   C3=−0,18309刈O−2r2”  ε=
1.0 CI=O,OC2=0.14537      C3=
−0,31199C4=0.95588x10−3Cs
=0.40854X10−’(N1−1)rx/f=1
.25 d lr 1 /f 2= 1.62 d12/f2(Nt−1)=1.68 t (N12−N11 )/巨i’l−o、3s〔実施
例7〕   第1図 NA=0.47  f−1,0β−−0,38曲率半径
    軸上面間隔    屈折率rp2     ■ 非球面係数 r12 ε=1.0 Ct=0.□  C2−−0,10852Ca−−〇、
16503xlO−”C4−−0,58946xlO−
”   Cs−−0,35616X10−2r2” ε
鱈1.0 CI−0,OC2=0.15569      C3=
−0,18428C4−0,19846X10−’  
 C5=0.56733xlO−3(Nl−1) rl
/f−1,20 dirl/72−t63 d12/f2(Nt−1)−1,75 f (N12−Nt−1)/I r21−0.44〔実
施例8〕   第1図 NA、−Q、47  f−1,0β−−0,45曲率半
径   軸上面間隔     屈折率dp   O,2
67NP   1.57147rp2   00 非球面係数 r 11)  ε自1゜O CI−0,0C2−−0,13844C3−−0,12
271X10−’C4=−0.83257X10−1C
5−0,58614X10−”r2” ε−1,0 C1−Q、OC2−0,15549C3−0,1705
1C4−0,49442XlO−I   C5−0,1
6965X10−”(Nl−1) rl/7=1.17 dtrt;/72=1.65 d12/f2(Nt−1)=1.79 f(N12−Nt−1)/1r21−0.45〔実施例
9〕   第1図 NA=0,49  f−1β−−0,17曲率半径  
 軸上面間隔      屈折率非球面係数 rl“ ξ、1.0 C1−Q、OC2=”0.871129刈0−1Ca=
−0,316098xlQ−’C4−−0.57106
5xlO−’  Cs−−0,349594XIO−2
(N1−1 ) rt/7−1.83 dtrl/f2−2.14 ds /f (Nt−1)−1,55 f (N12−Nl−1)/l r21=0.66[実
施例10 ]   第1図 NA−0,47f ” 1  β−−0,17曲率半径
   軸上面間隔     屈折率非球面係数 r12 ε〒1.O Cs −0,0C2−−0,906604X10−” 
 Ca鴎−0,633411X10−”C4−0,14
9674x10−1Cs−0,177734X10−3
(Nl−1) rl/f−1,51 dlrl/72−1.82 dx2/f2cNt−1)−1,54 f(Nl2−Nt−1)/I r21−0.53〔実施
例11 )   第1図 NA=0.47  f−1,0β−−0,22曲率半径
   軸上面間隔     屈折率非球面係数 rl  ε=l、0 Ct−Q、OC2=−0,702213X10−’  
C3−0,397707X10−1C4−0,2565
11xlO−”  C5−Q、810222X10−2
r2  ε電1.O CI −Q、OC2=0.571793     C3
−−1,278405C4=0.286478x10−
2Cs=0.974928X10−’(Nl−1) r
t/f−1,49 dlrl/72g2.68 ch2/f2(Nl−1)=3.43 f (N12−Nt−1)/ I r2 I =0.9
(Left below) [Example 1] Figure 1 NA-0,47f-1,0β=-0,17 radius of curvature
On-axis spacing Refractive index aspheric coefficient r12ε; 10 CI=O, OC2=-0, 62371X10-1Ca=
-0,35855xlO-'C4=-0.34573X
10-'Cs--0,10152XIO-2r2"
ε=1,0 C mini 0. OC2-0, 94476X10-1C3-0
,31391C4==-0,34388xlO-'
C5=0.26302XLO-'(N1-1) r
1/f-1,40d1r1/f2=1.73 ch2/f2cN1-1)-1,68 f(N12-NZ-1)lr21-0.36 [Example 2
] Figure 2 NA-0,47f-1,0β--0,17 radius of curvature
On-axis spacing Refractive index aspheric coefficient ra ε=1.0 C1-Q, OC2-0, 20762C3-0, 1317
3C4--0,64485xlO-' Cs-0,
36803X10-2(Nl-1)rl/,? ”=1.
89 dlrl, #2=2.36 d12/f''(N1-1)-1,77 f(Nl2-Nt-t)/l rzl-o, 73 [Example 3] Figure 1 NA-0, 471-1,0β--0,17 radius of curvature
On-axis spacing Refractive index aspheric coefficient r 14F C! 1.0 Ct=Q, Q C2=-0,96:367X10-'
Ca=-0,48541Kari0-IC4=-0,5
7170xlO-' C5=-Q, 34961X1
0-”(N1-1) r 1/f-1,89dtrt
/f2-2.36 ch2/f2cN1-1 )-1,77f (N12-
N1-1)/Irl=0.73 [Example 4
] Figure 1 NA-0,471=1. Oβ--0,17 radius of curvature
On-axis spacing Refractive index aspheric coefficient r12 ε=1.0 C1-0,0C2=-0,51488X10-1C3-
0,26625xlO-1C4=-0,11890x1
0-' C5-0,69239X10-3(Nl-
1) r 1/f-2,43 dIrl/f2-2.97 d12/f2(N1-1)=2.08f(N12-N
l-1)/l rz l -0,79 [Example 5]
Fig. 1 NA-Q, 47 f-1,0β--0,22 radius of curvature axial surface spacing refractive index aspherical coefficient rl ε=1.0 C1-0,0,C2-0,71690X10-1Catan-〇 ,29855Kari0-IC4--0,50256xl
O"" C5=-0,16435 mowing o-2r2
ε-1,0 CI-Q, OC2-0,13636C3=-0,32
847C4=0.57220X10””C5-0
,36914X10-'(Nt-1) 11/f-1
, 31 dirt/f2=1.66 d12/f2(Nl-1)-1,68 f(Nl2-Nx-1)/giant moon-〇, 39 [Example 6
] Figure 2 NA, Q. 47 f-1,0β--0,22 radius of curvature axis spacing refractive index aspherical coefficient ra" ε=1.0 CI=0.0 C2=-0, 14089C3=-0,
57431X10-”C4--0,56260 mowing 0-”
C3=-0, 18309 mowing O-2r2” ε=
1.0 CI=O, OC2=0.14537 C3=
-0,31199C4=0.95588x10-3Cs
=0.40854X10-'(N1-1)rx/f=1
.. 25 dlr1/f2=1.62 d12/f2(Nt-1)=1.68 t(N12-N11)/Giant i'l-o, 3s [Example 7] FIG. 1 NA=0. 47 f-1,0β--0,38 Radius of curvature Axial spacing Refractive index rp2 ■ Aspheric coefficient r12 ε=1.0 Ct=0. □ C2--0, 10852Ca--〇,
16503xlO-”C4--0,58946xlO-
"Cs--0,35616X10-2r2" ε
Cod 1.0 CI-0, OC2=0.15569 C3=
-0,18428C4-0,19846X10-'
C5=0.56733xlO-3(Nl-1) rl
/f-1,20 dirl/72-t63 d12/f2(Nt-1)-1,75 f (N12-Nt-1)/I r21-0.44 [Example 8] Figure 1 NA, -Q , 47 f-1,0β--0,45 radius of curvature axial distance refractive index dp O,2
67NP 1.57147rp2 00 Aspheric coefficient r 11) ε Self 1°O CI-0,0C2--0,13844C3--0,12
271X10-'C4=-0.83257X10-1C
5-0,58614X10-”r2”ε-1,0 C1-Q,OC2-0,15549C3-0,1705
1C4-0,49442XlO-I C5-0,1
6965 Example 9] Figure 1 NA=0,49 f-1β--0,17 radius of curvature
On-axis spacing Refractive index aspherical coefficient rl" ξ, 1.0 C1-Q, OC2="0.871129Kari0-1Ca=
-0,316098xlQ-'C4--0.57106
5xlO-' Cs--0,349594XIO-2
(N1-1) rt/7-1.83 dtrl/f2-2.14 ds/f (Nt-1)-1,55 f (N12-Nl-1)/l r21=0.66 [Example 10 ] Fig. 1 NA-0,47f ” 1 β--0,17 radius of curvature Axial surface spacing Refractive index aspheric coefficient r12 ε〒1.O Cs -0,0C2--0,906604X10-"
Ca gu-0,633411X10-”C4-0,14
9674x10-1Cs-0, 177734X10-3
(Nl-1) rl/f-1,51 dlrl/72-1.82 dx2/f2cNt-1)-1,54 f(Nl2-Nt-1)/I r21-0.53 [Example 11] Figure 1 NA=0.47 f-1,0β--0,22 Radius of curvature Axial spacing Refractive index aspheric coefficient rl ε=l, 0 Ct-Q, OC2=-0,702213X10-'
C3-0,397707X10-1C4-0,2565
11xlO-” C5-Q, 810222X10-2
r2 ε electric 1. OCI-Q, OC2=0.571793 C3
--1,278405C4=0.286478x10-
2Cs=0.974928X10-'(Nl-1) r
t/f-1,49 dlrl/72g2.68 ch2/f2(Nl-1)=3.43 f(N12-Nt-1)/I r2 I =0.9
1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1,3.4.5,7.8,9.10.1
1のレンズ構成図、第2図は実施例21,6のレンズ構
成図、第3図、第4図は従来のレンズ構成図である。第
5図乃至第15図は各々実施例1乃至実施例11の収差
図を示す、 出願人  ミノルタカメラ株式会社 第工 図 第2図 L          r 第14−図 第75図 歪曲;≦ 歪曲%
Figure 1 shows Examples 1, 3.4.5, 7.8, 9.10.1
1, FIG. 2 is a lens configuration diagram of Examples 21 and 6, and FIGS. 3 and 4 are conventional lens configuration diagrams. 5 to 15 show aberration diagrams of Examples 1 to 11, respectively. Applicant: Minolta Camera Co., Ltd. Figure 2 L r Figures 14 to 75 Distortion; ≦ Distortion %

Claims (1)

【特許請求の範囲】 1、光源側の面が正の屈折力を有する非球面によって構
成され、ディスク側の面が正の屈折力を有する単レンズ
であって、投影倍率βが−(1/2)<β<1/8の範
囲内で用いられ、以下の条件を満足することを特徴とす
る光ディスク用対物レンズ: 0.9≦(N_1−1)r1/f≦3.9 1.4≦d1r1/f^2≦4.0 1.4≦d_1^2/f^2(N_1−1)≦4.0但
し、ここで、 N_1:単レンズの屈折率、 r1:単レンズの光源側の面の近軸曲率半径、f:単レ
ンズの焦点距離、 d1:単レンズの芯厚。 2、単レンズのディスク側の面が非球面形状を有するこ
とを特徴とする特許請求の範囲第1項記載の光ディスク
用対物レンズ。
[Claims] 1. A single lens whose surface on the light source side is composed of an aspherical surface having positive refractive power and whose surface on the disk side has positive refractive power, and whose projection magnification β is -(1/ 2) An objective lens for optical discs that is used within the range of <β<1/8 and satisfies the following conditions: 0.9≦(N_1-1) r1/f≦3.9 1.4 ≦d1r1/f^2≦4.0 1.4≦d_1^2/f^2 (N_1-1)≦4.0, where, N_1: refractive index of single lens, r1: light source side of single lens paraxial radius of curvature of the surface, f: focal length of the single lens, d1: core thickness of the single lens. 2. The objective lens for an optical disk according to claim 1, wherein the disk-side surface of the single lens has an aspherical shape.
JP24754585A 1985-11-05 1985-11-05 Objective lens for optical disk Pending JPS62108217A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24754585A JPS62108217A (en) 1985-11-05 1985-11-05 Objective lens for optical disk
US06/926,644 US4765723A (en) 1985-11-05 1986-11-03 Objective lens system for optical reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24754585A JPS62108217A (en) 1985-11-05 1985-11-05 Objective lens for optical disk

Publications (1)

Publication Number Publication Date
JPS62108217A true JPS62108217A (en) 1987-05-19

Family

ID=17165086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24754585A Pending JPS62108217A (en) 1985-11-05 1985-11-05 Objective lens for optical disk

Country Status (1)

Country Link
JP (1) JPS62108217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215222A (en) * 1986-03-17 1987-09-21 Canon Inc Condenser lens for optical memory
JPS6425113A (en) * 1987-07-21 1989-01-27 Mark Kk Finite system large aperture single lens
JPH02223906A (en) * 1989-02-24 1990-09-06 Hoya Corp Finite system large-diameter aspherical lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215222A (en) * 1986-03-17 1987-09-21 Canon Inc Condenser lens for optical memory
JPS6425113A (en) * 1987-07-21 1989-01-27 Mark Kk Finite system large aperture single lens
JPH02223906A (en) * 1989-02-24 1990-09-06 Hoya Corp Finite system large-diameter aspherical lens

Similar Documents

Publication Publication Date Title
WO2023143239A1 (en) Optical lens
JPS5926714A (en) Lens for optical disc
WO2023143235A1 (en) Optical lens
JPH0442650B2 (en)
JPS6053294B2 (en) 4-group fθ lens system
US4765723A (en) Objective lens system for optical reading device
JPH045168B2 (en)
US4647159A (en) Gradient index type single lens
US4755039A (en) Focusing lens
US4957355A (en) Retrofocus type lens system
US4762403A (en) Imaging optical system having a distributed index lens
KR100506565B1 (en) Objective lens for an optical disk
JPS62108217A (en) Objective lens for optical disk
JPS61275809A (en) Bright wide-angle zoom lens
JPS61163308A (en) Refractive index distributed single lens
US4974947A (en) Refractive index distribution type meniscus lens and optics
JPS5912412A (en) Large-diameter condenser lens
JPH0772386A (en) Objective lens for optical disk
JPS6259912A (en) Large-diameter single lens
JPS5814109A (en) Collimator lens system
JPS61277913A (en) Image forming lens
JPH02101416A (en) Objective lens for optical memory
USRE33227E (en) Gradient index type single lens
CN218332133U (en) Fixed focus lens
JPS62242908A (en) Objective lens for optical disk