JPS626745B2 - - Google Patents

Info

Publication number
JPS626745B2
JPS626745B2 JP58199562A JP19956283A JPS626745B2 JP S626745 B2 JPS626745 B2 JP S626745B2 JP 58199562 A JP58199562 A JP 58199562A JP 19956283 A JP19956283 A JP 19956283A JP S626745 B2 JPS626745 B2 JP S626745B2
Authority
JP
Japan
Prior art keywords
powder
aluminum
rare earth
weight
pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58199562A
Other languages
Japanese (ja)
Other versions
JPS6092464A (en
Inventor
Yukio Yamamoto
Masafumi Kiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP19956283A priority Critical patent/JPS6092464A/en
Publication of JPS6092464A publication Critical patent/JPS6092464A/en
Publication of JPS626745B2 publication Critical patent/JPS626745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/52Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/48Aluminising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、金属物品表面に対するアルミニウム
拡散処理方法に関し、更に詳細には金属物品の表
面に形成されるアルミニウム拡散被膜の耐酸化
性、耐腐食性などを更に向上させるための表面処
理方法に関する。 〔従来技術〕 金属物品の表面にアルミニウムを拡散浸透させ
てその耐酸化性、耐腐食性などを付与する方法は
よく知られている。この方法の一つとして知られ
ているアルミパツク法は、アルミニウム粉末、ア
ルミナ、ハロゲン化活性剤(たとえばNH4Cl)か
ら成るパツク剤中に金属物品埋設して非酸化性雰
囲気中で加熱することにより、金属物品表面にア
ルミニウム拡散被膜を形成するものである。この
アルミパツク処理被膜の耐酸化性、耐腐食性を更
に向上させるためにパツク剤に希土類元素を添加
する方法も知られている。たとえば特開昭56−
87661号公報には、上記アルミニウム粉末の一部
を希土類元素と他の金属(たとえばアルミニウ
ム)との合金粉末または希土類金属のハロゲン化
物粉末に置換してパツク処理を行い、希土類元素
を被処理金属物品表面に拡散浸透させる方法が開
示されている。しかしながら希土類元素は微量添
加した場合には非常に効果があるが、それゆえに
次のような問題点がある。 (イ) 微量添加であるため希土類元素をパツク剤中
に均一に分散させることが極めて難しい。この
ため希土類元素が均一に分散した拡散処理層が
得られない。一方、希土類元素の添加量を多く
すれば、希土類元素の偏在が緩和され、その分
布をほぼ均一にすることができる。しかし、ア
ルミパツク処理は所定のパツク層厚みを得るた
めに長い処理時間が必要である。このためアル
ミニウム拡散層中の希土類元素の量も増加し、
希土類元素がアルミニウム、ニツケルなどと低
融点の化合物をつくり、その結果、被膜が剥離
しやすくなり、母材の耐酸化性が低下してしま
う。 (ロ) 希土類元素をパツク剤中に均一に分散させる
にはできるだけ細かい粒度のもの、たとえば
200メツシユより細かいものを使用することが
望ましい。しかし、希土類元素またはその合金
を、このような粒度まで細粒化することは極め
て難しい。 〔発明の目的〕 したがつて本発明の目的は、耐酸化性、耐腐食
性、耐久性にすぐれたアルミニウム拡散被膜を与
えることができるアルミニウム拡散処理方法を提
供することである。 〔発明の構成〕 本発明者は、アルミパツク処理粉末すなわちパ
ツク剤中のアルミニウム粉末のすべてを、アルミ
ニウムと希土類元素の合金粉末に代えることによ
り本発明の上記目的が達成されることを見出し本
発明を完成するに至つた。 すなわち本発明は、拡散金属粉末とハロゲン化
活性剤と不活性担体粉末とから成る混合粉末中に
金属物品を埋設して非酸化性雰囲気中で加熱する
パツク処理法において、上記混合粉末が、70重量
%以上のアルミニウムと30重量%以下の希土類元
素との合金粉末からなる拡散金属粉末5〜50重量
%と、ハロゲン化活性剤1〜5重量%と、残部不
活性担体粉末とからなり、希土類元素の含有量が
混合粉末の全重量に対して0.01〜5重量%である
ことを特徴とするアルミニウム拡散処理方法であ
る。 以下、本発明を詳細に説明する。 本発明に使用する拡散金属粉末はアルミニウム
と希土類元素との合金粉末であり、アルミニウム
と希土類元素の金属をそれぞれの融点以上の温度
で混合したものを冷却凝固させ、細粉化すること
により得られる。この合金は、固溶体、共融混合
物、または金属間化合物のいずれの形態であつて
もよい。この合金中のアルミニウム含有量は70重
量%以上、希土類元素の含有量は30重量%以下で
ある。希土類元素としてはスカンジウム(Sc)、
イツトリウム(Y)、ランタン(La)、セリウム
(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プ
ロメチウム(Pm)、サマリウム(Sm)、ユーロピ
ウム(Eu)、ガドリニウム(Gd)、テルビウム
(Tb)、ジスプロシウム(Dy)、ホルミウム
(Ho)、エルビウム(Er)、ツリウム(Tm)、イ
ツテルビウム(Yb)、ルテチウム(Lu)およびこ
れらの2種以上の混合物を使用することができ
る。またミツシユメタル(Mm)(La22〜38%、
Ce48〜56%、その他Nd、Pr、Yおよび少量の
Fe、Alを含む、希土類元素95重量%以上の混合
物)も本発明の希土類元素として使用することが
できる。 本発明に使用するハロゲン化活性剤は、パツク
剤中のアルミニウムが被処理金属表面に拡散浸透
するのを促進するものであり、具体的には
NH4ClNH4F、NaCl、MaFなどのハロゲン化物が
使用される。また、不活性担体粉末は、溶融した
合金粉末粒子が相互に接触しないように働くもの
であり、たとえばアルミナが使用される。 本発明はパツク剤の拡散金属粉末としてアルミ
ニウムと希土類元素との合金粉末のみを使用する
ことを特徴としている。このパツク剤を用いてア
ルミパツク処理を行うにはたとえば次のようにす
ればよい。 まずパツク剤中に被処理金属物品を埋設し、非
酸化性雰囲気、たとえばH2またはAr雰囲気中、
700〜900℃で0.5〜2.5時間パツク処理を行う。次
に被処理物をパツク剤の中から取り出し、N2
H2またはArのような非酸化性雰囲気中、800〜
1100℃で1.0〜5.0時間拡散処理を行えばよい。 〔発明の効果〕 本発明によれば、パツク剤中のすべてのアルミ
ニウム粉末と希土類元素とがあらかじめ合金化さ
れているため、パツク剤中に希土類元素が均一に
分散され、偏在することがない。このためパツク
処理後、処理層中に微量の希土類元素が均一に分
散され、従来法、すなわち希土類元素をそのまま
使用したり、あるいはパツク剤中のアルミニウム
粉末の一部と合金化して使用するような場合とく
らべて、耐酸化性、耐腐食性が高いアルミニウム
拡散被膜が得られる。また、すべてのアルミニウ
ムと希土類元素とが合金化されているので、パツ
ク剤の混合調製も容易に行うことができる。 〔実施例〕 次に実施例により本発明を更に詳細に説明す
る。 実施例 1 次の組成を有するNi Resist鋳鉄から25mm×40
mm×5mmの試料を作成した。 C 2.0(重量%) Si 2.2 Mn 1.0 Ni 20.0 Cr 2.2 P 0.03 Fe 残 この試料を次の組成を有するパツク剤中に埋設
し、H2雰囲気中、750℃で1.5時間パツク処理を行
い、次にパツク剤の中から取り出し、N2雰囲気
中、950℃で3.5時間拡散処理を行つた。 パツク剤の組成 アルミナ粉(100〜200メツシユ) 680(重量%) アルミニウムとミツシユメタルとの合金粉(100
〜200メツシユ) 30 ハロゲン活性剤NH4Cl 2 ミツシユメタル(Mm)の添加量はパツク剤の
全重量に対して0.25、0.50、1.0、2.0および5.0重
量%とした。アルミニウム拡散被膜の厚みは0.25
〜1.0%のとき130μ、2%のとき100μ、5%の
とき80μであつた。また比較例として、Mmを合
金化することなくそのまま、パツク剤の全重量に
対して0.50、1.0、2.0および5.0重量%添加したも
のを用いて同様の処理を行つた(パツク剤:アル
ミナ粉(100〜200メツシユ)68重量%、アルミニ
ウム粉(100〜200メツシユ)とMm粉(100〜200
メツシユ)とを合わせて30重量%、NH4Cl 2重
量%)。アルミニウム拡散被膜の厚みは0.5〜1.0
%のとき130μ、2.0%のとき100μ、5%のとき
80μであつた。 このようにして得られた各試料について、次の
ように耐酸化性試験を行つた。 1000℃に保つた大気炉中に上記試料を45分間保
持し、次に試料を炉から取り出して空気中で15分
間自然冷却する。これを1サイクル(60分)とし
て、計40サイクル繰り返した後、試験前後の重量
変化および試験後の表面性状により、被膜の耐酸
化性を評価した。 Mmの添加量を変化させたときの、重量変化を
第1図に示す。従来法(比較例)よりも本発明方
法によるものの耐酸化性がすぐれていることがよ
くわかる。これは、従来法では処理層中に希土類
元素が偏在し、処理層の性状が均一でないため、
耐酸化性の弱い部分が早期に酸化され、それが進
行するためであると考えられる。 またMm添加量が1.0%のときの、加熱冷却サ
イクルの回数と重量変化の関係を第2図に示す。
第2図から、本発明方法により処理された試料は
従来法のものにくらべて重量減がほとんどなく、
耐酸化性にすぐれていることがわかる。 実施例 2 次の組成を有するNi基超合金から実施例1と
同じ寸法の試料を作成した。
[Industrial Application Field] The present invention relates to an aluminum diffusion treatment method for the surface of a metal article, and more specifically, a method for further improving the oxidation resistance, corrosion resistance, etc. of an aluminum diffusion coating formed on the surface of a metal article. The present invention relates to a surface treatment method. [Prior Art] A method of diffusing aluminum into the surface of a metal article to impart oxidation resistance, corrosion resistance, etc. to the surface of the metal article is well known. The aluminum pack method, which is known as one of these methods, involves embedding metal objects in a pack consisting of aluminum powder, alumina, and a halogenated activator (for example, NH 4 Cl) and heating them in a non-oxidizing atmosphere. , which forms an aluminum diffusion coating on the surface of a metal article. In order to further improve the oxidation resistance and corrosion resistance of this aluminum pack treated film, a method of adding rare earth elements to the pack agent is also known. For example, JP-A-56-
Publication No. 87661 discloses that a part of the above-mentioned aluminum powder is replaced with an alloy powder of a rare earth element and another metal (for example, aluminum) or a rare earth metal halide powder, and pack treatment is performed, and the rare earth element is added to the metal article to be treated. A method of diffusing into a surface is disclosed. However, although rare earth elements are very effective when added in small amounts, they pose the following problems. (a) It is extremely difficult to uniformly disperse rare earth elements in a pack agent because they are added in trace amounts. For this reason, a diffusion treated layer in which rare earth elements are uniformly dispersed cannot be obtained. On the other hand, by increasing the amount of rare earth elements added, the uneven distribution of the rare earth elements can be alleviated and the distribution can be made almost uniform. However, aluminum pack processing requires a long processing time to obtain a predetermined pack layer thickness. Therefore, the amount of rare earth elements in the aluminum diffusion layer also increases,
Rare earth elements form low-melting compounds with aluminum, nickel, etc., and as a result, the coating tends to peel off and the oxidation resistance of the base material decreases. (b) In order to uniformly disperse the rare earth elements in the pack agent, particles with as fine a particle size as possible, e.g.
It is preferable to use something finer than 200 mesh. However, it is extremely difficult to refine the grains of rare earth elements or their alloys to such a grain size. [Object of the Invention] Therefore, an object of the present invention is to provide an aluminum diffusion treatment method capable of providing an aluminum diffusion coating having excellent oxidation resistance, corrosion resistance, and durability. [Structure of the Invention] The present inventor discovered that the above object of the present invention can be achieved by replacing all of the aluminum powder in the aluminum pack treatment powder, that is, the aluminum powder in the pack agent, with an alloy powder of aluminum and a rare earth element. It was completed. That is, the present invention provides a pack treatment method in which a metal article is embedded in a mixed powder consisting of a diffused metal powder, a halogenated activator, and an inert carrier powder and heated in a non-oxidizing atmosphere. It consists of 5 to 50% by weight of a diffused metal powder consisting of an alloy powder of at least 30% by weight of aluminum and 30% by weight or less of a rare earth element, 1 to 5% by weight of a halogenated activator, and the balance being an inert carrier powder. This is an aluminum diffusion treatment method characterized in that the content of the element is 0.01 to 5% by weight based on the total weight of the mixed powder. The present invention will be explained in detail below. The diffused metal powder used in the present invention is an alloy powder of aluminum and rare earth elements, and is obtained by cooling and solidifying a mixture of aluminum and rare earth metals at a temperature above their respective melting points, and then pulverizing the mixture. . The alloy may be in the form of a solid solution, eutectic, or intermetallic compound. The aluminum content in this alloy is 70% by weight or more, and the rare earth element content is 30% by weight or less. Rare earth elements include scandium (Sc),
Yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), Dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and mixtures of two or more thereof can be used. Also Mitsushi Metal (Mm) (La22~38%,
Ce48~56%, other Nd, Pr, Y and small amounts
A mixture containing 95% or more of rare earth elements (including Fe and Al) can also be used as the rare earth element of the present invention. The halogenation activator used in the present invention is one that promotes the diffusion and penetration of aluminum in the pack into the surface of the metal to be treated.
Halides such as NH 4 ClNH 4 F, NaCl, MaF are used. Further, the inert carrier powder acts to prevent the molten alloy powder particles from coming into contact with each other, and for example, alumina is used. The present invention is characterized in that only an alloy powder of aluminum and rare earth elements is used as the diffusion metal powder of the pack agent. To carry out aluminum pack treatment using this pack agent, for example, the following procedure may be performed. First, the metal article to be treated is embedded in a packing agent, and then heated in a non-oxidizing atmosphere, such as H 2 or Ar atmosphere.
Pack treatment is performed at 700-900°C for 0.5-2.5 hours. Next, the object to be treated is taken out from the pack agent and exposed to N 2 ,
In a non-oxidizing atmosphere like H2 or Ar, 800~
Diffusion treatment may be performed at 1100°C for 1.0 to 5.0 hours. [Effects of the Invention] According to the present invention, since all the aluminum powder and rare earth elements in the pack are alloyed in advance, the rare earth elements are uniformly dispersed in the pack and are not unevenly distributed. Therefore, after the pack treatment, a small amount of rare earth elements are uniformly dispersed in the treatment layer, which makes it difficult to use conventional methods, that is, using rare earth elements as they are, or by alloying them with a part of the aluminum powder in the pack agent. An aluminum diffusion coating with higher oxidation resistance and corrosion resistance than the conventional method can be obtained. Furthermore, since all the aluminum and rare earth elements are alloyed, it is easy to mix and prepare a pack agent. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example 1 25mm x 40 pieces of Ni Resist cast iron with the following composition
A sample of mm x 5 mm was prepared. C 2.0 (wt%) Si 2.2 Mn 1.0 Ni 20.0 Cr 2.2 P 0.03 Fe Remaining This sample was embedded in a pack agent having the following composition and subjected to a pack treatment at 750°C for 1.5 hours in an H 2 atmosphere, and then It was taken out from the pack and subjected to a diffusion treatment at 950° C. for 3.5 hours in an N 2 atmosphere. Composition of the pack agent Alumina powder (100-200 mesh) 680 (weight%) Alloy powder of aluminum and mesh metal (100
~200 mesh) 30 The amount of the halogen activator NH 4 Cl 2 mesh metal (Mm) added was 0.25, 0.50, 1.0, 2.0 and 5.0% by weight based on the total weight of the pack. The thickness of the aluminum diffusion coating is 0.25
It was 130μ when it was ~1.0%, 100μ when it was 2%, and 80μ when it was 5%. In addition, as a comparative example, the same treatment was carried out using 0.50, 1.0, 2.0 and 5.0% by weight of Mm added to the total weight of the pack agent without alloying it (Pack agent: alumina powder ( 100-200 mesh) 68% by weight, aluminum powder (100-200 mesh) and Mm powder (100-200 mesh)
30% by weight (combined with mesh) and 2% by weight of NH 4 Cl). The thickness of aluminum diffusion coating is 0.5~1.0
%: 130μ, 2.0%: 100μ, 5%:
It was 80μ. For each sample thus obtained, an oxidation resistance test was conducted as follows. The sample is kept in an atmospheric furnace maintained at 1000° C. for 45 minutes, then taken out of the furnace and allowed to cool naturally in air for 15 minutes. After repeating this for a total of 40 cycles (1 cycle (60 minutes)), the oxidation resistance of the film was evaluated based on the weight change before and after the test and the surface texture after the test. Figure 1 shows the weight change when the amount of Mm added was changed. It is clearly seen that the oxidation resistance of the method of the present invention is superior to that of the conventional method (comparative example). This is because in the conventional method, rare earth elements are unevenly distributed in the treated layer and the properties of the treated layer are not uniform.
This is thought to be because parts with weak oxidation resistance are oxidized early and the process progresses. Furthermore, FIG. 2 shows the relationship between the number of heating and cooling cycles and the weight change when the amount of Mm added is 1.0%.
From FIG. 2, it can be seen that the samples treated by the method of the present invention have almost no weight loss compared to the samples treated by the conventional method.
It can be seen that it has excellent oxidation resistance. Example 2 A sample having the same dimensions as Example 1 was prepared from a Ni-based superalloy having the following composition.

【表】 この試料を、実施例1で使用したものと同じ組
成(アルミニウム合金中のMm量はパツク剤の全
重量に対して1.0%)のパツク剤中に埋設し、H2
雰囲気中、750℃で1.5時間パツク処理し、次にパ
ツク剤の中から取り出し、N2雰囲気中、1100℃
で2時間拡散処理を行つた。試料、ともに、
アルミニウム拡散層の厚みは100μであつた。 比較例としてMmを添加しないパツク剤中で、
同様の処理を行つた。 このようにして得られた試料を、1200℃に保つ
た大気炉中に45分間保持し、次に炉から取り出し
て空気中で15分間自然冷却する。これを1サイク
ル(60分)として計30サイクル行つた後、試験前
後の酸化減量を測定した。結果を次表に示す。
[Table] This sample was embedded in a pack agent with the same composition as that used in Example 1 (the amount of Mm in the aluminum alloy was 1.0% based on the total weight of the pack agent), and
The pack was treated at 750°C for 1.5 hours in an atmosphere, then removed from the pack and heated at 1100°C in an N2 atmosphere.
Diffusion treatment was carried out for 2 hours. Samples, both
The thickness of the aluminum diffusion layer was 100μ. As a comparative example, in a pack agent without adding Mm,
A similar process was performed. The sample thus obtained is kept in an atmospheric furnace maintained at 1200° C. for 45 minutes, then taken out from the furnace and allowed to cool naturally in air for 15 minutes. After performing this for a total of 30 cycles (1 cycle (60 minutes)), the oxidation loss before and after the test was measured. The results are shown in the table below.

【表】 試料、ともに、Mmを添加することによ
り、耐酸化性試験による減量は小さくなつてい
る。
[Table] For both samples, the weight loss in the oxidation resistance test was reduced by adding Mm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMm添加量と耐酸化性との関係を示す
グラフであり、第2図は、本発明方法と従来法に
より処理した被膜の耐酸化性を比較して示すグラ
フである。
FIG. 1 is a graph showing the relationship between the amount of Mm added and oxidation resistance, and FIG. 2 is a graph showing a comparison of the oxidation resistance of films treated by the method of the present invention and the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 拡散金属粉末とハロゲン化活性剤と不活性担
体粉末とから成る混合粉末中に金属物品を埋設し
て非酸化性雰囲気中で加熱するパツク処理法にお
いて、上記混合粉末が、70重量%以上のアルミニ
ウムと30重量%以下の希土類元素との合金粉末か
らなる拡散金属粉末5〜50重量%と、ハロゲン化
活性剤1〜5重量%と、残部不活性担体粉末とか
らなり、希土類元素の含有量が混合粉末の全重量
に対して0.01〜5重量%であることを特徴とする
アルミニウム拡散処理方法。
1 In a pack processing method in which a metal article is embedded in a mixed powder consisting of a diffused metal powder, a halogenated activator, and an inert carrier powder and heated in a non-oxidizing atmosphere, the mixed powder contains 70% by weight or more. It consists of 5 to 50% by weight of a diffused metal powder consisting of an alloy powder of aluminum and 30% by weight or less of a rare earth element, 1 to 5% by weight of a halogenated activator, and the balance is an inert carrier powder, with a content of rare earth elements. is 0.01 to 5% by weight based on the total weight of the mixed powder.
JP19956283A 1983-10-25 1983-10-25 Method for diffusing aluminum Granted JPS6092464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19956283A JPS6092464A (en) 1983-10-25 1983-10-25 Method for diffusing aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19956283A JPS6092464A (en) 1983-10-25 1983-10-25 Method for diffusing aluminum

Publications (2)

Publication Number Publication Date
JPS6092464A JPS6092464A (en) 1985-05-24
JPS626745B2 true JPS626745B2 (en) 1987-02-13

Family

ID=16409887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19956283A Granted JPS6092464A (en) 1983-10-25 1983-10-25 Method for diffusing aluminum

Country Status (1)

Country Link
JP (1) JPS6092464A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120449A (en) * 1974-08-12 1976-02-18 Fujita Corp Kozobutsuniokeru taishinkako
JPS5687661A (en) * 1979-12-19 1981-07-16 Hitachi Ltd Metal article coating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120449A (en) * 1974-08-12 1976-02-18 Fujita Corp Kozobutsuniokeru taishinkako
JPS5687661A (en) * 1979-12-19 1981-07-16 Hitachi Ltd Metal article coating method

Also Published As

Publication number Publication date
JPS6092464A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
JP6813443B2 (en) Rare earth magnet manufacturing method
US3837901A (en) Diffusion-coating of nickel-base superalloy articles
JP2528336B2 (en) Method for forming high yttrium content diffusion aluminide coatings
JP2655835B2 (en) Permanent magnet alloy and manufacturing method thereof
GB2122631A (en) Composites of a conductive pigment affixed to a substrate
JP3048833B2 (en) Decorative article made of metal or metal alloy and method of manufacturing the same
KR900007785B1 (en) Tin coating ferrous composite powder and method of producing same
US2887420A (en) Surface treatments for articles made from heat resisting alloys
JPS626745B2 (en)
JPH06330215A (en) Low density and porous aluminum alloy sintered body and its production
JPS624466B2 (en)
US6197436B1 (en) Method and composition for diffusion alloying of ferrous materials
EP0053301B1 (en) Method of producing aluminium base sintered body containing graphite
JPH066725B2 (en) Method for producing sintered copper alloy having self-lubricating property
JPH0445579B2 (en)
JPS6089561A (en) Method for diffusing aluminum
Knotek et al. Reactions between NiCrBSi matrixes and cabride additives in coatings during treatment
JP2680832B2 (en) Method for producing Cu-Zn-Al sintered superelastic alloy
JPH0723530B2 (en) Decorative Au alloy member having surface hardened layer
SU1539235A1 (en) Powder composition for chrome- and titanium-plating of steel articles
RU2132404C1 (en) Powder-like composition for diffusion restoration of worn bronze products
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
WO1993008311A1 (en) CAST COMPOSITE MATERIAL HAVING ALUMINUM OXIDE REINFORCEMENT IN AN Al-Mg-Sr-MATRIX
JP3270970B2 (en) High strength sintered iron material and method of manufacturing the same
JP2581161B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance