JP2680832B2 - Method for producing Cu-Zn-Al sintered superelastic alloy - Google Patents

Method for producing Cu-Zn-Al sintered superelastic alloy

Info

Publication number
JP2680832B2
JP2680832B2 JP63108843A JP10884388A JP2680832B2 JP 2680832 B2 JP2680832 B2 JP 2680832B2 JP 63108843 A JP63108843 A JP 63108843A JP 10884388 A JP10884388 A JP 10884388A JP 2680832 B2 JP2680832 B2 JP 2680832B2
Authority
JP
Japan
Prior art keywords
alloy
sintered
powder
superelastic
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63108843A
Other languages
Japanese (ja)
Other versions
JPH01279723A (en
Inventor
典彦 中西
恒太 稲葉
省三 永井
修 岩津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP63108843A priority Critical patent/JP2680832B2/en
Publication of JPH01279723A publication Critical patent/JPH01279723A/en
Application granted granted Critical
Publication of JP2680832B2 publication Critical patent/JP2680832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安価で、且つ成形−焼結という簡単な工程
で製造し得るCu−Zn−Al焼結超弾性合金の製造方法に関
するものである。
The present invention relates to a method for producing a Cu-Zn-Al sintered superelastic alloy which is inexpensive and can be produced by a simple process of forming-sintering. is there.

〔従来の技術〕[Conventional technology]

通常金属材料は、弾性限以上の応力を加えると塑性変
形を起こし、除荷しても残留歪が残る。
Usually, a metallic material undergoes plastic deformation when a stress above the elastic limit is applied, and residual strain remains even after unloading.

しかし形状記憶合金では臨界温度以上に加熱すると元
の形に回復する。しかも、この形状記憶合金の場合、さ
らに擬弾性と呼ばれる性質によってAf点以上の温度範囲
では、5%以上の大きな歪を与えても形状が元に戻り、
残留歪の残らない、いわゆる超弾性現象がみられる。こ
の現象は、Af点以上での応力誘起マルテンサイト変態と
その逆変態とに起因するものである。
However, shape memory alloys recover their original shape when heated above the critical temperature. Moreover, in the case of this shape memory alloy, due to the property called pseudoelasticity, the shape returns to its original shape even if a large strain of 5% or more is applied in the temperature range above the Af point,
There is a so-called superelastic phenomenon in which residual strain does not remain. This phenomenon is due to the stress-induced martensitic transformation above the Af point and its inverse transformation.

従来より形状記憶合金の中で実用化されているのはTi
−Ni合金ならびにCu−Zn−Al合金でいずれも溶解法で製
造されたものである。この内、Ti−Ni合金は、Cu−Zn−
Al合金と比較して往復応力、疲労強度やその他機械的性
質が格段に優れており、中でも5%以上の大きな超弾性
機能を利用して、既にいわゆるTi−Ni超弾性ワイヤーの
名称でメガネフレームや、接骨用あるいは歯列矯正用等
の生体機能材料として実用化が始まっている。しかしな
がら、Ti−Ni合金は高価であり、難加工性であることか
ら特殊な場合を除き広く利用されているには至っていな
い。
Ti has been practically used in shape memory alloys.
Both the -Ni alloy and the Cu-Zn-Al alloy were manufactured by the melting method. Among them, Ti-Ni alloy is Cu-Zn-
Reciprocating stress, fatigue strength and other mechanical properties are remarkably superior to Al alloys, and by utilizing the large superelastic function of 5% or more, the so-called Ti-Ni superelastic wire is already used to name the eyeglass frame. In addition, it has been put to practical use as a biofunctional material for bone grafting or orthodontics. However, since Ti-Ni alloys are expensive and difficult to work, they have not been widely used except in special cases.

一方、Cu系の形状記憶合金として溶解法によるCu−Zn
−Al合金は実用化されてきている。しかしながらこのCu
−Zn−Al合金は、Ti−Ni合金と比較して安価であるが、
一般に溶体化処理工程において結晶粒の粗大化が起こり
易く、このことが応力集中による粒界破壊の要因とな
り、従って機械的性質は低く、超弾性においても5%以
下で小さく、いわゆる超弾性合金としてTi−Ni合金と同
等の分野への適用は考えられていない。
On the other hand, as a Cu-based shape memory alloy, Cu-Zn produced by the melting method
-Al alloys have been put to practical use. However this Cu
-Zn-Al alloy is cheaper than Ti-Ni alloy,
Generally, coarsening of crystal grains is likely to occur in the solution treatment process, which causes a grain boundary fracture due to stress concentration, and therefore has low mechanical properties and a small superelasticity of 5% or less. Application to the same field as Ti-Ni alloy is not considered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は、前記Cu−Zn−Al合金について超弾性機
能を発現すべく種々検討している際に、この超弾性機能
は粉末冶金による特定の製造工程を経ることにより、確
実に付与できることを見出し本発明を完成した。
The present inventors, when variously examining the Cu-Zn-Al alloy to develop a superelastic function, this superelastic function can be surely imparted by going through a specific manufacturing process by powder metallurgy. And completed the present invention.

〔問題を解決するための手段〕[Means for solving the problem]

本発明は、(1)Zn25〜28wt%,Al4〜4.2wt%,残部C
uの組成を有するCu−Zn−Al焼結超弾性合金および
(2)Znを30〜50wt%含み残部がCuである−280メッシ
ュのCu−Zn合金粉と、Alを30〜50wt%含み残部がCuであ
る−280メッシュのCu−Al合金粉と、−250メッシュのCu
粉とを所定の割合で配合し、これに焼結助剤としてフッ
化物を0.05〜1wt%混合し、得られた混合粉を成形した
圧粉体を850〜950℃で焼結し、ついで、得られた焼結部
材を500〜850℃に加熱後103℃/s以上の冷却速度で急冷
し、その後焼結部材に1〜3%の残留歪が生じる範囲で
引張応力を加え、再度500〜850℃に加熱後、103℃/s以
上の冷却速度で急冷することを特徴とするCu−Zn−Al焼
結超弾性合金の製造方法である。
The present invention includes (1) Zn25 to 28 wt%, Al4 to 4.2 wt%, balance C
Cu-Zn-Al sintered superelastic alloy having composition of u and (2) Cu-Zn alloy powder of -280 mesh containing Zn in an amount of 30 to 50 wt% and the balance being Cu, and Al in an amount of 30 to 50 wt% and the balance Cu is -280 mesh Cu-Al alloy powder, and -250 mesh Cu
Powder and blended in a predetermined proportion, 0.05 to 1 wt% of a fluoride as a sintering aid is mixed therein, and the green compact obtained by molding the obtained mixed powder is sintered at 850 to 950 ° C, and then, The obtained sintered member was heated to 500 to 850 ° C. and then rapidly cooled at a cooling rate of 10 3 ° C./s or more, and then tensile stress was applied to the sintered member within a range in which a residual strain of 1 to 3% was generated, and 500 after heating to to 850 ° C., a Cu-Zn-Al sintering method for manufacturing a superelastic alloy, characterized in that quenching at 10 3 ° C. / s or more cooling rate.

〔作用〕[Action]

Znを30〜50wt%含み残部がCuである−280メッシュCu
−Zn合金粉とAlを30〜50wt%含み残部がCuである−280
メッシュCu−Al合金粉と−250メッシュのCu粉とを所定
の割合に配合したものを主原料とする。この中で、Cu−
Zn合金粉及びCu−Al合金粉は、焼結時にZn及びAlの成分
を歩留り良く、且つ均一に拡散させるための母合金粉と
しての約割を果たす。従って、Cu−Zn合金粉の場合、Zn
が30%以下では、Znを所要量添加するために混合量が多
くなり相対的にCu−Al合金粉の混合量が少なくなる。こ
のことは、混合粉中でのAlの分布が粗になり、その結
果、Alの拡散が遅くなる。この様な場合は目的とする超
弾性機能が発現しないので好ましくない。逆にZnが50%
以上では、焼結時の脱Zn現象が著しく好ましくない。
-280 mesh Cu with 30 to 50 wt% Zn and balance Cu
-Zn alloy powder and Al 30 to 50 wt% and the balance Cu-280
The main material is a mixture of mesh Cu-Al alloy powder and -250 mesh Cu powder in a predetermined ratio. Among these, Cu-
The Zn alloy powder and the Cu-Al alloy powder serve as a master alloy powder for allowing the Zn and Al components to be diffused uniformly during sintering and to be uniformly diffused. Therefore, in the case of Cu-Zn alloy powder, Zn
Is less than 30%, the necessary amount of Zn is added, so that the mixing amount becomes large and the mixing amount of the Cu-Al alloy powder becomes relatively small. This means that the distribution of Al in the mixed powder becomes coarse and, as a result, the diffusion of Al becomes slow. In such a case, the desired superelastic function is not exhibited, which is not preferable. Conversely, Zn is 50%
Above, the phenomenon of Zn removal during sintering is extremely unfavorable.

Cu−Al合金粉の場合、Alが30%以下では、Cu−Zn合金
粉の場合と同様、Alを所要量添加するために混合量が多
くなり、相対的にCu−Zn合金粉の混合量が少なくなる。
このことは混合粉中でのZnの分布が粗になり、その結
果、Znの拡散が遅くなり、この様な場合は目的とする超
弾性機能が発現しないので好ましくない。逆にAlが50%
以上では、Cu−Al合金粉の融点が、600℃以下となり焼
結時に早期に溶融し、比較的粗大な残留空孔が生じ、均
一に超弾性機能を示さないので好ましくない。本発明に
おいては、主原料であるCu粉、Cu−Zn合金粉およびCu−
Al合金粉については−250メッシュおよびそれ以下の粒
度の粉末を用いており、特にCu−Zn合金粉およびCu−Al
合金粉については、−280メッシュの微粉を用いてい
る。この様に−250メッシュおよびそれ以下の粒度の粉
末を用いることで超弾性合金が得られた。その原因は明
らかではないが、溶解材の結晶粒が通常100〜400μmあ
り、この溶解材は超弾性機能を有していないことからみ
て、結晶粒は少なくとも100μm以下が必要とされる。
また、本発明においてはCu−Zn合金粉およびCu−Al合金
粉については、+280メッシュの粉末を含む場合、混合
粉中でのAlおよびZnの分布が粗になり、この様な場合は
目的とする超弾性機能が発現しないので好ましくない。
また、本発明者等は、本発明を完成するに際して、水ア
トマイズ法によるCu−Zn−Al合金粉について検討した
が、圧縮性が悪く、焼結後の密度比が90%以下となり、
ポーラスな焼結部材となり超弾性機能が発現されないこ
とを確認した。このことについては、水アトマイズ法に
よるCu−Zn−Al合金粉の場合は、数μmの微細な急冷組
成を有する結晶構造であることから、非常に硬く、その
結果通常の金型成形法では、高密度の圧粉体を成形し得
ないことから、高密度の焼結体が得られず、このため超
弾性が発現しないものと推察される。次に本発明の製造
法において、原料粉中に焼結助剤としてフッ化物を0.05
〜1wt%混合する必要がある。このフッ化物は粒子表面
に生成したAl2O3被膜を分解し、焼結を促進する効果が
ある。これに用いるフッ化物はAlF3,NaF,KF等があり、
ほぼ同等の効果を示す。このフッ化物0.05%以下ではそ
の働きを有せず緻密な焼結体が得られないため、超弾性
機能を発現させることが出来ない。一方、このフッ化物
を1%以上添加しても上記の改善効果は向上せず、逆に
合金自体の腐食さすか、もしくは、焼結雰囲気中に揮散
するフッ化物成分が増えるため焼結炉の内壁などを侵食
し、焼結設備にも害を及ぼすことで好ましくない。次
に、成形した圧粉体を還元雰囲気中850〜950℃で焼結す
る。850℃以下で焼結するとZn,Alの拡散が不十分で組織
に偏析が生じて均一な超弾性機能が得られず、結果とし
て、合金全体の超弾性機能が発現し得ないので好ましく
ない。
In the case of Cu-Al alloy powder, if the Al content is 30% or less, the mixing amount becomes large in order to add the required amount of Al, as in the case of the Cu-Zn alloy powder, and the mixing amount of the Cu-Zn alloy powder is relatively large. Is less.
This is not preferable because the distribution of Zn in the mixed powder becomes rough and, as a result, the diffusion of Zn is slowed down, and in such a case, the desired superelastic function is not exhibited. Conversely, Al is 50%
In the above case, the melting point of the Cu-Al alloy powder becomes 600 ° C. or less, the Cu-Al alloy powder melts early at the time of sintering, relatively coarse residual pores are formed, and the superelastic function is not uniformly exhibited, which is not preferable. In the present invention, the main raw material Cu powder, Cu-Zn alloy powder and Cu-
As for the Al alloy powder, powder with a particle size of -250 mesh or smaller is used, especially Cu-Zn alloy powder and Cu-Al.
As the alloy powder, -280 mesh fine powder is used. Thus, a superelastic alloy was obtained by using powder of -250 mesh or smaller. Although the cause is not clear, the crystal grains of the melting material are usually 100 to 400 μm, and it is necessary that the crystal grains be at least 100 μm or less in view of the fact that the melting material does not have a superelastic function.
Further, in the present invention, regarding the Cu-Zn alloy powder and the Cu-Al alloy powder, when the powder of +280 mesh is included, the distribution of Al and Zn in the mixed powder becomes rough, and in such a case, the purpose and It is not preferable because it does not exhibit the superelastic function.
Further, the present inventors, when completing the present invention, studied Cu-Zn-Al alloy powder by the water atomizing method, but the compressibility is poor, the density ratio after sintering is 90% or less,
It was confirmed that it became a porous sintered member and no superelastic function was exhibited. Regarding this, in the case of Cu-Zn-Al alloy powder by the water atomizing method, it is very hard because it has a crystal structure having a fine quenching composition of several μm, and as a result, in a normal die molding method, Since a high-density green compact cannot be molded, it is presumed that a high-density sintered body cannot be obtained, and therefore superelasticity does not develop. Next, in the production method of the present invention, fluoride was added to the raw material powder as a sintering aid in an amount of 0.05
Need to mix ~ 1wt%. This fluoride has the effect of decomposing the Al 2 O 3 coating formed on the particle surface and promoting sintering. Fluoride used for this includes AlF 3 , NaF, KF, etc.,
It shows almost the same effect. If this fluoride content is 0.05% or less, it does not have such a function and a dense sintered body cannot be obtained, so that the superelastic function cannot be exhibited. On the other hand, even if 1% or more of this fluoride is added, the above-mentioned improvement effect is not improved, but conversely, the corrosion of the alloy itself is caused, or the fluoride component that volatilizes in the sintering atmosphere increases, so that It is not preferable because it corrodes the inner wall and damages the sintering equipment. Next, the formed green compact is sintered at 850 to 950 ° C in a reducing atmosphere. Sintering at 850 ° C. or lower is not preferable because the diffusion of Zn and Al is insufficient, segregation occurs in the structure, and a uniform superelastic function cannot be obtained, and as a result, the superelastic function of the entire alloy cannot be exhibited.

950℃以上で焼結すると脱Zn現象が活発となり、Znの
揮散によって所定のZn量を保持できず、超弾性機能が発
現しないので好ましくない。次いで、得られた焼結部材
を500〜850℃に加熱後、103℃/s以上の冷却速度で急冷
する、いわゆる溶体化処理を施す。この溶体化処理での
熱処理は500〜850℃で行う必要がある。500℃時間では
均一な溶体化処理が行えず、850℃以上では、結晶粒が
粗大化するため好ましくない。また、溶体化処理におけ
る熱処理後の急冷は103℃/s以上の冷却速度で行う必要
がある。これ以下の冷却速度では均一な溶体化処理が行
えない。以上の様に溶体化処理された焼結部材には、1
〜3%の残留歪が生じる範囲で引張張力を加え、再度50
0〜850℃に加熱後、103℃/s以上の冷却速度で急冷する
必要がある。この操作によって5%以上の超弾性機能を
発現させることができる。まず、1〜3%の残留歪を与
える引張応力を加えることは、理論的に解明されてはい
ないが、焼結部材にのみ必要な操作で、結晶粒界に生じ
ているすべり抵抗を解除することによって、すべり変形
時の抵抗が緩和され結果的に応力誘起マルテンサイト化
の進行を容易にすると推察される。残留歪が1%以下で
は、解除の効果は薄く、一方3%以上では粒界破壊が生
じ好ましくない。この工程において引張応力を加える理
由は、均一に各粒界のすべり抵抗を解除するために行う
ものであり、圧縮や曲げ応力では各粒界に均一に応力が
加わらないので好ましくない。この様に引張応力を加え
られた焼結部材は、次に溶体化処理を行うことによって
超弾性機能を発現しうるCu−Zn−Al焼結超弾性合金とな
る。このすべり抵抗の解除処理後の溶体化処理による効
果は理論的には解明されていないが、この操作を行わな
い場合は前工程で行ったすべり抵抗の解除処理が均一に
行われていない場合が生じ、合金全体として超弾性機能
が不足することがあるので好ましくない。このため合金
全体を均一な組織とするために最終の溶体化処理を行う
ものであり、この溶体化処理は、焼結後の溶体化処理と
同一の条件で行うものである。なお、粒界のすべり抵抗
解除の処理およびその後の溶体化処理は、繰返し行うこ
とにより、高い伸びを有するCu−Zn−Al焼結超弾性合金
が得られる。
If sintering is performed at 950 ° C. or higher, the Zn removal phenomenon becomes active, a predetermined amount of Zn cannot be maintained by volatilization of Zn, and the superelastic function is not exhibited, which is not preferable. Then, the obtained sintered member is heated to 500 to 850 ° C. and then rapidly cooled at a cooling rate of 10 3 ° C./s or more, so-called solution treatment is performed. The heat treatment in this solution treatment must be performed at 500 to 850 ° C. At 500 ° C., uniform solution treatment cannot be performed, and at 850 ° C. or higher, the crystal grains become coarse, which is not preferable. Further, the rapid cooling after the heat treatment in the solution treatment must be performed at a cooling rate of 10 3 ° C / s or more. If the cooling rate is less than this, uniform solution treatment cannot be performed. For the sintered member that has been subjected to the solution heat treatment as described above, 1
Apply tensile tension to the extent that residual strain of ~ 3% occurs, and reapply 50
After heating to 0 ~ 850 ℃, it is necessary to quench at a cooling rate of 10 3 ℃ / s or more. By this operation, a superelastic function of 5% or more can be exhibited. First, although it is not theoretically clarified that a tensile stress that gives a residual strain of 1 to 3% is applied, the slip resistance generated in the grain boundaries is released by an operation required only for the sintered member. Therefore, it is presumed that the resistance during the slip deformation is relaxed, and as a result, the stress-induced martensite formation is facilitated. If the residual strain is 1% or less, the releasing effect is small, while if it is 3% or more, grain boundary fracture occurs, which is not preferable. The reason for applying the tensile stress in this step is to uniformly release the slip resistance of each grain boundary, and it is not preferable because stress is not uniformly applied to each grain boundary due to compression or bending stress. The sintered member to which the tensile stress is applied in this way becomes a Cu-Zn-Al sintered superelastic alloy capable of exhibiting a superelastic function by performing solution treatment next. The effect of the solution treatment after the slip resistance cancellation treatment has not been theoretically clarified, but if this operation is not performed, the slip resistance cancellation treatment performed in the previous step may not be performed uniformly. It may occur, and the superelastic function may be insufficient in the entire alloy, which is not preferable. For this reason, the final solution treatment is performed in order to make the entire alloy have a uniform structure, and this solution treatment is performed under the same conditions as the solution treatment after sintering. By repeating the treatment for releasing the sliding resistance of the grain boundary and the subsequent solution treatment, a Cu-Zn-Al sintered superelastic alloy having high elongation can be obtained.

〔実施例〕〔Example〕

第1表に示す−250メッシュの電解Cu粉、水アトマイ
ズ法による−280メッシュのZn35%を含み残部Cuよりな
るCu−Zn合金粉、及び搗砕法による−280メッシュのAl4
8%を含み残部CuよりなるCu−Al合金粉とを第2表に示
す割合で配合し、この主原料粉にフッ化物のAlF3を0.1w
t%添加し、V型ミキサーで30分間混合した。得られた
混合粉を成形圧力7t/cm2でJSPM標準2−64に準ずる焼結
体引張試験片に成形し、管状電気炉にて水素雰囲気中90
0℃で60分間焼結し、密度比97%の焼結部材を得た。そ
の後、得られた焼結部材を管状電気炉にてAr雰囲気中80
0℃で10分間加熱保持後、0℃の氷水中に急冷した。こ
の一連の溶体化処理を施した後、インストロン試験機
で、除荷後2%の残留歪を与えるように引張応力を加
え、最後に焼結後と同一条件で溶体化処理を行い、Cu−
Zn−Al焼結合金部材を得た。次に機能性試験としてZn,A
lの組成が異なる第2表に示すNo.1,2,3の3種類の焼結
部材についてインストロン試験機を用いて引張試験を行
った結果、応力歪曲線からNo.1,2,3の3種類のすべての
試料において5%以上の超弾性伸びが認められ、中でも
No.2のZn26%およびAl4.1%を含み、残部がCuよりなる
組成の合金については、第1図に示すように7.8%もの
著しい超弾性伸びが認められた。
The electrolytic Cu powder of -250 mesh shown in Table 1, Cu-Zn alloy powder of -280 mesh Zn35% by the water atomization method and the balance Cu, and -280 mesh Al4 of the grinding method
A Cu-Al alloy powder containing 8% and the balance Cu was blended in a ratio shown in Table 2, and 0.1 W of fluoride AlF 3 was added to this main raw material powder.
t% was added and mixed with a V-type mixer for 30 minutes. The resulting mixed powder was molded into a tensile test piece of a sintered body according to the JSPM standard 2-64 at a molding pressure of 7 t / cm 2 , and the mixture was heated in a hydrogen atmosphere in a tubular electric furnace.
Sintering was performed at 0 ° C for 60 minutes to obtain a sintered member having a density ratio of 97%. Then, the obtained sintered member was heated in a tubular electric furnace at 80 in Ar atmosphere.
After heating and holding at 0 ° C. for 10 minutes, it was rapidly cooled in ice water at 0 ° C. After this series of solution heat treatments, tensile stress is applied with an Instron tester so as to give a residual strain of 2% after unloading, and finally the solution heat treatment is performed under the same conditions as after sintering. −
A Zn-Al sintered alloy member was obtained. Next, as a functional test, Zn, A
As a result of performing a tensile test on three types of sintered members No. 1, 2, and 3 shown in Table 2 having different composition of l using an Instron tester, from the stress strain curve, No. 1, 2, 3 Super elastic elongation of 5% or more was observed in all three types of
Regarding the alloy having the composition of No. 2 containing 26% Zn and 4.1% Al and the balance being Cu, as shown in FIG. 1, a remarkable superelastic elongation of 7.8% was observed.

〔発明の効果〕 以上のように、本発明は、安価なCu−Zn−Al焼結超弾
性合金を簡単な製造工程で容易に超弾性合金を製造し得
る効果を有する。
[Effects of the Invention] As described above, the present invention has an effect that a superelastic alloy can be easily manufactured by a simple manufacturing process of an inexpensive Cu-Zn-Al sintered superelastic alloy.

本発明により、製造されたCu−Zn−Al焼結超弾性合金
は、Ti−Zi合金と同様の用途に安価に提供でき産業上有
用な発明である。
The Cu-Zn-Al sintered superelastic alloy produced by the present invention is an industrially useful invention because it can be provided at a low cost for the same use as the Ti-Zi alloy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明実施例の焼結部材試料No.2のインスト
ロン試験機による応力−歪曲線を示したものである。
FIG. 1 shows the stress-strain curve of the sintered member sample No. 2 of the example of the present invention measured by an Instron tester.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−185743(JP,A) 特開 昭59−31856(JP,A) 特開 昭59−145744(JP,A) 特開 昭54−100908(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 59-185743 (JP, A) JP 59-31856 (JP, A) JP 59-145744 (JP, A) JP 54- 100908 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Znを30〜50wt%含み残部がCuである−280
メッシュのCu−Zn合金粉と、Alを30〜50wt%含み残部が
Cuである−280メッシュCu−Al合金粉と−250メッシュの
Cu粉とを所定の割合で配合し、それに焼結助剤としてフ
ッ化物を0.05〜1wt%混合し、得られた混合物を成形し
た圧粉体を850℃〜950℃で焼結し、ついで、得られた焼
結部材を500〜850℃に加熱後103℃/s以上の冷却速度で
急冷し、その後焼結部材に1〜3%の残留歪が生じる範
囲で引張応力を加え、再度500〜850℃に加熱後、103℃/
s以上の冷却速度で急冷することを特徴とするCu−Zn−A
l焼結超弾性合金の製造方法。
1. A Zn containing 30 to 50 wt% and the balance being Cu -280
Cu-Zn alloy powder for the mesh and 30-50 wt% of Al and the balance
Cu of -280 mesh Cu-Al alloy powder and -250 mesh
Cu powder was mixed in a predetermined ratio, and 0.05 to 1 wt% of a fluoride was mixed as a sintering aid, and a green compact obtained by molding the obtained mixture was sintered at 850 ° C to 950 ° C, and then, The obtained sintered member was heated to 500 to 850 ° C. and then rapidly cooled at a cooling rate of 10 3 ° C./s or more, and then tensile stress was applied to the sintered member within a range in which a residual strain of 1 to 3% was generated, and 500 After heating to ~ 850 ° C, 10 3 ° C /
Cu-Zn-A characterized by rapid cooling at a cooling rate of s or more
l Manufacturing method of sintered superelastic alloy.
JP63108843A 1988-04-30 1988-04-30 Method for producing Cu-Zn-Al sintered superelastic alloy Expired - Fee Related JP2680832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108843A JP2680832B2 (en) 1988-04-30 1988-04-30 Method for producing Cu-Zn-Al sintered superelastic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108843A JP2680832B2 (en) 1988-04-30 1988-04-30 Method for producing Cu-Zn-Al sintered superelastic alloy

Publications (2)

Publication Number Publication Date
JPH01279723A JPH01279723A (en) 1989-11-10
JP2680832B2 true JP2680832B2 (en) 1997-11-19

Family

ID=14494986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108843A Expired - Fee Related JP2680832B2 (en) 1988-04-30 1988-04-30 Method for producing Cu-Zn-Al sintered superelastic alloy

Country Status (1)

Country Link
JP (1) JP2680832B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561647B (en) * 2014-11-10 2018-05-04 华玉叶 A kind of Cu-Zn-Sn systems alloy pressure forming method
CN109423586B (en) * 2017-08-29 2020-07-10 中国科学院金属研究所 Aging process for improving texture and performance of 7N01 aluminum alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185743A (en) * 1983-04-06 1984-10-22 Sumitomo Electric Ind Ltd Production of functional alloy wire

Also Published As

Publication number Publication date
JPH01279723A (en) 1989-11-10

Similar Documents

Publication Publication Date Title
KR100991906B1 (en) FUNCTIONAL MEMBER FROM Co-BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
US6375894B1 (en) Acid assisted cold welding and intermetallic formation and dental applications thereof
US4762559A (en) High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same
JP6170046B2 (en) Method for producing a medical implant from a magnesium alloy
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
WO2016171055A1 (en) Copper alloy material and method for producing same
Merrick Effect of heat treatment on the structure and properties of extruded P/M alloy 718
CN101760664A (en) Bronze powder for powder metallurgy and method of manufacturing the same
US4698096A (en) Sintering process
JPS59215401A (en) Alloy steel powder for powder metallurgy and its production
JP2680832B2 (en) Method for producing Cu-Zn-Al sintered superelastic alloy
JPS62502813A (en) New alloys with high electrical and mechanical properties, processes for their production and their use in particular in electrical, electronic and related fields
US4664855A (en) Method for producing amalgamable alloy
CN110735065B (en) Composite material composition, titanium alloy product and preparation method thereof
US3378356A (en) Composites of beryllium-coppermagnesium
JPH0456095B2 (en)
JP2010070825A (en) Titanium copper for electronic component, and electronic component using the same
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH03264639A (en) Al alloy product having high strength at high temperature
JP2629332B2 (en) Cu alloy for plastic molds
US3901693A (en) Method of preparing dental restorative material
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JPS62263940A (en) Heat treatment of ti-fe sintered alloy
JP3270970B2 (en) High strength sintered iron material and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees