JPH066725B2 - Method for producing sintered copper alloy having self-lubricating property - Google Patents

Method for producing sintered copper alloy having self-lubricating property

Info

Publication number
JPH066725B2
JPH066725B2 JP60274211A JP27421185A JPH066725B2 JP H066725 B2 JPH066725 B2 JP H066725B2 JP 60274211 A JP60274211 A JP 60274211A JP 27421185 A JP27421185 A JP 27421185A JP H066725 B2 JPH066725 B2 JP H066725B2
Authority
JP
Japan
Prior art keywords
raw material
copper alloy
powder
weight
sintered copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60274211A
Other languages
Japanese (ja)
Other versions
JPS62133027A (en
Inventor
佳久 山村
敏機 金子
英明 池田
浩 佐々木
邦雄 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60274211A priority Critical patent/JPH066725B2/en
Publication of JPS62133027A publication Critical patent/JPS62133027A/en
Publication of JPH066725B2 publication Critical patent/JPH066725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は、プレス機のウエアプレート等に用いられる自
己潤滑性を有する焼結銅合金の製造方法に関する。
Detailed Description of the Invention A. OBJECT OF THE INVENTION (1) Field of Industrial Application The present invention relates to a method for producing a sintered copper alloy having a self-lubricating property, which is used for a wear plate of a press machine.

(2) 従来の技術 従来、この種焼結銅合金の製造方法として、ニッケル、
スズ、リンおよび黒鉛を含む銅系原料粉末を焼結する手
法が知られている(特公昭58−52547号公報参
照)。
(2) Conventional technology Conventionally, as a method for producing this kind of sintered copper alloy, nickel,
A method of sintering a copper-based raw material powder containing tin, phosphorus and graphite is known (see Japanese Patent Publication No. 58-52547).

(3) 発明が解決しようとする問題点 前記黒鉛は潤滑材として機能するもので、その機能を十
分に発揮させるため前記従来法においては多量の黒鉛粉
末が用いられている。
(3) Problems to be Solved by the Invention The graphite functions as a lubricant, and a large amount of graphite powder is used in the conventional method in order to fully exert its function.

その結果、焼結銅合金の圧縮強さが低下し、また前記化
学成分に起因して焼結銅合金の靱性、したがって耐衝撃
性が低いという問題がある。
As a result, the compressive strength of the sintered copper alloy is reduced, and the toughness of the sintered copper alloy and hence the impact resistance are low due to the chemical components.

さらに前記原料粉末は粉末状態のまま使用されるので、
その取扱性が悪く、焼結銅合金の生産能率に支障を来た
すといった問題もある。
Furthermore, since the raw material powder is used in a powder state,
There is also a problem that the handleability is poor and the production efficiency of the sintered copper alloy is hindered.

本発明は上記に鑑み、黒鉛の含有量を減らし、また黒鉛
の減量分を潤滑性を有し耐摩耗性向上に寄与すると共に
靭性向上効果を発揮するモリブデンによって補い、その
上、加圧下で焼結する、という手段を採用することによ
って高密度化を達成し、これにより優れた耐摩耗性、圧
縮強さおよび靭性を備え、また良好な表面性状を有する
正常な自己潤滑性焼結銅合金を得ることのできる、生産
性の良好な前記製造方法を提供することを目的とする。
In view of the above, the present invention reduces the content of graphite, and compensates the reduced amount of graphite with molybdenum that contributes to the improvement of wear resistance and contributes to the improvement of wear resistance, and further, it is fired under pressure. A densification is achieved by adopting a means of binding, which results in a normal self-lubricating sintered copper alloy having excellent wear resistance, compressive strength and toughness and having good surface properties. It is an object of the present invention to provide the above-mentioned production method which can be obtained and has good productivity.

B.発明の構成 (1) 問題点を解決するための手段 本発明に係る自己潤滑性を有する焼結銅合金の製造方法
は、ニッケル 5〜30重量%、スズ 7〜13重量%
およびリン 0.3〜2重量%を含有する銅合金粉末
に、それに対し潤滑性粉末としてモリブデン粉末 1〜
5重量%および黒鉛粉末 1〜2.5重量%を混合した
原料粉末と合成樹脂バインダとよりなる原料板をベース
材上面に重ね合せる工程と、前記原料板の上面に、通気
性のない加圧体を、通気性を有し、且つ前記原料粉末の
焼結温度でその粉末および前記加圧体に対して非融着性
を持つと共に前記原料板外周部より食出る大きさのガス
抜き用シートを介して載置する工程と;前記原料板を加
熱して前記合成樹脂バインダを分解すると共に前記原料
粉末を焼結する工程と;を用いることを特徴とする。
B. Configuration of the Invention (1) Means for Solving the Problems The method for producing a sintered copper alloy having self-lubricating properties according to the present invention is 5 to 30% by weight of nickel and 7 to 13% by weight of tin.
And a copper alloy powder containing 0.3 to 2% by weight of phosphorus, while a molybdenum powder as a lubricating powder
5% by weight and 1 to 2.5% by weight of graphite powder, a step of stacking a raw material plate made of a raw material powder and a synthetic resin binder on the upper surface of the base material, and pressurization on the upper surface of the raw material plate with no air permeability. A sheet for degassing, which has air permeability, is non-fusing to the powder and the pressing body at the sintering temperature of the raw material powder, and is sized to erode from the outer peripheral portion of the raw material plate. And a step of heating the raw material plate to decompose the synthetic resin binder and sinter the raw material powder.

(2) 作 用 潤滑性粉末として、モリブデン粉末と黒鉛粉末の混合粉
末を用いるので、モリブデンの含有量に応じて黒鉛の含
有量を減少し、また加圧下で焼結することによって高密
度化を達成し、これにより焼結銅合金の耐摩耗性、圧縮
強さおよび靭性を向上させることが可能となる。
(2) Work Since a mixed powder of molybdenum powder and graphite powder is used as the lubricating powder, the graphite content is reduced according to the molybdenum content, and the density is increased by sintering under pressure. Achieved, which makes it possible to improve the wear resistance, compressive strength and toughness of the sintered copper alloy.

また原料粉末を原料板の形態で用いるので、原料粉末の
取扱性が良好となる。
In addition, since the raw material powder is used in the form of the raw material plate, the handleability of the raw material powder is improved.

さらに加熱により合成樹脂バインダは分解され、その分
解ガスは原料粉末の構成粉末間よりガス抜き用シートの
外周部を通じて効率良く排出されるので、焼結銅合金に
おける残留ガスに起因した巣の発生、有害ガス成分の侵
入等の不具合を確実に回避することができる。
Further, the synthetic resin binder is decomposed by heating, and the decomposed gas is efficiently discharged from between the constituent powders of the raw material powder through the outer peripheral portion of the degassing sheet, so that the generation of cavities due to the residual gas in the sintered copper alloy, It is possible to reliably avoid problems such as invasion of harmful gas components.

さらにまた、ガス抜き用シートにより原料板外周部を覆
うので、合成樹脂バインダの分解時において、原料板外
周部の、結合力を失った原料粉末が分解ガスの噴出圧に
よって飛散することがなく、これにより外周部の欠落の
ない正常な焼結銅合金を得ることができる。
Furthermore, since the outer peripheral portion of the raw material plate is covered with the degassing sheet, when the synthetic resin binder is decomposed, the raw material powder in the outer peripheral portion of the raw material plate, which has lost its binding force, is not scattered by the ejection pressure of the decomposition gas, As a result, it is possible to obtain a normal sintered copper alloy with no peripheral part missing.

その上、ガス抜き用シートの上面には加圧体が載置され
ているので、分解ガスが原料板上面から加圧体を通じて
噴出することがなく、これにより焼結銅合金表面の荒れ
を防止して、その表面性状を良好にすることができる。
これは焼結銅合金表面を摺動面とする場合、その表面の
仕上げ加工を不要にするか、または僅かな仕上げ加工を
行えば良い、といった効果をもたらす。
Moreover, since the pressurizing body is placed on the upper surface of the degassing sheet, the decomposed gas does not spout from the upper surface of the raw material plate through the pressurizing body, which prevents the surface of the sintered copper alloy from becoming rough. Then, the surface quality can be improved.
This brings about the effect that when the surface of the sintered copper alloy is used as the sliding surface, the finishing process of the surface is unnecessary or a slight finishing process may be performed.

なお、各化学成分の配合量を前記のように限定した理由
および各化学成分の役割は以下の通りである。
The reason for limiting the blending amount of each chemical component as described above and the role of each chemical component are as follows.

ニッケルはろう材として機能し、原料粉末の焼結性およ
び銅マトリックスの強度を向上させる効果を発揮する
が、その配合量が5重量%を下回ると前記効果が得られ
ず、また30重量%を上回っても前記効果の向上は望め
ず、その上コスト高となる。
Nickel functions as a brazing filler metal and exerts the effect of improving the sinterability of the raw material powder and the strength of the copper matrix. Even if it exceeds the above, the above effect cannot be expected to be improved, and the cost becomes higher.

スズは銅と合金化して銅マトリックスの強度および耐摩
耗性を向上させる効果を発揮するが、その配合量が7重
量%を下回ると前記効果が得られず、また13重量%を
上回ると銅合金の融点が低下して焼結銅合金の形状維持
性が悪化する。
Tin is alloyed with copper to exert the effect of improving the strength and wear resistance of the copper matrix, but if the compounding amount is less than 7% by weight, the above effect cannot be obtained, and if it exceeds 13% by weight, a copper alloy is produced. Of the sintered copper alloy deteriorates in shape retention.

リンは銅マトリックスに析出してその強度および耐摩耗
性を向上させる効果を発揮するが、その配合量が0.3
重量%を下回ると銅合金の融点が高くなって原料粉末の
焼結性が悪化し、また2重量%を上回ると銅合金の融点
が低下して焼結銅合金の形状維持性が悪化する。
Phosphorus precipitates in the copper matrix and exerts the effect of improving its strength and wear resistance, but its content is 0.3
If it is less than 2% by weight, the melting point of the copper alloy will be high and the sinterability of the raw material powder will be deteriorated. If it is more than 2% by weight, the melting point of the copper alloy will be lowered and the shape retention of the sintered copper alloy will be deteriorated.

モリブデンは銅合金と強固に結合して焼結銅合金の靱
性、耐摩耗性および潤滑性を向上させる効果を発揮する
が、その配合量が1重量%を下回ると前記効果が得られ
ず、また5重量%を上回ると原料シートの成形が困難と
なり、また焼結銅合金の焼結強度および密度が低下す
る。
Molybdenum binds strongly to the copper alloy and exhibits the effect of improving the toughness, wear resistance and lubricity of the sintered copper alloy, but if the blending amount is less than 1% by weight, the above effect cannot be obtained, and If it exceeds 5% by weight, it becomes difficult to form the raw material sheet, and the sintered strength and the density of the sintered copper alloy decrease.

黒鉛は焼結銅合金の潤滑性を向上させる効果を発揮する
が、その配合量が1重量%を下回ると前記効果が得られ
ず、また2.5重量%を上回ると焼結銅合金の圧縮強さ
が低下する。
Graphite has an effect of improving the lubricity of a sintered copper alloy, but if the content of the compound is less than 1% by weight, the above effect cannot be obtained, and if it exceeds 2.5% by weight, the compression of the sintered copper alloy is suppressed. Strength decreases.

(3) 実 施 例 第1図は摺動部材1を示し、その摺動部材1はベース材
2と、その一面に溶着された自己潤滑性焼結銅合金3と
よりなる。焼結銅合金3はその焼結時ベース材2に溶着
されたものである。
(3) Practical Example FIG. 1 shows a sliding member 1, which is composed of a base material 2 and a self-lubricating sintered copper alloy 3 welded to one surface thereof. The sintered copper alloy 3 is welded to the base material 2 during the sintering.

次に第2、第3図を参照しながら前記摺動部材1の製造
方法について説明する。
Next, a method of manufacturing the sliding member 1 will be described with reference to FIGS.

i.原料シートの製造 噴霧法により得られた、ニッケル 25重量%、スズ
10重量%、リン 1.1重量%および残部銅からな
り、標準篩110メッシュを通過し得る粒度の銅合金粉
末 92重量%、 機械的粉砕法により得られた、標準篩270メッシュを
通過し得る粒度のモリブデン粉末 2.5重量%、およ
び 機械的粉砕法により得られた、標準篩28メッシュを通
過し得るが、65メッシュを通過し得ない粒度の人造黒
鉛粉末 2.5重量% よりなる原料粉末と、 四フッ化エチレン樹脂とアクリル樹脂を1:1に混合
し、その混合樹脂にそれに対し50重量%の水を添加し
てエマルジョン化した合成樹脂バインダ 3重量%と を、第2図(a)に示すようにニーダ4に投入し、それら
を3分間混合して原料粉末を合成樹脂バインダ中に均一
に分散させた混合物Mを得る。
i. Manufacture of raw material sheet Nickel 25% by weight, tin, obtained by spraying method
92% by weight of a copper alloy powder having a particle size of 10% by weight, 1.1% by weight of phosphorus and the balance of copper and capable of passing through a standard sieve of 110 mesh, 92% by weight, capable of passing through a standard sieve of 270 mesh obtained by a mechanical grinding method. A raw material consisting of 2.5% by weight of a molybdenum powder of a particle size and 2.5% by weight of an artificial graphite powder of a particle size obtained by a mechanical grinding method, which can pass through a standard sieve 28 mesh but not 65 mesh. Fig. 2 shows the powder and 3% by weight of a synthetic resin binder prepared by mixing a tetrafluoroethylene resin and an acrylic resin in a ratio of 1: 1 and adding 50% by weight of water to the mixed resin to form an emulsion. As shown in a), the mixture is put into the kneader 4 and mixed for 3 minutes to obtain a mixture M in which the raw material powder is uniformly dispersed in the synthetic resin binder.

第2図(b)に示すように、混合物Mをヒータ5上に移
し、それを80〜150℃に加熱して水分を蒸発し乾燥
する。
As shown in FIG. 2 (b), the mixture M is transferred onto the heater 5 and heated to 80 to 150 ° C. to evaporate water and dry.

第2図(c)に示すように、加熱状態に在る混合物Mをロ
ール機6に数回通し、厚さ2〜3mmの原料シートSを得
る。
As shown in FIG. 2 (c), the mixture M in a heated state is passed through the roll machine 6 several times to obtain a raw material sheet S having a thickness of 2 to 3 mm.

第2図(d)に示すように、原料シートSをヒータ5上に
移し、それを80〜120℃で30分間加熱し、ロール
成形時の歪を除去する。
As shown in FIG. 2 (d), the raw material sheet S is transferred onto the heater 5 and heated at 80 to 120 ° C. for 30 minutes to remove the strain during roll forming.

原料シートSの密度は4.8g/cm3で、第2図(e)に示
すようにロール状に巻いて保存される。
The raw material sheet S has a density of 4.8 g / cm 3 and is wound and stored in a roll shape as shown in FIG. 2 (e).

ii.摺動部材の製造 第2図(f)に示すように、原料シートSから縦200m
m、横200mmの原料板Pを裁断し、その原料板Pを縦
200mm、横200mm、厚さ19mmのJIS SS41
で表わされる鋼板製ベース材2の上面にアクリル系接着
剤を用いて貼着し、その上面を縦210mm、横210m
m、厚さ2mmのセラミックフアイバ(商品名カオウー
ル)よりなり通気性を有するガス抜き用シート6を用い
て覆い、さらにシート6の上面に縦200mm、横200
mm、厚さ38mmの前記と同材質の鋼板よりなる通気性の
ない加圧体7を載置する。
ii. Manufacture of sliding member As shown in FIG.
A raw material plate P of m and 200 mm in width is cut, and the raw material plate P is JIS SS41 of 200 mm in length, 200 mm in width and 19 mm in thickness.
It is stuck on the upper surface of the steel plate base material 2 represented by using an acrylic adhesive, and the upper surface is 210 mm long and 210 m wide.
It is made of ceramic fiber (trade name: Kaowool) and has a thickness of 2 mm and is covered with a breathable gas-releasing sheet 6, and the upper surface of the sheet 6 is 200 mm long and 200 mm wide.
A non-breathable pressurizing body 7 made of a steel plate of the same material as above having a thickness of 38 mm and a thickness of 38 mm is placed.

加圧体7は、焼結時において原料粉末を加圧し焼結銅合
金3の密度を向上させるために用いられるものである
が、この加圧体7を直接原料板P上に載せると、合成樹
脂バインダ等より生じる分解ガスのガス抜き性が悪く、
また原料板Pにおける外周部の、結合力を失った原料粉
末が分解ガスの噴出圧により飛散する。そこで加圧体7
と原料板Pとの間に原料板P外周部より食出る大きさの
前記シート6を介在させ、その通気性を利用してガス排
出路を形成し、また原料粉末の飛散を防止する。このよ
うな使用目的を十分に達成するためには、原料板Pの大
きさとシート6の圧さとの間に相関関係がある。例え
ば、原料板Pの厚さ2mmにおいて、その大きさが縦80
mm、横80mmではシート6の厚さは1mm、縦200mm、
横200mmではシート6の厚さは2mmとなる。なお、前
記厚さを有する原料板Pの大きさが縦60mm、横60mm
以下である場合、合成樹脂バインダ等の熱分解が極めて
遅い場合等においてはシート6が無くても分解ガスのガ
ス抜きが容易に行われ、また原料粉末の飛散は生じな
い。
The pressurizing body 7 is used to pressurize the raw material powder at the time of sintering to improve the density of the sintered copper alloy 3. However, when the pressurizing body 7 is placed directly on the raw material plate P, it is synthesized. Degassing of decomposition gas generated from resin binder etc. is poor,
In addition, the raw material powder on the outer peripheral portion of the raw material plate P, which has lost its binding force, is scattered by the jetting pressure of the decomposition gas. So pressurizing body 7
The sheet 6 having a size protruding from the outer peripheral portion of the raw material plate P is interposed between the raw material plate P and the raw material plate P, and a gas exhaust passage is formed by utilizing the air permeability thereof, and the raw material powder is prevented from scattering. In order to sufficiently achieve such a purpose of use, there is a correlation between the size of the raw material plate P and the pressure of the sheet 6. For example, when the thickness of the raw material plate P is 2 mm, its size is 80
mm, width 80 mm, the thickness of the sheet 6 is 1 mm, length 200 mm,
If the width is 200 mm, the thickness of the sheet 6 is 2 mm. The size of the raw material plate P having the above thickness is 60 mm in length and 60 mm in width.
In the following cases, when the thermal decomposition of the synthetic resin binder or the like is extremely slow, the degassing of the decomposition gas is easily performed without the sheet 6, and the raw material powder does not scatter.

ガス抜き用シート6は、原料粉末の焼結温度でその粉末
および加圧体7に対して非融着性を持つことが必要であ
る。この要件を満たす材料としては前記セラミックフア
イバの外にアスベスト、ロックウール等が該当する。ま
たシート6を用いない場合には、原料粉末に対する加圧
体7の融着を防止すべく、加圧体7に離型剤を塗布す
る、加圧体7と原料板Pとの間にアルミナ等のセラミッ
ク体を介在する等の手段を採用する。
The degassing sheet 6 needs to be non-fusing to the powder and the pressurizing body 7 at the sintering temperature of the raw material powder. In addition to the ceramic fiber, asbestos, rock wool and the like are applicable as materials satisfying this requirement. When the sheet 6 is not used, a release agent is applied to the pressure body 7 in order to prevent fusion of the pressure body 7 to the raw material powder. Etc. Means such as interposing a ceramic body.

前記積層物を真空焼結炉8内に設置して第3図に示す加
熱条件で合成樹脂バインダおよびアクリル系接着剤の熱
分解、原料粉末の焼結およびベース材に対する焼結銅合
金の溶着を行う。キャリアガスとしては窒素ガスが用い
られ、真空度は1 Torrである。
The laminate is placed in a vacuum sintering furnace 8 to heat the synthetic resin binder and the acrylic adhesive under the heating conditions shown in FIG. 3, to sinter the raw material powder, and to weld the sintered copper alloy to the base material. To do. Nitrogen gas is used as the carrier gas, and the degree of vacuum is 1 Torr.

(a) 第1加熱ゾーン(第3図A) この加熱ゾーンAは常温から600℃までである。常
温からの昇温速度は20℃/分で、炉内は600℃にて
60分間恒温状態に保持される。この加熱ゾーンA
は、先ず、積層物の水分が蒸発し、次いで560〜60
0℃の範囲で合成樹脂バインダ中の四フッ化エチレン樹
脂およびアクリル樹脂並びにアクリル系接着剤が熱分解
されてガス化する。分解ガスは原料粉末の構成粉末間よ
りシート6を通じて排出される。ベース材2の外周部に
在る結合力を失った原料粉末の飛散はシート6により防
止される。
(a) First heating zone (A 1 in FIG. 3) This heating zone A 1 is from normal temperature to 600 ° C. The temperature rising rate from room temperature is 20 ° C./minute, and the inside of the furnace is kept at a constant temperature state at 600 ° C. for 60 minutes. In this heating zone A 1 , the water content of the laminate evaporates first, and then 560-60.
In the range of 0 ° C., the tetrafluoroethylene resin and acrylic resin and the acrylic adhesive in the synthetic resin binder are thermally decomposed and gasified. The decomposed gas is discharged through the sheet 6 between the constituent powders of the raw material powder. The scattering of the raw material powder that has lost the binding force existing on the outer peripheral portion of the base material 2 is prevented by the sheet 6.

(b) 第2加熱ゾーン(第3図A) この加熱ゾーンAは略900℃である。第1加熱ゾー
ンAからの昇温速度は20℃/分で、炉内は略900
℃にて30分間恒温状態に保持される。この加熱ゾーン
では原料粉末およびベース材2の均熱化が図られ
る。
(b) Second heating zone (A 2 in FIG. 3) This heating zone A 2 is at approximately 900 ° C. The temperature rising rate from the first heating zone A 1 was 20 ° C./min, and the temperature inside the furnace was about 900.
Hold at constant temperature for 30 minutes at ℃. In the heating zone A 2 , the raw material powder and the base material 2 are soaked.

(c) 第3加熱ゾーン(第3図A) この加熱ゾーンAは略1020℃である。第2加熱ゾ
ーンAからの昇温速度は10℃/分で、炉内は略10
20℃にて30分間恒温状態に保持される。この加熱ゾ
ーンAは、原料粉末において固相と液相が共存する半
液相温度域であり、液相により固相間の気孔が埋めら
れ、また加圧体7の加圧力により液相の流動が増進され
て焼結が進行し、密度の高い焼結銅合金3が得られる。
同時に焼結銅合金3がベース材2に溶着する。この場合
ニッケルがリンと合金化してそのろう材としての機能に
よりベース材2に対する焼結銅合金3の溶着が確実に行
われる。
(c) Third heating zone (A 3 in FIG. 3 ) This heating zone A 3 is at approximately 1020 ° C. The temperature rising rate from the second heating zone A 2 was 10 ° C./min, and the temperature inside the furnace was about 10
Hold at constant temperature at 20 ° C for 30 minutes. This heating zone A 3 is a semi-liquid phase temperature region in which the solid phase and the liquid phase coexist in the raw material powder, the pores between the solid phases are filled with the liquid phase, and the liquid phase The flow is enhanced and the sintering progresses, and a sintered copper alloy 3 having a high density is obtained.
At the same time, the sintered copper alloy 3 is welded to the base material 2. In this case, nickel is alloyed with phosphorus and its function as a brazing material ensures the welding of the sintered copper alloy 3 to the base material 2.

この加熱ゾーンAでは、原料粉末における液相の流動
が緩慢であるから黒鉛の浮遊、偏析が発生せず、したが
って焼結銅合金の潤滑性はその全体に亘って均等とな
る。
In this heating zone A 3 , since the liquid phase of the raw material powder flows slowly, graphite does not float or segregate, and therefore the lubricity of the sintered copper alloy becomes uniform over the entire area.

(d) 冷却ゾーン(第3図B) 真空焼結炉8内に、その内部気圧が500mmHgとなる
まで窒素ガスを導入し、冷却フアンにより窒素ガスを循
環させて焼結銅合金3、ベース材2等を冷却する。
(d) Cooling zone (FIG. 3B) Nitrogen gas was introduced into the vacuum sintering furnace 8 until the internal pressure became 500 mmHg, and the nitrogen gas was circulated by the cooling fan to sinter the copper alloy 3 and the base material. Cool 2nd grade.

上記加熱冷却工程を経て第1図に示す摺動部材1が得ら
れる。
The sliding member 1 shown in FIG. 1 is obtained through the heating and cooling steps.

焼結銅合金3は密度 6.3g/cm3、ロックウエル硬
さHB 35以上、気孔率 13%であり、また表面
性状は良好で、外周部の欠落も生じていなかった。
Sintered copper alloy 3 has a density 6.3 g / cm 3, Rockwell hardness H R B 35 or more, a porosity of 13%, and the surface properties are good, it did not occur even lack of the outer peripheral portion.

前記摺動部材1を、それに機械加工および含油処理を施
した後プレス機のウエアプレートとして用い、機能テス
トを行ったところ表Iの結果が得られた。表中、Aは前
記工程を経て得られた摺動部材に、Bは比較例としての
鋳鉄に黒鉛を埋め込んだ摺動部材にそれぞれ該当する。
また相手材において鋳鉄+黒鉛は比較例Bと同一の構成
を有する。
When the sliding member 1 was subjected to mechanical processing and oil impregnation treatment and then used as a wear plate of a press machine, a functional test was conducted, and the results shown in Table I were obtained. In the table, A corresponds to the sliding member obtained through the above steps, and B corresponds to the sliding member obtained by embedding graphite in cast iron as a comparative example.
In the mating material, cast iron + graphite has the same structure as Comparative Example B.

表Iから明らかなように摺動部材Aは比較例Bと略同等
の耐摩耗性を備え、優れた摺動特性を有する。
As is clear from Table I, the sliding member A has substantially the same wear resistance as that of the comparative example B and has excellent sliding characteristics.

表IIは、ニッケル 28.7重量%、スズ 8.5重量
%、リン 0.63重量%を含有する銅合金粉末に対し
モリブデン粉末(Mo)および黒鉛粉末(G)の配合量
を種々変更した原料粉末を用いて前記同様に原料シート
を製造し、その原料シートから裁断された原料板を10
40℃、20分間加熱の焼結条件下で真空焼結して得ら
れた焼結銅合金のロックウエル硬さHBを示す。
Table II shows that various amounts of molybdenum powder (Mo) and graphite powder (G) were added to the copper alloy powder containing 28.7% by weight of nickel, 8.5% by weight of tin, and 0.63% by weight of phosphorus. A raw material sheet is manufactured in the same manner as above using the raw material powder, and a raw material plate cut from the raw material sheet 10
The Rockwell hardness H R B of a sintered copper alloy obtained by vacuum sintering under the sintering conditions of heating at 40 ° C. for 20 minutes is shown.

表IIから明らかなように、黒鉛含有量の減少に伴い焼結
銅合金の硬さが向上し、また同一黒鉛含有量においてモ
リブデン含有量の増加に伴い硬さが向上する。これによ
り焼結銅合金の耐摩耗性の向上が図られる。
As is clear from Table II, the hardness of the sintered copper alloy improves as the graphite content decreases, and the hardness improves as the molybdenum content increases for the same graphite content. This improves the wear resistance of the sintered copper alloy.

第4図は焼結銅合金の圧縮強さを示し、この圧縮強さは
モリブデンの含有量とは関係がなく、黒鉛含有量の増加
に伴い減少することが明らかである。プレス機のウエア
プレート等の摺動部材に要求される圧縮強さは17〜2
5kg/mm2であり、これを満足するためには黒鉛含有量
を1〜2.5重量%に設定する必要がある。
FIG. 4 shows the compressive strength of the sintered copper alloy, and it is clear that this compressive strength is independent of the molybdenum content and decreases as the graphite content increases. The compression strength required for sliding members such as wear plates of presses is 17-2.
It is 5 kg / mm 2 , and in order to satisfy this, it is necessary to set the graphite content to 1 to 2.5% by weight.

合成樹脂バインダは原料粉末に対して1〜4重量%配合
される。その理由は合成樹脂バインダの配合量が1重量
%を下回ると原料シートの保形性が悪く、また原料粉末
間の結合力が弱くなってその粉末の脱落を発生し、一方
4重量%を上回ると焼結銅合金の気孔率が高くなって密
度の低下、形状精度の悪化等を招来し、また残留炭素が
多くなって焼結性の阻害、ベース材に対する焼結銅合金
の溶着不良等を招来するからである。
The synthetic resin binder is blended in an amount of 1 to 4% by weight based on the raw material powder. The reason is that if the amount of the synthetic resin binder blended is less than 1% by weight, the shape retention of the raw material sheet is poor, and the binding force between the raw material powders is weakened, causing the powder to fall off, while exceeding 4% by weight. In addition, the porosity of the sintered copper alloy becomes high, resulting in a decrease in density, deterioration of shape accuracy, etc., and a large amount of residual carbon impairs sinterability and causes poor welding of the sintered copper alloy to the base material. This is because they are invited.

C.発明の効果 本発明によれば、モリブデンの含有量に応じて黒鉛の含
有量を減少し、また加圧下での焼結により高密度化を達
成し、これにより優れた圧縮強さを有し、また靭性、し
たがって耐衝撃特性を向上させた耐摩耗性が良好で、表
面性状の良い自己潤滑性焼結銅合金を得ることができ
る。
C. Effects of the Invention According to the present invention, the content of graphite is reduced according to the content of molybdenum, and densification is achieved by sintering under pressure, which has excellent compressive strength, Further, it is possible to obtain a self-lubricating sintered copper alloy which has good toughness, and thus improved impact resistance and wear resistance, and good surface properties.

また原料粉末を原料板の形態で用いるので、原料粉末の
取扱性が良好で焼結銅合金の生産能率を向上させること
ができる。
Further, since the raw material powder is used in the form of the raw material plate, the handleability of the raw material powder is good and the production efficiency of the sintered copper alloy can be improved.

さらにガス抜き用シートの使用によって、合成樹脂バイ
ンダの分解による分解ガスを効率良く排出して、焼結銅
合金における残留ガスに起因した巣の発生、有害ガス成
分の侵入等の不具合を確実に回避し、また焼結銅合金外
周部の欠落を防止して正常な焼結銅合金を得ることがで
きる。
Furthermore, by using a gas vent sheet, the decomposed gas caused by the decomposition of the synthetic resin binder can be efficiently discharged, and problems such as generation of cavities due to residual gas in the sintered copper alloy and intrusion of harmful gas components can be reliably avoided. In addition, it is possible to obtain a normal sintered copper alloy by preventing the outer peripheral portion of the sintered copper alloy from being lost.

【図面の簡単な説明】[Brief description of drawings]

第1図は摺動部材の斜視図、第2図は摺動部材の製造工
程説明図、第3図は焼結工程における時間と温度の関係
を示すグラフ、第4図は焼結銅合金における黒鉛含有量
と圧縮強さの関係を示すグラフである。 P…原料板、2…ベース材、3…焼結銅合金、7…ガス
抜き用シート
FIG. 1 is a perspective view of a sliding member, FIG. 2 is an explanatory view of a manufacturing process of the sliding member, FIG. 3 is a graph showing a relationship between time and temperature in a sintering process, and FIG. 4 is a graph of a sintered copper alloy. It is a graph which shows the relationship between graphite content and compressive strength. P ... Raw material plate, 2 ... Base material, 3 ... Sintered copper alloy, 7 ... Degassing sheet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−52547(JP,A) 特開 昭51−82871(JP,A) 特開 昭45−26413(JP,A) 特開 昭60−221506(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-58-52547 (JP, A) JP-A-51-82871 (JP, A) JP-A-45-26413 (JP, A) JP-A-60- 221506 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ニッケル 5〜30重量%、スズ 7〜1
3重量%およびリン 0.3〜2重量%を含有する銅合
金粉末に、それに対し潤滑性粉末としてモリブデン粉末
1〜5重量%および黒鉛粉末 1〜2.5重量%を混
合した原料粉末と合成樹脂バインダとよりなる原料板
(P)をベース材(2)上面に重ね合せる工程と、前記
原料板(P)の上面に、通気性のない加圧体(7)を、
通気性を有し、且つ前記原料粉末の焼結温度でその粉末
および前記加圧体(7)に対して非融着性を持つと共に
前記原料板(P)外周部より食出る大きさのガス抜き用
シート(6)を介して載置する工程と;前記原料板
(P)を加熱して前記合成樹脂バインダを分解すると共
に前記原料粉末を焼結する工程と;を用いることを特徴
とする自己潤滑性を有する焼結銅合金の製造方法。
1. Nickel 5 to 30% by weight, tin 7-1
A copper alloy powder containing 3% by weight and 0.3 to 2% by weight of phosphorus was mixed with 1 to 5% by weight of molybdenum powder and 1 to 2.5% by weight of graphite powder as a lubricating powder, and a raw material powder was synthesized. A step of stacking a raw material plate (P) made of a resin binder on the upper surface of the base material (2), and a non-breathable pressurizing body (7) on the upper surface of the raw material plate (P),
A gas that has air permeability, is non-fusing to the powder and the pressurizing body (7) at the sintering temperature of the raw material powder, and has a size that erodes from the outer peripheral portion of the raw material plate (P). And a step of placing the raw material plate (P) by heating the raw material plate (P) to decompose the synthetic resin binder and sinter the raw material powder. A method for producing a sintered copper alloy having self-lubricating property.
JP60274211A 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property Expired - Lifetime JPH066725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60274211A JPH066725B2 (en) 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60274211A JPH066725B2 (en) 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property

Publications (2)

Publication Number Publication Date
JPS62133027A JPS62133027A (en) 1987-06-16
JPH066725B2 true JPH066725B2 (en) 1994-01-26

Family

ID=17538581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60274211A Expired - Lifetime JPH066725B2 (en) 1985-12-05 1985-12-05 Method for producing sintered copper alloy having self-lubricating property

Country Status (1)

Country Link
JP (1) JPH066725B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814010B2 (en) * 1987-08-08 1996-02-14 日立粉末冶金株式会社 Valve guide material and manufacturing method thereof
JP2503793B2 (en) * 1991-03-01 1996-06-05 三菱伸銅株式会社 Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
EP2639321B1 (en) * 2010-11-08 2018-02-28 Diamet Corporation Cu-based oil-containing sintered bearing
CN103757464A (en) * 2014-01-02 2014-04-30 江苏大学 Copper-based self-lubricating composite material and preparation method thereof
JP6440297B2 (en) * 2014-09-04 2018-12-19 株式会社ダイヤメット Cu-based sintered bearing
JP6468766B2 (en) 2014-09-11 2019-02-13 株式会社ダイヤメット Sintered sliding material with excellent corrosion resistance, heat resistance and wear resistance, and method for producing the same
JP6779600B2 (en) * 2015-07-16 2020-11-04 オイレス工業株式会社 Multi-layer sliding member
US10941465B2 (en) 2016-03-04 2021-03-09 Diamet Corporation Cu-based sintered sliding material, and production method therefor
CN109487115B (en) * 2018-11-14 2020-05-22 中国地质大学(北京) Preparation method of copper-carbon composite material with sucrose as binder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515521B2 (en) * 1975-01-18 1980-04-24
JPS5852547A (en) * 1981-09-24 1983-03-28 Fujitsu Ltd Measuring device for concentration distribution of impurities in semiconductor crystal
JPS60221506A (en) * 1984-04-17 1985-11-06 Honda Motor Co Ltd Formation of sliding surface in machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438979B2 (en) 2003-05-26 2008-10-21 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied
US7648773B2 (en) 2003-05-26 2010-01-19 Komatsu Ltd. Thermal spray membrane contact material, contact member and contact part, and apparatuses to which they are applied

Also Published As

Publication number Publication date
JPS62133027A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
CA2172029C (en) A metal sintered body composite material and a method for producing the same
FI89014B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN METALLMATRISKOMPOSIT
US6756009B2 (en) Method of producing hardmetal-bonded metal component
JP4424810B2 (en) Sintered material
JPH066725B2 (en) Method for producing sintered copper alloy having self-lubricating property
US7959887B2 (en) Method for manufacturing a diamond composite
CA2650605A1 (en) Method for production of composite bodies and composite bodies produced thereby
EP0441624B1 (en) Multi-layered sintered sliding member
CN107107196B (en) The manufacturing method of porous aluminum sintered body and porous aluminum sintered body
JPS60174805A (en) Manufacture of metal composite matter
JPH0639605B2 (en) Multi-layer sintered sliding member with cast iron backing
JPH066721B2 (en) Method for producing self-lubricating sintered copper alloy
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JPH0610319B2 (en) Method for producing self-lubricating sintered copper alloy
JPH07166321A (en) Surface-nitrided aluminum material, nitriding treatment of its surface and auxiliary for nitriding treatment thereof
US5350107A (en) Iron aluminide alloy coatings and joints, and methods of forming
JPH0629445B2 (en) Method of manufacturing self-lubricating sliding member
JPH068430B2 (en) Method for manufacturing single and composite sliding members
JPH0662979B2 (en) Method for manufacturing sliding member
JP2009091609A (en) Sintered composite sliding part and production method therefor
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JP3578409B2 (en) Manufacturing method of sintered sliding member
JP3332393B2 (en) Sintered sliding member and manufacturing method thereof
JP3397332B2 (en) Sintered sliding member and manufacturing method thereof
JP3397333B2 (en) Sintered sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term