JPS6267149A - Ultraquickly cooled composite magnetic alloy - Google Patents

Ultraquickly cooled composite magnetic alloy

Info

Publication number
JPS6267149A
JPS6267149A JP20420085A JP20420085A JPS6267149A JP S6267149 A JPS6267149 A JP S6267149A JP 20420085 A JP20420085 A JP 20420085A JP 20420085 A JP20420085 A JP 20420085A JP S6267149 A JPS6267149 A JP S6267149A
Authority
JP
Japan
Prior art keywords
magnetic alloy
magnetic
oxide
ultra
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20420085A
Other languages
Japanese (ja)
Inventor
Takeshi Masumoto
健 増本
Hiroshi Kimura
博 木村
Yasunori Tanji
丹治 雍典
Morikazu Yamada
盛一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP20420085A priority Critical patent/JPS6267149A/en
Publication of JPS6267149A publication Critical patent/JPS6267149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an ultraguickly cooled thin alloy strip of a low eddy current loss by forming a non-magnetic compd. on the surface of the ultraquickly cooled thin alloy strip to finely segment the magnetic domains of the thin strip. CONSTITUTION:The ultraquickly cooled thin magnetic alloy strip is heat-treated in air or gaseous N2 to form the compd. of oxide or nitride, etc. on the surface of the thin magnetic alloy strip. The above-mentioned compd. is extremely effectively formed on the surface of the ultraquickly cooled magnetic alloy strip at the low temp. (200-300 deg.C) heat treatment for a short period if an alloy having the compd. forming free energy lower than the compd. forming free energy of the main component for the base metal is added thereto at <=5%. As an example, the formation of the oxide on the surface of the ultraquickly cooled thin Fe and Co magnetic alloy strip is executed in the following manner: A metal having the oxide forming free energy of the value further smaller than the value of Si having the smallest oxide forming free energy among the main components Fe, Co, etc. is selected as the additive for accelerating the formation of the oxide. Said metal is exemplified by Ti, Ba, Zr, Ce, Al, Mg, Ca, B, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超急冷法によって作製される磁性合金に関し、
特に磁性合金薄帯の表面に酸化物、あるいは窒化物など
の化合物を生成させた超急冷複合磁性合金に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic alloy produced by an ultra-quenching method,
In particular, it relates to an ultra-quenched composite magnetic alloy in which a compound such as an oxide or nitride is formed on the surface of a magnetic alloy ribbon.

〔従来の技術〕[Conventional technology]

最近、電子機器分野において、超急冷磁性合金薄帯を使
用したトランス、チョークコイル、可飽和リアクトル、
ノイズ・フィルタ、磁気ヘッドなどが製品化されるよう
になっている。ところで。
Recently, in the field of electronic equipment, transformers, choke coils, saturable reactors, and
Products such as noise filters and magnetic heads are being commercialized. by the way.

これらの製品の重要な特性の一つは渦電流損失特性を良
好にすることである(渦電流損失を下げること)。渦電
流損失特性を良好にするための一つの方法は上記超急冷
磁性合金薄帯を薄くして、その電気抵抗を上げることで
ある。しかし超急冷磁性合金薄帯の厚さを薄くすること
には技術的に限界があり、このため、高周波領域の渦電
流損失を低下させるもう一つの方法として、上記磁性合
金の溶湯中に、非固溶体粉末を添加した後、その溶湯を
ノズル・スリットより回転冷却ロールの表面に噴出させ
て、該非固溶体粉末を上記磁性合金母相中に分散させた
所謂第2相粒子分散型超急冷合金の利用が提唱されてい
る(特開昭59−47352号公報)。
One of the important properties of these products is good eddy current loss characteristics (lower eddy current loss). One method for improving the eddy current loss characteristics is to make the ultra-quenched magnetic alloy ribbon thinner to increase its electrical resistance. However, there are technical limits to reducing the thickness of ultra-quenched magnetic alloy ribbons, and therefore, as another method to reduce eddy current loss in the high frequency range, we have developed After adding a solid solution powder, the molten metal is ejected from a nozzle/slit onto the surface of a rotating cooling roll to disperse the non-solid solution powder in the magnetic alloy matrix, thereby making use of a so-called second phase particle-dispersed ultra-quenched alloy. has been proposed (Japanese Unexamined Patent Publication No. 59-47352).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述のように非固溶体粉末を機械的に混合さ
せる場合、概して。母材の溶湯に対して。
However, when mechanically mixing non-solid solution powders as described above, generally. against the molten base metal.

密度の小さい非固溶体を均一分散させることが難しく渦
電流損失特性の良好は超急冷磁性合金が得られないとい
う問題点がある。
There is a problem in that it is difficult to uniformly disperse a non-solid solution with a low density, and an ultra-quenched magnetic alloy with good eddy current loss characteristics cannot be obtained.

本発明の目的は低渦電流損失磁性合金を提供することで
ある。
It is an object of the present invention to provide a magnetic alloy with low eddy current loss.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、非磁性化合物が母材である超急冷磁性合金の
表面に生成されている超急冷複合磁性合金であり、非磁
性化合物による夾雑物をもって磁区を細分化させて、低
渦電流損失の磁性合金を得ている。
The present invention is an ultra-quenched composite magnetic alloy in which a non-magnetic compound is formed on the surface of an ultra-quenched magnetic alloy as a base material, and the magnetic domains are subdivided with impurities caused by the non-magnetic compound to achieve low eddy current loss. A magnetic alloy is obtained.

以下余日 〔実施例〕 以下本発明について実施例によって説明するが。Remaining days below 〔Example〕 The present invention will be explained below with reference to Examples.

1ず、その前に本発明の概要について説明する。First, an overview of the present invention will be explained.

超急冷磁性合金薄帯のコア損失P、Lは磁気履歴損失p
hと渦電流損失PEとの和として次の第(1)式で与え
られる。
The core loss P and L of the ultra-quenched magnetic alloy ribbon are the magnetic hysteresis loss p
The sum of h and eddy current loss PE is given by the following equation (1).

PL= Ph−f +PE     ・・・(1)(た
だし、fは周波数) ところで、超急冷凝固による構造因子を考慮すると、渦
電流損失PKはゾライとビーム(Pry &Beam)
によって第(2)式で与えられる。
PL = Ph-f + PE (1) (where f is the frequency) By the way, when considering the structure factor due to ultra-rapid solidification, the eddy current loss PK is equal to Pry & Beam.
is given by equation (2).

ただし、dは超急冷磁性合金の板厚、 Bmは磁化の最
大振幅、fは周波数、Rは電気抵抗、2Lは磁区幅、B
sは飽和磁化、そしてKは2 VdおよびBrr1/B
8を変数とする増力ロ関数である。
However, d is the thickness of the ultra-quenched magnetic alloy, Bm is the maximum amplitude of magnetization, f is the frequency, R is the electrical resistance, 2L is the magnetic domain width, and B
s is the saturation magnetization and K is 2 Vd and Brr1/B
This is a boosting function with 8 as a variable.

ところで、高周波領域におけるFe基超超急冷磁性合金
渦電流損失PEは全損失の90チ以上と評価されている
。このPKを下げるためには、(2)式の2Lを小さく
すればよい。2Lを小さくするということは磁性合金の
磁区を細分化し磁壁の数を増加させることになる。本発
明では所定の雰囲気(空気あるいは窒素ガス)中で超急
冷磁性合金薄帯を熱処理することによって、この磁性合
金薄帯の表面に酸化物あるいは窒化物等の化合物を生成
させるととkよって、渦電流損失の低い超急冷複合磁性
合金が得られる。上述の化合物を短時間の低温(200
〜300℃)熱処理で超急冷磁性合金薄帯の表面に容易
に生成させるためには、母材の主成分よりも化合物生成
自由エネルギーの低い金属を5%以下添加しておけば極
めて有効である。
By the way, the eddy current loss PE of the Fe-based ultra-quenched magnetic alloy in the high frequency region is estimated to be 90 inches or more of the total loss. In order to lower this PK, 2L in equation (2) should be made smaller. Reducing 2L means subdividing the magnetic domain of the magnetic alloy and increasing the number of domain walls. In the present invention, compounds such as oxides or nitrides are generated on the surface of the ultra-quenched magnetic alloy ribbon by heat-treating the ultra-quenched magnetic alloy ribbon in a predetermined atmosphere (air or nitrogen gas). An ultra-quenched composite magnetic alloy with low eddy current loss can be obtained. The above-mentioned compounds were heated for a short period of time at low temperatures (200
~300°C) In order to easily generate on the surface of ultra-quenched magnetic alloy ribbon through heat treatment, it is extremely effective to add 5% or less of a metal whose compound formation free energy is lower than that of the main component of the base material. .

−例としてFe基およびCo基超超急冷合金薄帯表面酸
化物を生成させるためには、その主成分Fe+Co 、
 B  およびStなどの中で最も小さい酸化物生成自
由エネルギーをもつSiよりも更に小さい値をもつ金属
を酸化物生成促進添加材として選らべばよい。即ち#2
50℃においてはStの酸化物生成自由エネルギーΔG
 = −186000(m/、!i’+1molo2)
よりも小さい値をもつ金属1例えばg Ti e Ba
 eZr r Ce 、 kl 、 Mg e Ca 
# Beなどを選らべばよい。一方、窒化物生成の場合
には酸化物生成の場合と同様に主成分の中、最も小さい
窒化物生成自由エネルギーΔGをもつBよりも小さい値
をもつ金属を窒化物生成促進添加材として選らべばよい
- For example, in order to generate Fe-based and Co-based super-ultra-quenched alloy ribbon surface oxides, its main components Fe+Co,
Among B, St, etc., a metal having an even smaller value than Si, which has the smallest oxide formation free energy, may be selected as the oxide formation promoting additive. That is #2
At 50°C, the free energy of St oxide formation ΔG
= -186000 (m/, !i'+1 molo2)
A metal 1 with a value smaller than, for example, g Ti e Ba
eZr r Ce, kl, Mge Ca
# You can choose Be etc. On the other hand, in the case of nitride formation, as in the case of oxide formation, a metal with a value smaller than B, which has the smallest nitride formation free energy ΔG among the main components, should be selected as the nitride formation promoting additive. Bye.

即ち、250℃においてはBの窒化物生成自由エネルギ
ーΔG=−100000(cal/17 molN2)
よりも小さい値をもつ金属1例えば、 Zr + ’N
 e Ce t Atなどを選らべばよい。
That is, at 250°C, the free energy of nitride formation of B ΔG = -100000 (cal/17 molN2)
Metal 1 with a value smaller than, for example, Zr + 'N
You can choose e Ce t At etc.

上述のような酸化物あるいは窒化物生成促進材を母材に
添加し、適当な雰囲気中で熱処理を施すことによって上
記の磁性合金表面に酸化物あるいは窒化物が容易に生成
されるようになる。これら酸化物あるいは窒化物等の化
合物が夾雑物(不純物)となって1表面の磁区が変形さ
れ、細分化される。その結果(2)式による渦電流損失
PLは減少する。
By adding the above-mentioned oxide or nitride generation promoter to the base material and performing heat treatment in an appropriate atmosphere, oxides or nitrides can be easily generated on the surface of the above-mentioned magnetic alloy. These compounds such as oxides and nitrides become contaminants (impurities), and the magnetic domains on one surface are deformed and fragmented. As a result, the eddy current loss PL according to equation (2) decreases.

ここで1本発明の実施例について説明する。An embodiment of the present invention will now be described.

試料として# (Fe79””4B17)99zr1の
アモルファス合金薄帯によって作製された内径20.外
径25゜高さ5(鰭)の5個の巻コアをそれぞれ真空、
窒素、空気中で温度250℃で1時間熱処理されたもの
を用いた。
As a sample, an inner diameter of 20. Five wound cores with an outer diameter of 25 degrees and a height of 5 (fins) are each vacuum-treated.
The sample was heat-treated in nitrogen and air at a temperature of 250° C. for 1 hour.

第1図に窒素ガス中で熱処理された試料の表面を電子顕
微鏡で拡大したものを示す。第1図に粒子状に点、 在
して見られるのはZr窒化物である。一方真空中で熱処
理された試料の場合、第1図に見られるような粒子状の
化合物(窒化物)は、観測されない。また空気中で熱処
理された試料の場合には窒素中で熱処理された試料にみ
られるように多くの粒子状の化合物(酸化物)が観測さ
れる。
FIG. 1 shows an enlarged view of the surface of a sample heat-treated in nitrogen gas using an electron microscope. In Figure 1, it is Zr nitride that can be seen scattered in the form of particles. On the other hand, in the case of a sample heat-treated in vacuum, no particulate compounds (nitrides) as seen in FIG. 1 are observed. Furthermore, in the case of samples heat-treated in air, many particulate compounds (oxides) are observed, as seen in samples heat-treated in nitrogen.

第2図には真空中、窒素雰囲気中、及び空気中で、それ
ぞれ熱処理(温度300°Cで1時間)された上述の(
F79”4B17)99zrI製の巻コア損失PL(w
att/に9)とZr無添加のFe 79Sl 4B 
14製の巻コアの真空熱処理(温度300℃で1時間)
後のPLとが比較して示されている。なお、第2図にお
いて。
Figure 2 shows the above-mentioned (300°C for 1 hour) heat treated in vacuum, nitrogen atmosphere, and air.
F79”4B17) 99zrI wound core loss PL (w
att/9) and Zr-free Fe 79Sl 4B
Vacuum heat treatment of a wound core made of 14 (temperature 300℃ for 1 hour)
A comparison with the later PL is shown. In addition, in FIG.

(F79””4B17)99zrI製の巻コアをそれぞ
れ真空中。
(F79””4B17) Each rolled core made of 99zrI was placed in a vacuum.

窒素雰囲気中、空気中で熱処理したもの全それぞれ番号
1,2.3で示しr  Fe 79 S j 4B 1
4製の巻コアpl下余日 す、測定条件として、磁化の最大振幅(Bm)を1kG
(キロガウス)とした。図面から明らかなように。
All those heat-treated in nitrogen atmosphere and air are indicated by numbers 1 and 2.3, respectively r Fe 79 S j 4B 1
The measurement conditions were as follows: the maximum amplitude of magnetization (Bm) was 1 kG.
(kilogauss). As is clear from the drawings.

Zr無添加材のPLはZr=1%添加材のいづれの熱処
理材よりも大きな値をもつ。またZr=1%添加材に於
いては、真空中熱処理の場合が最も大きなPLO値をも
つ。雰囲気中(窒素ガス・空気)で熱処理するとPLは
真空中のそれに比して著しく減少する。
The PL of the Zr-free material has a larger value than any of the heat-treated materials with Zr=1% additive. Further, in the case of Zr=1% additive material, the case of heat treatment in vacuum has the largest PLO value. When the heat treatment is performed in an atmosphere (nitrogen gas/air), the PL is significantly reduced compared to that in a vacuum.

〔発明の効果〕〔Effect of the invention〕

以上説明したように8本発明によれば、超急冷合金薄帯
の表面に、酸化物または窒化物などの化合物を生成させ
、薄帯の磁区を細分化させることによって、低渦電流損
失の超急冷合金薄帯を得ることができ、従って、低渦電
流損失インダクターを製品化することが可能となる。
As explained above, according to the present invention, compounds such as oxides or nitrides are generated on the surface of the ultra-quenched alloy ribbon to subdivide the magnetic domains of the ribbon, thereby achieving ultra-low eddy current loss. It is possible to obtain a rapidly solidified alloy ribbon, and therefore it is possible to commercialize an inductor with low eddy current loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(Fe79Si4B+ 7)99Zr1アモル
ファス合金を窒素ガス雰囲気中で温度600℃で1時間
熱処理した試料表面を電子顕微鏡で拡大して示す図。 第2図は渦電流損失(Pt、)の周波数依存性を示す図
である。 第1図 1万■
FIG. 1 is an enlarged view of the surface of a sample of (Fe79Si4B+ 7)99Zr1 amorphous alloy heat-treated at 600° C. for 1 hour in a nitrogen gas atmosphere using an electron microscope. FIG. 2 is a diagram showing the frequency dependence of eddy current loss (Pt). Figure 1: 10,000■

Claims (1)

【特許請求の範囲】 1、超急冷法を用いて製造された超急冷磁性合金薄体の
表面に非磁性化合物が生成されていることを特徴とする
超急冷複合磁性合金。 2、特許請求の範囲第1項の記載において、前記非磁性
化合物は酸化物であることを特徴とする超急冷複合磁性
合金。 3、特許請求の範囲第1項の記載において、前記非磁性
化合物は窒化物であることを特徴とする超急冷複合磁性
合金。 4、特許請求の範囲第1項の記載において、前記超急冷
磁性合金薄体の母合金中には、該母合金の主成分よりも
化合物生成自由エネルギーの低い金属が添加されている
ことを特徴とする超急冷複合磁性合金。
[Claims] 1. An ultra-quenched composite magnetic alloy characterized in that a non-magnetic compound is produced on the surface of an ultra-quenched magnetic alloy thin body produced using an ultra-queue cooling method. 2. The ultra-quenched composite magnetic alloy according to claim 1, wherein the non-magnetic compound is an oxide. 3. The super-quenched composite magnetic alloy according to claim 1, wherein the non-magnetic compound is a nitride. 4. Claim 1, characterized in that a metal having a lower free energy of compound formation than the main component of the mother alloy is added to the mother alloy of the ultra-quenched magnetic alloy thin body. Ultra-quenched composite magnetic alloy.
JP20420085A 1985-09-18 1985-09-18 Ultraquickly cooled composite magnetic alloy Pending JPS6267149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20420085A JPS6267149A (en) 1985-09-18 1985-09-18 Ultraquickly cooled composite magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20420085A JPS6267149A (en) 1985-09-18 1985-09-18 Ultraquickly cooled composite magnetic alloy

Publications (1)

Publication Number Publication Date
JPS6267149A true JPS6267149A (en) 1987-03-26

Family

ID=16486486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20420085A Pending JPS6267149A (en) 1985-09-18 1985-09-18 Ultraquickly cooled composite magnetic alloy

Country Status (1)

Country Link
JP (1) JPS6267149A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108026A (en) * 1977-02-26 1978-09-20 Vacuumschmelze Gmbh Method of reducing magnetic hysteris loss of thin belt material made of soft magnetic amorphous alloy
JPS59179756A (en) * 1983-03-16 1984-10-12 アライド・コ−ポレ−シヨン Amorphous alloy for electromagnetic device
JPS6026647A (en) * 1983-07-22 1985-02-09 Sumitomo Special Metals Co Ltd Method and device for heat treatment of amorphous magnetic metallic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108026A (en) * 1977-02-26 1978-09-20 Vacuumschmelze Gmbh Method of reducing magnetic hysteris loss of thin belt material made of soft magnetic amorphous alloy
JPS59179756A (en) * 1983-03-16 1984-10-12 アライド・コ−ポレ−シヨン Amorphous alloy for electromagnetic device
JPS6026647A (en) * 1983-07-22 1985-02-09 Sumitomo Special Metals Co Ltd Method and device for heat treatment of amorphous magnetic metallic material

Similar Documents

Publication Publication Date Title
KR101147571B1 (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
US7141127B2 (en) Low core loss magnetic alloy with high saturation magnetic flux density and magnetic parts made of same
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP2008231534A (en) Soft magnetic thin band, magnetic core, and magnetic component
JPH07278764A (en) Nano-crystal alloy and its production and magnetic core using the same
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JPH02236259A (en) Alloy excellent in iso-permeability and its production
JPS6267149A (en) Ultraquickly cooled composite magnetic alloy
US4769091A (en) Magnetic core
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP2009293132A (en) Soft magnetic thin band, magnetic core, magnetic component and method for producing soft magnetic thin band
JPH03107417A (en) Production of supermicrocrystalline soft magnetic alloy
JPH0468382B2 (en)
JP2679069B2 (en) High squareness ratio soft magnetic material
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JPH0257683B2 (en)
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH0570901A (en) Fe base soft magnetic alloy
JPH05132744A (en) Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core