JPS6266689A - Manufacture of composite sheet with piezoelectric or pyroelectric property - Google Patents

Manufacture of composite sheet with piezoelectric or pyroelectric property

Info

Publication number
JPS6266689A
JPS6266689A JP60205392A JP20539285A JPS6266689A JP S6266689 A JPS6266689 A JP S6266689A JP 60205392 A JP60205392 A JP 60205392A JP 20539285 A JP20539285 A JP 20539285A JP S6266689 A JPS6266689 A JP S6266689A
Authority
JP
Japan
Prior art keywords
particles
piezoelectric
pyroelectric
film
composite sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60205392A
Other languages
Japanese (ja)
Other versions
JPH0530311B2 (en
Inventor
Tomoyoshi Yanagida
柳田 具美
Hiroshi Tokuda
浩 徳田
Toshimitsu Fukase
深瀬 利光
Kisaku Nakagawa
中川 喜策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP60205392A priority Critical patent/JPS6266689A/en
Publication of JPS6266689A publication Critical patent/JPS6266689A/en
Publication of JPH0530311B2 publication Critical patent/JPH0530311B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite piezoelectric or pyroelectric sheet having high sensitivity, excellent primary workability by dispersing and solidifying particles of piezoelectric or pyroelectric sintered material on insulating polymer with which is uniformly coated a smooth carrier to form a sole layer, then removing skin layers, forming both electrodes on both side surfaces, and polarizing the electrodes. CONSTITUTION:Particles of piezoelectric or pyroelectric sintered material (e.g., sintered material of titanium lead zirconate) are pulverized and screened. A coating film 1 of solution of heat resistant thermosetting resin (e.g., polyamide resin) is formed of a knife coater on one side surface of an aluminum foil 3. The particles 4 are uniformly dispersed so as not to superpose (in dispersing density of 80-90 particles/m<2>). After the film 1 is solidified, the film is dipped in an aqueous ferric chloride bath to be etched, dried, and thermally cured by a flat plate press. The film is then polished with a sandpaper to expose the particles. Thin copper films are formed on both side surfaces by sputtering as electrodes. A voltage is applied between the electrodes to be polarized to obtain a composite sheet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電性または焦電性焼結体の粒子を絶縁性高分
子中に単一層状に、並列結合となる分散構造を有する圧
電性または焦電性を有する複合シートを容易に、精度よ
く製造する方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a piezoelectric material having a dispersed structure in which piezoelectric or pyroelectric sintered particles are bonded in parallel in a single layer in an insulating polymer. Alternatively, the present invention relates to a method for easily and accurately manufacturing a composite sheet having pyroelectric properties.

本発明の方法によって得られた圧電または焦電性を有す
る複合シートは適当な初段増巾器と組み合せるどとによ
り、高感度の感圧もしくは感熱等のセンサーとすること
ができる。更に外部から電圧を印加して駆動させるアク
チェエータ−又は振動体とすることができる。
A composite sheet having piezoelectric or pyroelectric properties obtained by the method of the present invention can be made into a highly sensitive pressure-sensitive or heat-sensitive sensor by combining it with a suitable first-stage amplifier. Furthermore, it can be an actuator or a vibrating body that is driven by applying a voltage from the outside.

〔従来技術〕[Prior art]

圧電性または焦電性焼結体を粉砕して得られた粒子を絶
縁性高分子(以下結合剤という)中に分散せしめた可撓
性、加工性の優れた複合シートを得る試みは従来からな
されて来た。
Previous attempts have been made to obtain composite sheets with excellent flexibility and workability, in which particles obtained by crushing piezoelectric or pyroelectric sintered bodies are dispersed in an insulating polymer (hereinafter referred to as a binder). It has been done.

従来の複合シートの製造方法は、粒子と結合剤とを混練
し押出し機等によシシート化したものであった。
The conventional method for manufacturing composite sheets was to knead particles and a binder and form a sheet using an extruder or the like.

この方法でつくられた複合シートは下記の理由によシ圧
電感度または焦電感度が著しく劣るものしか得られなか
った。
Composite sheets produced by this method had extremely poor piezoelectric sensitivity or pyroelectric sensitivity for the following reasons.

(1)複合シート中の粒子の各々が結合剤で被覆された
状態であり複合シートの両面に設けた電極に直接に接し
たものが殆んど存在しないか、極めて少い。
(1) Each of the particles in the composite sheet is coated with a binder, and there are almost no or very few particles in direct contact with the electrodes provided on both sides of the composite sheet.

(II)結合剤の比電率が比較的小さいのに対し粒子の
比誘電率は著しく大きい。複合シートを分極する際に電
極間に電圧を加えて粒子が分極するのに必要な電界強度
を与えようとした場合、電極と粒子の間に介在する結合
剤にも電界が形成される。
(II) The specific electric constant of the binder is relatively small, whereas the specific dielectric constant of the particles is extremely large. When attempting to polarize a composite sheet by applying a voltage between the electrodes to provide the electric field strength necessary to polarize the particles, an electric field is also formed in the binder interposed between the electrodes and the particles.

即ち電極間では粒子と結合剤とが直列結合となっておシ
、粒子の電界強度と結合剤の電界強度との比は各々の比
誘電率の逆数の比に等しくなる。
That is, the particles and the binder are coupled in series between the electrodes, and the ratio of the electric field strength of the particles to the electric field strength of the binder is equal to the ratio of the reciprocals of their respective dielectric constants.

圧電性または焦電性焼結体粒子の比誘11t率は通常1
00〜数1oooであシ、一方結合剤の比誘電率は3〜
10である。
The dielectric constant of piezoelectric or pyroelectric sintered particles is usually 1
00 to several 1ooo, while the relative permittivity of the binder is 3 to
It is 10.

例えば粒子を分極するのに必要な電界強度を6KV/w
asとすると、結合剤にはその数10〜数1000倍の
電解強度を与えなくてはならず、この様な強い電界を与
えると結合剤は破壊してしまう。
For example, the electric field strength required to polarize particles is 6KV/w.
As, the binder must be given an electrolytic strength several ten to several thousand times that strength, and if such a strong electric field is applied, the binder will be destroyed.

従って結合剤の耐電圧限度内でしか電圧を与えることし
かできず、これらの電圧では結合剤に電圧が消費されて
粒子を充分に分極できない。従来の複合シートの製造方
法では、粒子と結合剤とが直列結合したものしか得られ
ず、たとえ粒子の鉦を増しても、粒子自体のもつ圧電性
または焦電性特1、   性や近すけ、。1非8に困難
、ありた。
Therefore, a voltage can only be applied within the withstand voltage limit of the binder, and at these voltages the binder consumes the voltage and cannot sufficiently polarize the particles. Conventional methods for manufacturing composite sheets only yield particles and binders bonded in series, and even if the number of particles is increased, the piezoelectric or pyroelectric properties of the particles themselves1, ,. There were difficulties in 1 and 8.

このような理由により、可撓性、加工性の利点1  が
ありながら実用化がなされていなかった。
For these reasons, it has not been put into practical use even though it has the advantages of flexibility and workability.

′1 1   複合シートの望ましい構造としては、圧電性ま
ル 1  たは焦電性焼結体粒子が結合剤と並列であシ、粒
′1 +。イカ4カー。。□ゎえ□よi Fllよ。1
゜t  結しているものが望ましい。
A desirable structure of the composite sheet is that piezoelectric particles or pyroelectric sintered particles are arranged in parallel with the binder. Squid 4 car. . □ゎE□yo i Full. 1
゜t It is desirable to have a tie.

このような構造であれば電極間に印加した電圧は直接粒
子に印加されて電界が形成されて、結合剤に対しては影
響を与えないような電圧で充分目的を達することができ
る。
With such a structure, the voltage applied between the electrodes is directly applied to the particles to form an electric field, and the purpose can be sufficiently achieved with a voltage that does not affect the binder.

このような構造を有する複合シートを製造する方法とし
ては、従来圧電性または焦電性焼結体を′i、   棒
状に成形したものを多数平行に配列させて結合■  剤
で固定しロッド状のものを形成し、又は該焼結体を厚板
状とし、縦横に深い遡み目を入れて、該刻み目に結合剤
を入れて固定して、ロッド状となし、これ等のロッド状
物を薄くスライスし複合シートを製造する方法等が提唱
されているが、これ等の焼結体は非常に硬く、薄くシー
ト状(で切出すことは非常に困難であり、実用化されて
おらなかった0 〔発明の目的〕 本発明は圧電性または焦電性焼結体の粒子を結合剤中に
単一層状に、並列結合となる分散構造となっておる、高
感度を有し、しかも二次加工性に優れた圧電性または焦
電性を有する複合シートを容易く、経済的に製造する方
法を提供することを目的とする。
Conventionally, the method for manufacturing a composite sheet with such a structure is to form a piezoelectric or pyroelectric sintered body into rod shapes, arrange them in parallel, and fix them with a bonding agent to form rod-shaped sheets. or make the sintered body into a thick plate shape, make deep grooves vertically and horizontally, put a binder in the grooves and fix it to make it into a rod shape, and make these rod-shaped objects. Methods of manufacturing composite sheets by slicing them thinly have been proposed, but these sintered bodies are extremely hard and difficult to cut into thin sheets (thin sheets), so they have not been put to practical use. 0 [Object of the invention] The present invention has a dispersed structure in which piezoelectric or pyroelectric sintered particles are bonded in parallel in a single layer in a binder, which has high sensitivity and has secondary An object of the present invention is to provide a method for easily and economically producing a piezoelectric or pyroelectric composite sheet with excellent processability.

〔発明の構成〕[Structure of the invention]

本発明は圧電性または焦電性焼結体の粒子を結合剤中に
単一層状に分散したフィルムを得る工程と、該フィルム
の両面の表皮層を除去し各粒子を露呈させる工程と、こ
の両面に電極を形成し、電圧を印加し分極を施こす工程
からなることを特tとする複合シートの製造方法である
。さらに詳細に説明すれば、耐熱性を有する液状の熱可
塑性樹脂又は熱硬化性樹脂(結合剤)の塗膜を担体上に
形成させ、この塗膜の上に圧電性または焦電性焼結体の
粒径がASTMの標準篩による篩分けで148μrr1
’ξス2Cμmストップの範囲の粒子を篩等を用いて落
下させて、該塗膜中で担体との界面に沿って粒子を単一
層状にする工程と、これを乾燥し予備的に固化または硬
化させ、担体を除去した後に該フィルムを当板にはさみ
加熱加圧もしくは放射線全照射することにより同化また
は硬化を終了させる。得られた粒子が単一層をなすフィ
ルムの両面の表皮層をサンドR−ノ?−1平面研削盤ま
たはサンドブラスト法による研磨又はエツチング等の方
法により除去する。表皮Nを除去する工程は、該フィル
ムの垂直な方向から各粒子の投影面積の和A、表又は裏
面の露呈部の面構の和Bとして、表と裏それぞれにB/
A≧0.5となるまで各表皮部を除去する。
The present invention comprises the steps of obtaining a film in which particles of a piezoelectric or pyroelectric sintered body are dispersed in a single layer in a binder, removing the skin layer on both sides of the film to expose each particle, and This method of manufacturing a composite sheet is characterized in that it comprises a step of forming electrodes on both sides and applying a voltage to polarize the sheet. More specifically, a coating film of a heat-resistant liquid thermoplastic resin or thermosetting resin (binder) is formed on a carrier, and a piezoelectric or pyroelectric sintered body is formed on this coating film. The particle size is 148 μrr1 when sieved using an ASTM standard sieve.
A step of dropping particles in the range of 2Cμm stop using a sieve or the like to form a single layer of particles along the interface with the carrier in the coating film, and drying and preliminarily solidifying or After curing and removing the carrier, the film is sandwiched between plates and heated and pressurized or fully irradiated with radiation to complete assimilation or curing. The skin layers on both sides of the film, in which the obtained particles form a single layer, are sanded with R-NO? -1 Remove by polishing or etching using a surface grinder or sandblasting method. In the step of removing the skin N, the sum A of the projected area of each particle from the perpendicular direction of the film, and the sum B of the surface structure of the exposed portion on the front or back surface, are calculated as follows:
Each epidermis is removed until A≧0.5.

なおこの工程において粒子部分及び結合剤のいずれも研
磨又はエツチングされることが平滑性を有するフィルム
を得るために望ましい。得られた粒子が露呈したフィル
ムの両面に金、銀、銅、アルミニウムなどを真空蒸着、
イオンブレーティング又はスフζツタリング法等で電極
を形成し、該電極に電圧をかけて分極し、圧電性または
焦電性を有する複合シートを得る方法である。
In this step, it is desirable that both the particle portion and the binder be polished or etched in order to obtain a smooth film. Gold, silver, copper, aluminum, etc. are vacuum deposited on both sides of the film where the resulting particles are exposed.
This is a method in which an electrode is formed by ion blating or a cross-zeta ring method, and a voltage is applied to the electrode to polarize it to obtain a piezoelectric or pyroelectric composite sheet.

本発明において用いられる圧tまたは焦電性焼結体とは
、電界も外力も加えられていない状態においてすでに自
発的分極をもっている結晶体が集合した焼結体である。
The pressure t or pyroelectric sintered body used in the present invention is a sintered body in which crystals already have spontaneous polarization in a state where no electric field or external force is applied.

このような材料としてはたとえばRロブスカイト型の結
晶構造を有するチタン酸バリウムをはじめ変性チタン醗
鉛、チタン醸ジルコン酸鉛およびその変性品、タンタル
酸塩等を原料とする数多くの焼結体があげられる。また
粒子化する方法としては機械的、熱的シ璽ツク等により
粉砕し、用途、複合シートの厚みによって分級されたフ
ラクシ胃ン全用いる。分級される前に粒子にボールミル
などの加工によって丸味をつけることは後の工程で分散
を均一化させたり、更には該粒子と結合剤との親和性が
でき、結合剤中のボイドの発生も少なくなる。機械的に
粉砕した直後の粒子はWadeuのRound Ind
ex (J、G=o740p443〜451  (19
32)Wadeノt、H)は0.01以下であるが本発
明に用いる粒子のRound Indexけ大きいこと
が望ましく、02以上であれば、その効果が認められる
Examples of such materials include barium titanate having an R-lobskite crystal structure, modified titanium lead, titanium-enriched lead zirconate and its modified products, and numerous sintered bodies made from tantalates, etc. It will be done. In addition, as a method of pulverizing the material, use the entire flux which has been pulverized by mechanical or thermal punching, etc., and classified according to the intended use and the thickness of the composite sheet. Rounding the particles by a process such as a ball mill before they are classified will make the dispersion uniform in the later process, and will also improve the affinity between the particles and the binder, which will prevent the formation of voids in the binder. It becomes less. The particles immediately after being mechanically crushed are Wadeu's Round Ind.
ex (J, G=o740p443~451 (19
32) Wade's t, H) is 0.01 or less, but it is desirable that the Round Index of the particles used in the present invention is larger, and if it is 02 or more, the effect will be recognized.

圧電性または焦電性焼結体は微結晶の集合した構造体で
あり、一般には焼結体内部には空隙等の欠陥部が存在し
ておシ、その耐電圧はこれ等の欠陥部が存在しなければ
より高い値を示す。この焼結体を粉砕し細粒子化すれば
、このような空隙等O欠陥部のほとんどが破砕面に解放
されて、粒径が小さくなるにつれて欠陥部の数が少くな
る。
A piezoelectric or pyroelectric sintered body is a structure made up of microcrystals, and generally there are defects such as voids inside the sintered body, and the withstand voltage depends on these defects. Indicates a higher value if absent. When this sintered body is crushed into fine particles, most of the O defects such as voids are released on the crushed surface, and the number of defects decreases as the particle size becomes smaller.

即ち複合ソートを製造するのに支障のない程度に粒子を
細かくすることが望ましい。
That is, it is desirable to make the particles as fine as possible without causing any problems in manufacturing the composite sort.

使用する粒径は実用上、ASTMの標準篩による篩分け
で148μm/’ス、20μmストップの範囲にあるも
のが良い。更には53μm−ξス、20μmストップの
範囲にあることが望ましい。
Practically speaking, the particle size used is preferably in the range of 148 μm/' and 20 μm stop when sieved using an ASTM standard sieve. Furthermore, it is desirable that the thickness be in the range of 53 μm-ξ and 20 μm stop.

148μmパスの粒度であれば粒子内の空隙等の欠陥部
の単位体積当りの数が少なくなり、このことによる効果
が耐電圧の向上に現れはじめる。更に53μm程度であ
れば分極時に必要な電界強度の50%以上の耐電圧を保
持する。
If the grain size is 148 μm pass, the number of defects such as voids within the grains per unit volume will be reduced, and the effect of this will begin to appear in the improvement of withstand voltage. Further, if the thickness is about 53 μm, a withstand voltage of 50% or more of the electric field strength required for polarization is maintained.

又一方20μm以下であればフィルム加工性が劣り、粒
子を両面に露呈したものは極薄となってしまい複合シー
トとして強度の弱いものとなってしまい、取扱いにくい
ものしか得ることができない。
On the other hand, if it is less than 20 μm, the processability of the film will be poor, and if the particles are exposed on both sides, it will be extremely thin and the strength of the composite sheet will be weak, making it difficult to handle.

本発明において用いる結合体としては耐熱性及び絶縁性
があり、該焼結体の粒子を保持できるものであれば良く
、例えばピリエーテルサルホン、ホリカーボネート等の
熱可塑性樹脂や+p IJイミド、ピリアミドイミド、
エポキシ樹脂およびこれらの変性樹脂などの熱硬化性樹
脂が望ましい。
The bond used in the present invention may be any material as long as it has heat resistance and insulation properties and can hold the particles of the sintered body, such as thermoplastic resins such as pyriethersulfone, polycarbonate, +p IJ imide, pyri, etc. amide imide,
Thermosetting resins such as epoxy resins and modified resins thereof are preferred.

該粒子が単一層状に分散したフィルムを形成するにあた
シ、担体となるべき平板上に適宜離型剤塗布などの処置
をとっておくことも望ましい。
In order to form a film in which the particles are dispersed in a single layer, it is also desirable to take appropriate measures such as coating a release agent on a flat plate serving as a carrier.

次に得られたフィルムの両面に各粒子端が露呈するまで
該フィルムの表面層を除去する方法としては例えばサン
ドd  A−による研磨、平面研削盤による表面研削又
は砥粒を噴射して表面を摩損するサンドブラストや液体
ホーニングなどの機械的手段あるいは、該結合剤を化学
的にエツチングする方法(例えばピリイミド樹脂に対し
てはヒドラジン水溶液によるエツチング)を応用するこ
とができる。該フィルムの表面層を除去するとき、粒子
の表面が同時に削りとられることがあっても何ら支障が
ないが、粒子に表裏に貫通するようなりラックを生せし
めたシ、粒子自体を脱落させたり、結合剤部にピンホー
ルや破損の発生のないように配慮する必要がある。
Next, the surface layer of the obtained film is removed until each particle edge is exposed on both sides of the film, for example, by polishing with a sand dA-, surface grinding with a surface grinder, or by spraying abrasive grains to the surface. Mechanical means such as abrasive sandblasting or liquid honing, or chemical etching of the binder (for example, etching with an aqueous hydrazine solution for pyriimide resins) can be applied. When removing the surface layer of the film, there is no problem even if the surface of the particles is scraped off at the same time. , care must be taken to avoid pinholes or damage to the bonding agent.

本発明においてこのフィルムの両面に各粒子端が露呈さ
せる工程が特に重要であシ、次の工程に移る前に露呈し
た該粒子の表面が変質したり他の物質によって汚染され
ることのないようにする必要がある。このようにして露
呈した該粒子の表面積が大きいほど粒子全体に分極作用
が働き圧電性または焦電性を向上させることができる。
In the present invention, the step of exposing the edges of each particle on both sides of the film is particularly important, so that the surface of the exposed particles does not change in quality or become contaminated with other substances before proceeding to the next step. It is necessary to The larger the surface area of the particles exposed in this way, the more the polarization effect acts on the entire particle and the piezoelectricity or pyroelectricity can be improved.

該フィルム中に含まれる粒子の垂直方向からの投影“面
積の和Aに対する、表裏それぞれの面の露呈部の面積の
和Bの比B/Aは露呈部を表わすがB/Aが0.5以上
、さらに望ましくは0.75以上である。
The ratio B/A of the sum B of the exposed area of each of the front and back surfaces to the sum A of the projected "area of the particles contained in the film in the vertical direction" represents the exposed area, and B/A is 0.5. It is more preferably 0.75 or more.

B/Aを測定するには第2図に示すように粒子と結合剤
の可視光線の透過性のちがいを利用し投影面積を求める
には透過光を、露呈部の面積は表面反射光全利用するこ
とによって求められる。
To measure B/A, use the difference in visible light transmittance between the particles and the binder, as shown in Figure 2, use transmitted light to determine the projected area, and use all surface reflected light to determine the exposed area. required by doing.

本発明において核粒子が露呈したフィルムの両面に電極
を形成させるのには通常の乾式または湿式による表面金
属化技術を応用することもできる。
In the present invention, conventional dry or wet surface metallization techniques can be applied to form electrodes on both sides of the film where the core particles are exposed.

例えば金、銀、銅、アルミニウムなどをスノξツタリン
グ、真空蒸着又はイオンシレーティング等で電極を形成
してもよい、又無電解メッキや導電性塗料を用いて電極
を形成してもよい。さらにこれらを組み合せてもよい。
For example, the electrodes may be formed using gold, silver, copper, aluminum, or the like by snow ξ sintering, vacuum deposition, or ion silating, or may be formed using electroless plating or conductive paint. Furthermore, these may be combined.

つづいて本発明における分極は常法によってなされるが
、両面く形成された電極が短絡していないことを確認し
たのちに電圧を印加する。印加する電圧は使用する圧電
性または焦電性焼結体の複類によって異なるが、これ等
の焼結体を分極するのに必要な電圧(その焼結体の電界
強度×厚さ)を印加すれは充分である。
Subsequently, polarization in the present invention is performed by a conventional method, and a voltage is applied after confirming that the electrodes formed on both sides are not short-circuited. The voltage to be applied varies depending on the type of piezoelectric or pyroelectric sintered body used, but the voltage required to polarize the sintered body (electric field strength x thickness of the sintered body) is applied. This is sufficient.

例えばチタン酸ジルコン酸鉛(東北金属工業■NEPE
C■N21)の焼結体の分極に必要な電界は6に、V 
/ tanであシ・該焼結体の粒子を用いた複合シート
の厚みを50μmとすれば0.3 (6KV/ m X
 0.05 rran ) KVである。結合剤として
ダリイミド樹脂を使用すれば、ピリイミド樹脂の耐電圧
はl0KV/珊以上であり、損傷を受けることなく分極
することが可能である。
For example, lead zirconate titanate (Tohoku Metal Industry NEPE)
The electric field required for polarization of the sintered body of C■N21) is 6, V
/ tan If the thickness of a composite sheet using particles of the sintered body is 50 μm, then 0.3 (6KV/m
0.05 rran) KV. If dariimide resin is used as a binder, the withstand voltage of pyriimide resin is 10 KV/original or more, and it is possible to polarize without being damaged.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法は圧電性または焦電性が優れ、加工性
がよく、柔軟性に富む複合シートが容易に経済的に得ら
れるので工業的な製造方法として好適である。
The manufacturing method of the present invention is suitable as an industrial manufacturing method because a composite sheet with excellent piezoelectricity or pyroelectricity, good workability, and high flexibility can be obtained easily and economically.

このようにして製造した圧電性または焦電性を有する複
合シートは、従来からの焼結体そのものの用途に準じて
、例えば外圧を感知する圧電センサー、温度の時間的な
変動を感知する温度センサー、又は赤外線感知センサー
等として広く応用できる。
The piezoelectric or pyroelectric composite sheet manufactured in this way can be used as a piezoelectric sensor for sensing external pressure, or as a temperature sensor for sensing temporal fluctuations in temperature, in accordance with the conventional uses of the sintered body itself. , or as an infrared sensing sensor.

また従来の焼結体からなるものに比して本発明の複合シ
ートはその感知するセンサーの面積を数10倍にとるこ
とが出来この点からも感度の向上を計ることが出来る。
Furthermore, compared to conventional sheets made of sintered bodies, the composite sheet of the present invention has a sensor area several ten times larger, and from this point as well, the sensitivity can be improved.

実施例1 圧電性または焦電性焼結体の粒子として、チタン酸ジル
コン酸鉛の焼結体(東北金属工業製NEPEC■N21
の粉砕粒、以下N21という)t−直径10cmのビッ
トの中で直径6mと直径2讃の混合したアルミナセラミ
ックボールと共に毎分105回転にて50時間の処理を
加えたのち篩分してASTMの標準篩にて目開き37μ
mノぐス、20μmストップの粒子サイズにしたものを
用いた。Wi d ellの丸味度は平均0.2であっ
た。アルミ箔の片面にナイフコーターで結合剤の溶液の
塗膜をつくシ、この上から先に篩分し九N21の各粒子
が上下に重なシ合わないよう、かつ均一に散布した。こ
のときの塗膜の厚さは乾燥後でおよそ20μmとなるよ
うにした。結合剤は耐熱性熱硬化性°樹脂であるピリア
ミドイミド樹脂であり、その溶液(古河電工製AI’7
ニス((N−メチルピロリドンソルベントナフサ混合溶
媒に溶解))、以下AIフェスという)のレジン含有針
は22重量%のものを原料として用いた。またN21の
粒子の散布の濃度は1wnあたり80〜90粒子となる
ようにした。
Example 1 A sintered body of lead zirconate titanate (NEPEC N21 manufactured by Tohoku Metal Industry Co., Ltd.) was used as a piezoelectric or pyroelectric sintered body particle.
The crushed grains (hereinafter referred to as N21) were treated in a 10 cm diameter bit with mixed alumina ceramic balls of 6 m diameter and 2 cm diameter at 105 revolutions per minute for 50 hours, and then sieved and passed the ASTM standard. Aperture 37μ with standard sieve
A particle size of 20 μm stop was used. The average roundness of Widell was 0.2. A coating film of the binder solution was applied to one side of the aluminum foil using a knife coater, and the 9N21 particles were sieved from the top first and spread uniformly so that the particles did not overlap vertically. The thickness of the coating film at this time was approximately 20 μm after drying. The binder is pyriamideimide resin, which is a heat-resistant thermosetting resin, and its solution (AI'7 manufactured by Furukawa Electric Co., Ltd.) is used as a binder.
A 22% by weight resin-containing needle of varnish ((dissolved in N-methylpyrrolidone solvent naphtha mixed solvent)) (hereinafter referred to as AI fest) was used as a raw material. Further, the concentration of N21 particles was set to 80 to 90 particles per wn.

これを40℃の真空乾燥話中で十分脱溶媒し、塗膜を固
化させた。つづいて塩化第二鉄水溶液中につけてアルミ
箔をエッチアウトし、N21の粒子が単一層に分散した
フィ7tムが得られた。さらに、80℃で60分乾燥し
た後、平板プレスにて200℃30分加熱硬化した。次
にLOOOからL500番の粒度のサンドイー・ξ−を
用い、殆んどの粒子をフィルムの両面に露呈させた。粒
子の露呈度(B/A)が0.80になるまで研磨した。
The solvent was sufficiently removed in a vacuum dryer at 40° C. to solidify the coating film. Subsequently, the aluminum foil was etched out by immersing it in an aqueous ferric chloride solution to obtain a film 7t in which N21 particles were dispersed in a single layer. Furthermore, after drying at 80°C for 60 minutes, it was heated and cured at 200°C for 30 minutes using a flat plate press. Next, SandE ξ- with a particle size of LOOO to L500 was used to expose most of the particles on both sides of the film. Polishing was performed until the degree of particle exposure (B/A) was 0.80.

厚さは16±4μmであった。電極としてスノξツタリ
ングでフィルムの両面に厚さ1μmの銅薄膜を形成した
。フィルムの両面にできた電極間に室温で直流電圧96
wott (平均電界強度6 KV / rran )
を15分間印加し7てこのフィルムを分極し、複合シー
トを作成した。
The thickness was 16±4 μm. As electrodes, copper thin films with a thickness of 1 μm were formed on both sides of the film by snow ξ tuttering. A DC voltage of 96 cm was applied at room temperature between the electrodes formed on both sides of the film.
wott (average electric field strength 6 KV/rran)
was applied for 15 minutes to polarize the film and create a composite sheet.

圧電性ならびに焦電性のきわめて良好な複合シートが得
られた。この複合シートは耐熱性が良好でリード線を電
極に半田付けで接続することができた。その他の特性は
第1表に示す。
A composite sheet with extremely good piezoelectricity and pyroelectricity was obtained. This composite sheet had good heat resistance, and the lead wires could be connected to the electrodes by soldering. Other properties are shown in Table 1.

実施例2 N21の粒子のサイズが148μm/”?ス、120μ
mストップであることと、溶液の塗膜の厚さが乾燥後で
およそ70μmとなるように調整したこととを除けば実
施例1と全く同じ工程と条件で複合シートを作成した。
Example 2 N21 particle size is 148 μm/”?s, 120 μm
A composite sheet was produced using exactly the same process and conditions as in Example 1, except that the solution was m-stop and the thickness of the coating film of the solution was adjusted to be approximately 70 μm after drying.

圧電性ならびに焦電性の良好な複合シートが得られ、そ
の特性を第1表に示す。
A composite sheet with good piezoelectricity and pyroelectricity was obtained, and its properties are shown in Table 1.

実施例3 N21の粒子の露呈度(B /A )が0.60になる
まで研磨したこと以外は実施例1と全く同じ工程と条件
で複合シートを作成した。この複合シートの有する圧電
性ならびに焦電性は良好で、これらの特性は第1表に示
される。これらは実施例1または2の特性と比較すると
低下の傾向にある。
Example 3 A composite sheet was produced using the same steps and conditions as in Example 1, except that the N21 particles were polished until the degree of exposure (B/A) was 0.60. This composite sheet had good piezoelectricity and pyroelectricity, and these properties are shown in Table 1. These tend to be lower than the characteristics of Example 1 or 2.

実施例4 結合剤として耐熱性熱可塑性樹脂N ’)エーテルサル
フォン(UCC裂、以下PESという)のN−メチルピ
ロリドン溶液(レジン含有忙22重量%)を用いた魚身
外は実施例1と同様の工程及び条件で進め、複合ンート
ヲ作成し之。この複合シートに対するリード線接続は導
体ペーストで実施した。
Example 4 A heat-resistant thermoplastic resin (N') ethersulfone (UCC, hereinafter referred to as PES) in N-methylpyrrolidone solution (resin content: 22% by weight) was used as a binder. Proceeding with the same process and conditions, a composite track was created. Lead wire connections to this composite sheet were made using conductive paste.

これの圧電性ならびに焦電性はきわめて良好であり、こ
れらの特性は第1表に示す。
Its piezoelectricity and pyroelectricity are very good, and these properties are shown in Table 1.

実施例5 実施例1で得られたN21の粒子が単一層状に分散した
フィルムを平面研削盤に設置された吸引盤上に固定し、
仕上精度1μm級のグラインタをとりつけて片面ずつ研
削する手段を用いたこと以外は実施例1と全く同様の工
程と条件で複合シートを作成した。その結果、この複合
シートの特性は実施例1のそれらと同等であったが同じ
露呈度(B/A)に仕上げるだめの作業時間は実施例1
の約1/3に短縮された。
Example 5 A film in which N21 particles obtained in Example 1 were dispersed in a single layer was fixed on a suction plate installed on a surface grinder,
A composite sheet was produced using the same process and conditions as in Example 1, except that a grinder with a finishing accuracy of 1 μm was used to grind each side one by one. As a result, the properties of this composite sheet were similar to those of Example 1, but the working time required to achieve the same exposure degree (B/A) was as in Example 1.
It was shortened to about 1/3 of that time.

実施例6 スパツタリングのかわりに真空蒸着法を用いフィルムの
両面に厚さ1μmの銀薄膜を形成したこと以外は実施例
1と全く同様の工程と条件で複合シートを作成した。こ
の複合シートに対するリード線の接続は導体(−ストで
実施した。この複合ノートは圧電性ならびに焦電性が良
好であり、その特性は第1表に示す。
Example 6 A composite sheet was produced using the same process and conditions as in Example 1, except that a thin silver film with a thickness of 1 μm was formed on both sides of the film using a vacuum deposition method instead of sputtering. The lead wires were connected to this composite sheet using a conductor. This composite notebook had good piezoelectricity and pyroelectricity, and its characteristics are shown in Table 1.

実施例7 使用した焼結体がチタン酸カルシウム変性チタン酸鉛(
N200は焦電性に特長ある材料、東北金属工業製NE
PEC■N200、以下N200という)を用いたこと
以外は実施例1と全く同じ工程と条件で複合シートを作
成した。この複合シートの圧電性はN200単体に比較
してやや低下するが焦電性が非常に優れておシ、その特
性は第1表に示す。
Example 7 The sintered body used was calcium titanate modified lead titanate (
N200 is a material with pyroelectric properties, NE manufactured by Tohoku Metal Industry Co., Ltd.
A composite sheet was produced using the same process and conditions as in Example 1, except that PEC N200 (hereinafter referred to as N200) was used. Although the piezoelectricity of this composite sheet is slightly lower than that of N200 alone, it has very good pyroelectricity, and its properties are shown in Table 1.

実施例8 N21の粒子が、・そのWide//の丸味度が平均0
.5のものを用いその他の工程4実施例1と全く同様に
して複合シートを作成した。その特性は第1表に示す。
Example 8 N21 particles have an average roundness of Wide// of 0
.. A composite sheet was prepared in exactly the same manner as in Example 1 except for the other steps 4. Its properties are shown in Table 1.

比較例l N21の粒子のサイズが17711mノ’Fス、149
μmストップとしたこと以外は実施例1と全く同じ工程
と条件とで複合シートを作成した。その結果分極の工程
で10枚のうち4枚に絶縁破壊による損傷が発生した。
Comparative Example 1 The particle size of N21 is 17711 mF, 149
A composite sheet was produced using the same process and conditions as in Example 1, except that the μm stop was used. As a result, damage due to dielectric breakdown occurred in 4 out of 10 sheets during the polarization process.

比較例2 N21の粒子のサイズが20μmノzスの微細な粒子を
用いた他は実施例1に準じて10枚の複合シートの作成
を試みたが、露呈度(B/A)が0.1以上に至るまえ
に複合シートが破損し、完成品は全く得られなかった。
Comparative Example 2 Ten composite sheets were prepared according to Example 1 except that fine N21 particles with a size of 20 μm were used, but the exposure degree (B/A) was 0. The composite sheet was damaged before it reached 1 or more, and no finished product could be obtained.

比較例3 N21の粒子の露呈度(B/A)がO11以下であって
ほとんど露呈させないままにとどめた魚身外は実施例1
と同様の工程で複合シートを作成した。
Comparative Example 3 The exposure degree (B/A) of N21 particles was less than O11, and the outside of the fish was left almost unexposed as in Example 1.
A composite sheet was created using the same process.

第1表に示されるようにその圧電性および焦電性に共に
レベルの低いものであった。
As shown in Table 1, its piezoelectricity and pyroelectricity were both at low levels.

比較例4 比較例2に用いた20μmノξスのN21の粒子とA■
フェスとの重量比8対1を混練し、アルミ箔担体上に塗
布し乾燥させた。アルミ箔を化学的にエツチング除去し
たのち80℃30分加熱した。これを平板プレス中で2
00℃30分加熱硬化させた。
Comparative Example 4 N21 particles of 20 μm x used in Comparative Example 2 and A■
The mixture was kneaded at a weight ratio of 8:1 with Fes, coated on an aluminum foil carrier, and dried. After the aluminum foil was chemically etched away, it was heated at 80° C. for 30 minutes. This is done in a flat plate press for 2
It was heated and cured at 00°C for 30 minutes.

次にス)Fツタリングで両面に1μm厚の銅薄膜をつけ
た。これを室温、平均の電解強度12KV/m+、15
分間の条件で分極し複合シートを作成した。
Next, a 1 μm thick copper thin film was applied to both sides using S) F tuttering. This was carried out at room temperature, average electrolytic strength 12KV/m+, 15
A composite sheet was created by polarization under conditions of 1 minute.

第1表に示されるようにその圧電性および焦電性は共に
レベルの低いものであった。
As shown in Table 1, its piezoelectricity and pyroelectricity were both at low levels.

比較例5 N21の粒子がボールミルの処理の工程を経ていないも
ので、Wi deItの丸味度が平均01以下のものを
用いる他、他は実施例1と全く同様にして複合シートを
作成した。その結果分極の工程で10枚のうち7枚に、
絶縁破壊による損傷が発生した。
Comparative Example 5 A composite sheet was prepared in exactly the same manner as in Example 1, except that N21 particles were not subjected to a ball milling process and had an average Wi de It roundness of 01 or less. As a result, in the polarization process, 7 out of 10
Damage occurred due to dielectric breakdown.

この絶縁破壊は粒子の丸味度が小さい為、粒子面と結合
剤面との間に生じた微小な気泡によるものと考えられる
This dielectric breakdown is thought to be caused by minute air bubbles generated between the particle surface and the binder surface because the roundness of the particles is small.

比較例6 N21焼結体ブロックをダイヤモンド入す鋸で厚さ10
0μmに切出した。次にスノZツタリングで両面に1μ
m厚の銅薄膜をつけた。これを常温トランス用絶縁油中
平均の電解強度4KV/mm15分の条件で分極し、焼
結体シートを作成した。この特性は第1表に示す。
Comparative Example 6 N21 sintered block was cut to a thickness of 10 mm using a diamond cutting saw.
It was cut out to 0 μm. Next, apply 1μ on both sides with Snow Z Tsutaring.
A thin copper film of m thickness was applied. This was polarized in insulating oil for a room temperature transformer at an average electrolytic strength of 4 KV/mm for 15 minutes to produce a sintered sheet. The properties are shown in Table 1.

比較例7 N200焼結体ブロックをダイヤモンド入シ鋸で厚さ1
0011mに切出した。次にス/ξツタリングで両面に
111m厚の銅薄膜をつけた。これ’1180℃のトラ
ンス用絶縁油中、平均の電解強度4 KV / ms 
15分の条件で分極し、焼結体シートを作成した。この
特性は第1表に示す。
Comparative Example 7 N200 sintered block was cut to a thickness of 1 with a diamond saw
It was cut out at 0011m. Next, a 111 m thick copper thin film was applied to both sides by sputtering. This is an average electrolytic strength of 4 KV/ms in transformer insulating oil at 1180°C.
Polarization was performed for 15 minutes to create a sintered sheet. The properties are shown in Table 1.

” (1)VB :絶縁耐圧(180℃のトランス用絶
縁油中)(2)εr:比誘電率(l KHz )(3)
d3.:圧電率(Z−X、10Hz)(4)λ:焦電率 (5)RV :光学的Re5ponsivity(チョ
ッピング周波数8Hz、受光面黒化処理、試料面積1M
で測定)
(1) VB: Dielectric strength voltage (in insulating oil for transformer at 180°C) (2) εr: Relative dielectric constant (l KHz) (3)
d3. : Piezoelectric constant (Z-X, 10Hz) (4) λ: Pyroelectric constant (5) RV : Optical Re5ponsivity (chopping frequency 8Hz, light-receiving surface blackening treatment, sample area 1M
)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明の圧電性または焦電性焼結体粒子を結
合材中に単一層状に分散させたフィルムを得る方法を示
す。第2図は該フィルムの両面の表皮層を除去し、粒子
を露呈させた顕微鏡写真のモデルを示すものであり、第
2図のIは該粒子の垂直投影面積の和Aを求める(透過
光)。第2図の■は露呈部を反射光で観察したものであ
り粒子の露呈部の面積の和Bを求めるのに用いる。 図中1は液状結合剤(絶縁性高分子) 2はスイーサー 3は担体 4は圧電性または焦電性焼結体の粒子 5は粒子が単一層状に分散したフィルム断面
FIG. 1 shows a method for obtaining a film in which piezoelectric or pyroelectric sintered particles of the present invention are dispersed in a single layer in a binder. Figure 2 shows a model of a microscopic photograph in which the skin layers on both sides of the film have been removed to expose the particles. ). 2 in FIG. 2 is an observation of the exposed portion with reflected light, and is used to determine the sum B of the area of the exposed portion of the particles. In the figure, 1 is a liquid binder (insulating polymer), 2 is a sweeper 3, a carrier 4 is a piezoelectric or pyroelectric sintered body, and 5 is a cross section of a film in which particles are dispersed in a single layer.

Claims (4)

【特許請求の範囲】[Claims] (1)圧電性または焦電性焼結体の粒子を絶縁性高分子
中に単一層状に分散しており両面電極に直接接している
圧電性または焦電性複合シートの製造法において、液状
の絶縁性高分子を平滑な面を有する担体上に均一な厚み
に塗布し、該絶縁性高分子上に圧電性または焦電性焼結
体の粒子を単一層をなすように散布し、その後に該絶縁
性高分子を硬化又は固化させて圧電性または焦電性焼結
体粒子が単一層状となったフィルムを得る工程( I )
と得られたフィルムの両面を機械的又は化学的手段によ
り表皮層を除去し単一層状に分散している圧電性または
焦電性焼結体の粒子を該フィルムの両面に露呈させる工
程(II)と該フィルムの両面に電極を形成し、電圧をか
けて分極を施こす工程(III)からなることを特徴とす
る電極と該粒子が直接接している圧電性または焦電性を
有する複合シートの製造方法。
(1) In a method for manufacturing a piezoelectric or pyroelectric composite sheet in which particles of a piezoelectric or pyroelectric sintered body are dispersed in a single layer in an insulating polymer and are in direct contact with double-sided electrodes, a liquid An insulating polymer is coated to a uniform thickness on a carrier with a smooth surface, particles of a piezoelectric or pyroelectric sintered body are scattered on the insulating polymer to form a single layer, and then Step (I) of curing or solidifying the insulating polymer to obtain a film having a single layer of piezoelectric or pyroelectric sintered particles.
Step (II) of removing the skin layer from both sides of the obtained film by mechanical or chemical means to expose particles of the piezoelectric or pyroelectric sintered body dispersed in a single layer on both sides of the film (II ) and a step (III) of forming electrodes on both sides of the film and applying a voltage to polarize the film. A piezoelectric or pyroelectric composite sheet in which the electrodes and the particles are in direct contact with each other. manufacturing method.
(2)圧電性または焦電性焼結体の粒子の大きさが14
8μmパス20μmストップ(ASTM標準篩)である
特許請求の範囲第1項記載の複合シートの製造方法。
(2) The particle size of the piezoelectric or pyroelectric sintered body is 14
The method for manufacturing a composite sheet according to claim 1, which is a sieve of 8 μm pass and 20 μm stop (ASTM standard sieve).
(3)圧電性または焦電性焼結体の粒子の形状がWad
ellの丸味度が0.2以上である特許請求の範囲第1
〜2項記載の複合シートの製造方法。
(3) The shape of the particles of the piezoelectric or pyroelectric sintered body is Wad.
Claim 1 in which the roundness of ell is 0.2 or more
2. A method for producing a composite sheet according to item 2.
(4)フィルムの面に露呈する圧電性または焦電性焼結
体の粒子の露呈の程度が、各粒子の垂直投影面積の和A
に対して、各面の露呈部の面積の和Bの比B/Aが0.
5以上となるまで研磨又はエッチングで表皮層を除去す
る特許請求の範囲第1〜3項記載の複合シートの製造方
法。
(4) The degree of exposure of the particles of the piezoelectric or pyroelectric sintered body exposed on the surface of the film is the sum of the vertical projected areas of each particle A
In contrast, when the ratio B/A of the sum B of the exposed areas of each surface is 0.
4. The method for manufacturing a composite sheet according to claims 1 to 3, wherein the skin layer is removed by polishing or etching until it becomes 5 or more.
JP60205392A 1985-09-19 1985-09-19 Manufacture of composite sheet with piezoelectric or pyroelectric property Granted JPS6266689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205392A JPS6266689A (en) 1985-09-19 1985-09-19 Manufacture of composite sheet with piezoelectric or pyroelectric property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205392A JPS6266689A (en) 1985-09-19 1985-09-19 Manufacture of composite sheet with piezoelectric or pyroelectric property

Publications (2)

Publication Number Publication Date
JPS6266689A true JPS6266689A (en) 1987-03-26
JPH0530311B2 JPH0530311B2 (en) 1993-05-07

Family

ID=16506060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205392A Granted JPS6266689A (en) 1985-09-19 1985-09-19 Manufacture of composite sheet with piezoelectric or pyroelectric property

Country Status (1)

Country Link
JP (1) JPS6266689A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037073A1 (en) * 2000-11-06 2002-05-10 Toyoda Koki Kabushiki Kaisha Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
JP2010232664A (en) * 2004-04-14 2010-10-14 Tyco Electronics Corp Elastic wave touch screen
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037073A1 (en) * 2000-11-06 2002-05-10 Toyoda Koki Kabushiki Kaisha Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
US7007553B2 (en) 2000-11-06 2006-03-07 Toyoda Koki Kabushiki Kaisha Mechanical quantity sensor element, load sensor element, acceleration sensor element, and pressure sensor element
JP2010232664A (en) * 2004-04-14 2010-10-14 Tyco Electronics Corp Elastic wave touch screen
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member

Also Published As

Publication number Publication date
JPH0530311B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
US4732717A (en) Process for producing piezo-electric or pyro-electric composite sheet
TWI247322B (en) Electronic parts and method for manufacture thereof
JP2004035917A (en) Method of forming dielectric filler-containing polyimide film on metal material surface, method of producing copper clad laminate for forming capacitor layer of printed circuit board and copper clad lamiante obtained thereby
WO1997035348A2 (en) Improved piezoelectric ceramic-polymer composites
US20020130590A1 (en) Piezocomposite,ultrasonic probe for ultrasonic diagnostic equipment, ultrasonic diagnostic equipment, and method for producing piezocomposite
JP2777976B2 (en) Piezoelectric ceramic-polymer composite material and manufacturing method thereof
US4756808A (en) Piezoelectric transducer and process for preparation thereof
JP2008258183A (en) Piezoelectric ceramic material including production process and application
JPS6266689A (en) Manufacture of composite sheet with piezoelectric or pyroelectric property
DE2361927A1 (en) METHOD OF MANUFACTURING A POLYCRYSTALLINE LEAD-SIRCONATE TITANATE BODY
US20040219351A1 (en) Component having vibration-damping properties, mixture for manufacturing the component, and method of manufacturing such a component
Rymansaib et al. Ultrasonic transducers made from freeze-cast porous piezoceramics
CN111916556A (en) Piezoelectric composite film, preparation method thereof and piezoelectric device
JP2004131363A (en) Method of manufacturing highly ordered ceramic structural body consisting of oriented single crystal grain
JPH0682871B2 (en) Manufacturing method of composite sheet
JPH05254955A (en) Production of porous pzt ceramic
US20080293209A1 (en) Thin film multiplayer ceramic capacitor devices and manufacture thereof
CN1067667C (en) Piezoelectric ceramics-piezoelectric polymer compound material and making method
JP2004050809A (en) Double-sided copper clad laminate and its manufacturing process
JPH08298202A (en) Protection element for electrochemical storage battery and its preparation
Zhou et al. Improvement electrical properties of sol–gel derived lead zirconate titanate thick films for ultrasonic transducer application
DE4497992C2 (en) Rectangular AT-cut quartz crystal plate of quartz crystal unit
Levassort et al. Ultrasonic transducer based on highly textured PMN-PT piezoelectric ceramic
JPH0716889B2 (en) Polishing sheet having hard abrasive grains and method for manufacturing the same
JPS587227A (en) Preparation of electrode for live body