JP2004131363A - Method of manufacturing highly ordered ceramic structural body consisting of oriented single crystal grain - Google Patents

Method of manufacturing highly ordered ceramic structural body consisting of oriented single crystal grain Download PDF

Info

Publication number
JP2004131363A
JP2004131363A JP2003079130A JP2003079130A JP2004131363A JP 2004131363 A JP2004131363 A JP 2004131363A JP 2003079130 A JP2003079130 A JP 2003079130A JP 2003079130 A JP2003079130 A JP 2003079130A JP 2004131363 A JP2004131363 A JP 2004131363A
Authority
JP
Japan
Prior art keywords
single crystal
ceramic
crystal particles
magnetic field
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003079130A
Other languages
Japanese (ja)
Other versions
JP4576522B2 (en
Inventor
Tetsuo Uchikoshi
打越 哲郎
Tatsu Suzuki
鈴木 達
Hideo Okuyama
奥山 秀男
Yoshio Sakka
目 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003079130A priority Critical patent/JP4576522B2/en
Publication of JP2004131363A publication Critical patent/JP2004131363A/en
Application granted granted Critical
Publication of JP4576522B2 publication Critical patent/JP4576522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single-or a multi-layer highly ordered ceramic structural body cosisting of highly oriented ceramic single crystal grains, where the orientation of the single crystal grains and the thickness of the layer are easily controllable without using a mold or a container for slip casting. <P>SOLUTION: A strong magnetic field is applied to a suspension in which ceramic single crystal grains charged with electricity are dispersed in a solvent to orient each grain making good use of its magnetic anisotropy. An electric field is applied to the suspension in the oriented state, where the charged/oriented ceramic grains are sedimented and a ceramic structural body in which the orientation of the single crystal grains and the thickness of the layer are highly controlled is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この出願の発明はセラミックス単結晶粒子が配向されたセラミックス高次構造体の製造方法に関するものであり、さらに詳しくは、機械的強度や電気特性の方向性を制御することができる機能性セラミックス等として有用な、新しいセラミックス構造体の製造方法に関するものである。
【0002】
【従来の技術】
αアルミナはコランダム構造をとっており、その単結晶粒子は六方晶のC面 (c軸方向に垂直な面、{001}面)に劈開面があるため、これと垂直な方向に対する曲げ応力が強いとされている。このためC面を並べて配向させたアルミナセラミックスは高強度アルミナとして注目されている。
【0003】
また、アルミナをはじめ単結晶粒を配向させたセラミックスは、たとえば、特定方向の電気的特性に優れているなど機能性セラミックスとして注目されている。さらにまた、強度の異なるセラミックスを牡蠣殻やベニヤ板のように交互に積層することにより衝撃による割れにも強いセラミックスを得ることができることも知られている。
【0004】
たとえば、以上のような従来の知見から、より高度に単結晶粒子の配向性や組織構成を制御して、高強度、高機能性のセラミックス高次構造体を実現することが試みられている。たとえば、高強度アルミナセラミックスは特開昭64−33055号公報に示されているようにホットプレスなどの加圧焼結法や平板状のアルミナ(コランダム)粒子のテープ状成形体とコランダム粉体あるいは非晶質アルミナ粉体のテープ状成形体を交互に積層させて焼成する方法が提案されている。
【0005】
しかしながら、この方法は平板状の粒子を得るために、あらかじめギプサイトAl(OH)を350℃以上の温度にしたものを100気圧以下で水熱処理して合成する必要がある。また、テープ状に成形したものを積層、圧着して焼結するため形状は平板に限定されてしまう。また、この他にも薄板状あるいは葉板状の原料粉末を用いて遠心力を作用させることによりC面が応力のある方向に垂直に配向する性質を利用する方法が特開平2−64065号公報に示されている。
【0006】
また、最近では、強磁場中でスリップキャストした後、熱処理して単結晶方位が配向したアルミナの製造方法が報告されている(粉体粉末冶金協会講演概要集(2000年5月)、p98、粉体および粉末冶金、47〔9〕、1010−1014(2000)、Adv.Eng.Mat.,3〔7〕,490−492(2001)など)。
【0007】
この方法は球形αアルミナ単結晶粒子を溶媒中に分散させ、そのサスペンションに10T(テスラ)の強磁場を印加することによりアルミナの持つ単結晶磁気異方性(a−b面方向とc軸方向の微小な磁化率差)を利用してアルミナ粒子を配向させ、そのサスペンションを石膏などの多孔質セラミックス型に鋳込んで(スリップキャスト)固化し、さらに通常の緻密化温度よりも高い温度で焼結することにより板状のアルミナ単結晶粒が磁場と垂直の方向に揃った高配向アルミナセラミックスを製造するものである。
【0008】
この方法は、原料に平板状の粒子を必要とせず、サスペンションの調整も容易であり単結晶方位が配向した単一体のセラミックスを作製する方法としては優れているが層厚が制御された積層配向体を成形することは困難である。
【0009】
さらに、特開2002−53367号公報に開示されている配向性アルミナセラミックスの製造方法では強磁場中でアルミナ粒子を配向させたサスペンションを所定の容器(実施例ではテフロン(登録商標))に流し込み、そのまま室温で乾燥させる手法が示されている。
【0010】
しかしながら、この方法で層厚が制御された積層配向体を製造することは鋳込み成形法以上に困難である。また、この方法は吸湿性の型を用いないため30〜50体積%の高濃度のサスペンションが必要である。
【0011】
そこで、この出願の発明は以上のとおりの従来技術の問題を解消し、鋳込み成形のための型や容器および高濃度のサスペンションを必要としないで、簡便に層厚の制御を可能として、高度にセラミックス単結晶粒子が配向された単層または多層のセラミックス高次構造体を提供することを課題としている。
【0012】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するためのものとして、第1には、帯電させたセラミックス単結晶粒子のサスペンションに磁場を印加することにより単結晶粒子を配向させ、その配向を保持した状態でサスペンションに電場を印加し、帯電したセラミックス単結晶粒子を電気泳動させながら電極基板もしくはその上のセラミックス単結晶粒子層上に堆積させる単結晶粒子が配向されたセラミックス高次構造体の製造方法を提供し、第2には、磁場に対して電場の方向を変化させながら堆積する上記セラミックス高次構造体の製造方法を、また、第3には、磁場に対して電場の方向を堆積層毎に変化させながら堆積する上記セラミックス高次構造体の製造方法を、第4には、磁場の方向に対する電場の方向を0°、45°、90°のいずれかの角度にする上記セラミックス高次構造体の製造方法を、そして、第5には、セラミックス単結晶粒子がαアルミナ単結晶粒子である上記セラミックス高次構造体の製造方法を、また、第6には、磁場の強さを10T以上にする上記セラミックス高次構造体の製造方法を、また、第7には、サスペンションを弱酸性に調整する上記セラミックス高次構造体の製造方法を、第8には、セラミックス単結晶粒子の平均粒径が0.02〜3.0μmである上記セラミックス高次構造体の製造方法を、また、第9には、上記いずれかの方法による堆積に際し、少くとも一部の層を帯電させたセラミックス単結晶粒子のサスペンションに電場のみを印加して電気泳動堆積して無配向セラミックス単結晶粒子層として形成するセラミックス高次構造体の製造方法を、さらに、第10には、電極基板は、その表面に立体模様が施されている上記セラミックス高次構造体の製造方法を、第11には、上記いずれかの方法によりセラミックス単結晶粒子を堆積した後に乾燥および焼成するセラミックス高次構造体の製造方法を提供する。
【0013】
また、この出願の発明は、第12には、上記いずれかの方法により製造されたものであることを特徴とする単結晶粒子が配向されたセラミックス高次構造体を提供する。
【0014】
【発明の実施の形態】
この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0015】
まず、なによりも特徴的なことは、この出願の発明は、第1には、帯電・分散させたセラミックス単結晶粒子の結晶磁気異方性を利用して強磁場下で個々の粒子を配向させることであり、第2には、電場を印加して電気泳動させて堆積させることである。そして、これにより単結晶粒子の配向や配向された単結晶粒子の層厚が高度に制御されたセラミックス高次構造体を実現する。
【0016】
なお、この出願の発明におけるセラミックス高次構造体はセラミックス単結晶粒子の配向が同一のサスペンションだけを使用して製造したセラミックス単一体だけでなく、セラミックス単結晶粒子の配向やその他の形態が異なるサスペンションを組み合わせながら製造したセラミックス積層体を包含している。
【0017】
この出願の発明による以上のとおりの磁場中電気泳動法による単結晶粒子が配向したセラミックス高次構造体の製造方法はこれまで全く知られていない。
【0018】
この出願の発明を図にしたがって説明すると、図1は立方晶以外の結晶構造を持つ単結晶粒子を示したものであり、この出願の発明で使用するセラミックス単結晶粒子もこのような構造をしている。図2はこのような構造をした単結晶粒子が磁場(B)の影響をうけて回転している態様を示したものである。
【0019】
図3〜図9セラミックス単結晶粒子を使用してセラミックス高次構造体を製造する方法を典型的な工程毎に例示した模式図である。
【0020】
図3は蒸留水に酸を加えて水素イオン濃度(pH)を4.0〜6.0の弱酸性に調整したものにセラミックス単結晶の粒子を分散させてセラミックス単結晶粒子(1)のサスペンション(2)を示したものである。分散されたセラミックス単結晶粒子(1)はこのサスペンション(2)中において帯電した状態にある。また、図4はこのサスペンション(2)に上方向の磁場を付与することによってセラミックス単結晶粒子(1)が配向されている態様を示したものである。そして、図5はセラミックス単結晶粒子(1)が配向したサスペンションに、上方が陰極基板(3)および下方が陽極基板(4)になるような電極基板を浸漬し、直流電流(DC)を印加して配向されたセラミックス単結晶粒子(1)が配向されたままの状態で磁場上方の陰極基板(3)に堆積されている状態を示している。
【0021】
図6はこの出願の発明の装置の概要であり、強磁場(10T)中における電気泳動法(EPD)の態様を示している。図6における(B)は磁場の方向を、また(5)は超伝導マグネットを、そして(6)は銅線を示している。
【0022】
なお、図5および図6では、この出願の発明を理解しやすくするために磁場の引加方向(B)と電場の方向(↓)が上下方向の態様だけが示されている。
【0023】
一般に、磁場の引加方向(B)と電場の方向(↓)の関係においては、帯電させたセラミックス単結晶粒子の電気泳動方向を磁場方向と平行に設定することは電荷粒子が磁場を横切ることによるローレンツ力の発生、およびローレンツ力によるスラリー中における渦の発生(攪拌)を防ぐために好ましいが、必ずしも電気泳動方向と磁場方向と平行に設定する必要がなく、たとえば、図7、図8および図9に模式的に示されるように多様な態様が考慮される。
【0024】
図10は基板上にセラミックス単結晶粒子が色々な方向に配向されたセラミックス構造体を示したものであり、このセラミックス構造体を陰極基板(3)から剥離して乾燥する。乾燥した後、たとえば1200℃〜2000℃の温度で約1〜5時間焼成する。
【0025】
図11は、セラミックスの単結晶粒子が配向された薄幕体を模式的に示したものであり、図12はセラミックス単結晶粒子を層毎に方向が異なるように配向された積層体を模式的に示したものである。
【0026】
なお、この図11および図12で示したものは、この出願の態様の一部を例示したものであり磁場や電場の強度や方向、さらにはサスペンションにおけるセラミックス単結晶粒子の濃度や粒径、堆積後の焼成の有無やその際の温度や時間等の諸条件については、対象とするセラミックス単結晶粒子の種類や堆積後の層厚、セラミックス構造体の生産性、用途等を考慮して適宜に定められることは言うまでもない。
【0027】
たとえば、セラミックス単結晶粒子は平均粒径が0.02〜3.0μmの範囲であることが一般的に好ましい。また、磁場の強度について特に限定はなく1T(テスラ)程度でも可能であるが磁場の強度が5T(テスラ)以上で大きな配向が見られることが確認されている。
【0028】
しかしながら、電場については、あまり強い電場をかけるとセラミックス単結晶粒子の電気泳動速度が増すことによる溶媒からの抵抗の上昇、溶媒の電気分解により電極表面で発生するガス等の影響によりむしろ配向度が低下することも考えられる。
【0029】
さらにこの出願の発明は電極基板の表面を任意に加工することにより表面に立体模様が施された配向セラミックス構造体を製造することが可能である。
【0030】
なお、ここで言う電極基板とは曲面板やバルク体等の任意の形状を意味している。さらに多層構造とすることもでき、堆積層毎に磁場の方向を変化させることや、磁場印加せずに堆積させた無配向層を介在させてもよい。
【0031】
以上のように、この出願の発明では表面帯電したセラミックス単結晶粒子からなるサスペンションに強磁場を印加するとともに電場を印加するだけの簡単な操作で単結晶粒子の配向を任意に制御したセラミックス構造体を得ることができる。しかも、この出願の発明では通電時間や電圧または電流の強さを制御により任意の層厚のセラミックス構造体を容易に製造することができる。
【0032】
そこで、以下に実施例を示し、さらに詳しくこの出願の発明について説明する。もちろん、以下の例によって発明が限定されることはない。
【0033】
【実施例】
<実施例1>
平均粒径0.15μmの球状αアルミナ単結晶粒子を蒸留水に投入し、硝酸を用いてpHを4.0および6.0に各々調整後、超音波照射することにより、粒子表面が正に帯電した高分散の、そしてやや凝集した2種のサスペンションを調製した。この各々のサスペンションを超伝導マグネットの磁場中心位置に置き、10T(テスラ)の磁場を印加して個々の粒子を配向させた。
【0034】
この状態のまま、一対のパラジウム電極を上方が陰極となるようにサスペンションに挿入し30Vの直流の電圧を印加して、上方の基板に粒子を電気泳動により堆積させた。堆積物を乾燥後、基板(3)より剥離し、1600℃で2時間、大気中で焼成した。焼結したアルミニウム(7)と酸素(9)の元素は図13のように配置されているものと考えられる。
【0035】
図14は焼成したセラミックス高次構造体である。このセラミックス高次構造体の磁場に対して垂直方向(Top面)および水平方向(Side面)を研磨してX線回折および光学顕微鏡による組織観察を行なった。
【0036】
X線回折の結果pH4に調整した高分散サスペンションを用いて10T(テスラ)の磁場で電気泳動・堆積させた場合、図15のグラフに見られるようにTop面とSide面のX面回折ピークに大きな変化が認められ、αアルミナのC面が磁場に対して垂直方向に配向している様子が確認された。
【0037】
これに対して、pH4に調整した高分散サスペンションを用いたが磁場を印加せずに電気泳動して堆積させた場合には、図16のグラフに見られるようにTop面とSide面のX面回折ピークには全くの変化が認められない。
【0038】
図17のグラフはpH6に調整した、やや凝集したサスペンションを用いて10T(テスラ)の磁場中で電気泳動・堆積させたものを対比したものであるがC面が磁場に対して垂直にやや配向するが程度は低いことが確認された。
【0039】
これはpH4のスラリーに比べてpH6のスラリーの方が凝縮しているためアルミナ単結晶粒子の回転が妨げられて配向度が低くなるものと考えられる。
【0040】
また、図18はαアルミナ単結晶粒子(平均粒径0.2μm)を使用してpH4のサスペンションを生成し、電場−磁場方位のなす角度を0°、45°および90°に変化させてPd陰極基板上に堆積したセラミックス高次構造体を1600℃で2時間焼成した後の試料の結晶配向状態のX線回折結果を示したものである。
【0041】
粒子の泳動方向が磁場に対して平行な場合(角度=0°)、アルミナ単位格子のC面(底面)である(006)面および(0012)面、C面に対し17.5°傾いた(1010)面、21.5°傾いた(018)面などの回折強度が高い。
【0042】
これに対し、角度=45°の場合では、C面に対し42.3°傾いた(116)の回折強度が最も高く、その他に38.3°傾いた(104)面、57.6°傾いた(012)面および(024)面、61.2°傾いた(113)面の回折強度が高い。
さらに、粒子の泳動方向と磁場が直交する場合(角度=90°)では、C面に直交する(110)面、(030)面および(220)面の回折強度が高い。
X線回折ピークのうち、C面に対する角度=0°の面(006)および90度の面(110)の強度から、粒子の配向度P(%)を次式で定義した。
【0043】
P=(I006+I110)×100
この式に従って、配向度を計算したのが表1である。
【0044】
【表1】

Figure 2004131363
pH4のスラリーを使用して電場−磁場方位のなす角度=0°にした状態で10T(テスラ)の磁場で堆積したものを1600℃で2時間焼結を行った後、1400℃で2時間熱腐食処理した後、Top面とSide面の組織を光学顕微鏡で観察したものを示したものが図19(Top面)および図20(Side面)である。図20から明らかなようにαアルミナのC面に平行な方向であるSide面(図20)では磁場と平行に粒子が横長に成長している様子が観察されたのに対し、熱腐食の影響を受けにくいと予想されるTop面(図19)では単結晶粒界が鮮明に観察されなかった。
【0045】
<実施例2>
平均粒径0.15μmの球状αアルミナ単結晶粒子を蒸留水中に投入し、硝酸を用いてpHを4.0に調整後、超音波照射することにより、結晶粒子表面が正に帯電した高分散サスペンションを調製した。このサスペンションを分割し、一つは10Tの強磁場中に、もう一つはマグネットの磁場の外に置き、二つのサスペンションの間で同一基板上に電気泳動・堆積を交互に行なうことにより、αアルミナ<配合/無配向>積層体を製造した。積層体を室温で乾燥した後、基板より剥離し、1600℃の温度、2時間大気中で焼成した。
【0046】
焼成後の試料を磁場に対して水平方向(Side)の面を研磨面して、1400℃で2時間の熱腐食処理の後、光学顕微鏡による組織観察を行なった。
【0047】
この光学顕微鏡による断面写真が図21であるが、この図21におけるO層(Oriented layer)で示される部位は配向層であり、R層(Randomly oriented layer)で示される部位は無配向層である。熱腐食速度の差によって生じた配向層(0層)と無配向層(R層)の差は明確に示されている。また、図22はず21のO層とR層の表面の拡大写真である。
【0048】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、従来のような鋳込み成形のための型や容器を必要とせず、簡便に、単結晶粒子の配向性と層厚の制御を可能として、高度にセラミックス単結晶粒子が配向された単層または多層のセラミックス高次構造体が提供される。
【図面の簡単な説明】
【図1】立方晶以外の結晶構造を持つ単結晶粒子の構造と磁化率の異方性を示したものである。
【図2】結晶磁気異方性による磁場(B)中における配向を模式的に示したものである。
【図3】サスペンション中のセラミックス単結晶粒子の状態を示したものである。
【図4】強磁場によってセラミックス単結晶粒子が配向している状態を示す模式図である。
【図5】セラミックス単結晶粒子が電気泳動・堆積している状態を示す模式図である。
【図6】この出願の発明の装置の概要を示したものである。
【図7】電場と磁場の角度が0°の態様を示している。
【図8】電場と磁場の角度が45°の態様を示している。
【図9】電場と磁場の角度が90°の態様を示している。
【図10】配向された多層セラミックス堆積体を示している。
【図11】結晶方位が配向された薄膜である。
【図12】結晶方位が配向または無配向の積層体である。
【図13】セラミックス高次構造体の構造とC面の配置図である。
【図14】焼結後のセラミックス高次構造体である。
【図15】10T、pH4におけるαアルミナ単一体の単結晶粒子配向性に及ぼす磁場の影響を例示したX線回折図。
【図16】0T、pH4におけるαアルミナ単一体の単結晶粒子配向性に及ぼす磁場の影響を例示したX線回折図。
【図17】サスペンジョンにおける水素イオン濃度がαアルミナの単結晶粒子の配向性におよぼす影響を対比したX線回折図。
【図18】電場と磁場の角度を変化させた時の結晶配向状態の差異を示したX線回折である。
【図19】αアルミナの単一体のTop面の光学顕微鏡の写真である。
【図20】αアルミナの単一体のSide面の光学顕微鏡の写真である。
【図21】αアルミナの単結晶体の配向部と無配向部を示す光学顕微鏡写真である。
【図22】αアルミナの単結晶体の配向部と無配向部の拡大写真である。
【符号の説明】
1 セラミックス単結晶粒子
2 サスペンション
3 陰極基板
4 陽極基板
5 超伝導マグネット
6 銅線
7 アルミニウム元素
8 酸素元素
B 電場方向[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for manufacturing a ceramic higher-order structure in which ceramic single crystal particles are oriented, and more specifically, as a functional ceramic or the like capable of controlling the mechanical strength and the directionality of electrical characteristics. The present invention relates to a useful method for manufacturing a new ceramic structure.
[0002]
[Prior art]
α-alumina has a corundum structure, and its single crystal particles have a cleavage plane on the hexagonal C plane (plane perpendicular to the c-axis direction, {001} plane). It is said to be strong. For this reason, alumina ceramics in which the C-planes are aligned and oriented have attracted attention as high-strength alumina.
[0003]
Ceramics in which single crystal grains are oriented, such as alumina, have attracted attention as functional ceramics, for example, having excellent electrical characteristics in specific directions. Furthermore, it is also known that ceramics that are resistant to cracking due to impact can be obtained by alternately laminating ceramics having different strengths like oyster shells or plywood.
[0004]
For example, based on the above-mentioned conventional knowledge, attempts have been made to realize a ceramic high-order structure having high strength and high functionality by controlling the orientation and structure of single crystal particles at a higher level. For example, as shown in Japanese Patent Application Laid-Open No. Sho 64-33055, a high-strength alumina ceramic is prepared by a pressure sintering method such as hot pressing, or a tape-shaped molded product of flat alumina (corundum) particles and corundum powder or A method has been proposed in which tape-shaped formed bodies of amorphous alumina powder are alternately laminated and fired.
[0005]
However, in this method, in order to obtain tabular grains, it is necessary to synthesize gypsite Al (OH) 3 at a temperature of 350 ° C. or more in advance by hydrothermal treatment at 100 atm or less. Further, since the tape-shaped components are laminated, pressed and sintered, the shape is limited to a flat plate. In addition, Japanese Patent Application Laid-Open No. 2-64065 discloses a method utilizing the property that the C-plane is oriented perpendicular to the direction of stress by applying centrifugal force using thin or leaf-shaped raw material powder. Is shown in
[0006]
Recently, there has been reported a method for producing alumina in which single-crystal orientation is oriented by heat treatment after slip casting in a strong magnetic field (Powder and Powder Metallurgy Association lecture summary (May 2000), p98, Powder and powder metallurgy, 47 [9], 1010-1014 (2000), Adv. Eng. Mat., 3 [7], 490-492 (2001), etc.).
[0007]
In this method, spherical α-alumina single crystal particles are dispersed in a solvent, and a strong magnetic field of 10 T (tesla) is applied to a suspension of the suspension to form a single crystal magnetic anisotropy (a-b plane direction and c-axis direction) of alumina. Utilizing the micro magnetic susceptibility difference), orienting the alumina particles, casting the suspension into a porous ceramic mold such as gypsum (slip casting), solidifying, and firing at a temperature higher than the normal densification temperature. By tying, highly oriented alumina ceramics in which plate-like alumina single crystal grains are aligned in a direction perpendicular to the magnetic field are manufactured.
[0008]
This method does not require plate-like particles as the raw material, is easy to adjust the suspension, and is an excellent method for producing a single-piece ceramic with a single crystal orientation, but has a laminated orientation with a controlled layer thickness. It is difficult to shape the body.
[0009]
Further, in the method for producing oriented alumina ceramics disclosed in JP-A-2002-53367, a suspension in which alumina particles are oriented in a strong magnetic field is poured into a predetermined container (Teflon (registered trademark) in the example). A method of drying at room temperature as it is is shown.
[0010]
However, it is more difficult to produce a laminated alignment body having a controlled layer thickness by this method than by the casting method. Further, since this method does not use a hygroscopic mold, a suspension having a high concentration of 30 to 50% by volume is required.
[0011]
Therefore, the invention of this application solves the above-mentioned problems of the prior art, and does not require a mold and a container for cast molding and a high-concentration suspension. It is an object of the present invention to provide a single-layer or multilayer ceramic higher-order structure in which ceramic single crystal particles are oriented.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of this application firstly oriented a single crystal particle by applying a magnetic field to a suspension of charged ceramic single crystal particles, and maintained the orientation. An electric field is applied to the suspension in a state, and while the charged ceramic single crystal particles are electrophoresed, the single crystal particles are deposited on the electrode substrate or the ceramic single crystal particle layer thereon. The second is a method for producing the ceramic higher-order structure, wherein the direction of the electric field is changed while changing the direction of the electric field with respect to the magnetic field. Fourthly, the method for producing a ceramic higher-order structure that is deposited while changing every time is described below. Fourth, the direction of the electric field with respect to the direction of the magnetic field is 0 °, 45 °, or 90 °. Fifth, the method for producing a ceramic higher-order structure in which the ceramic single crystal particles are α-alumina single-crystal particles, and sixth, Is a method for manufacturing the above-mentioned ceramic higher-order structure in which the strength of the magnetic field is 10 T or more. Seventh, a method for manufacturing the above-mentioned ceramic higher-order structure for adjusting the suspension to be weakly acidic is described in eighth. Is a method for producing the above ceramics higher-order structure in which the average particle size of the ceramic single crystal particles is 0.02 to 3.0 μm. Ninth, at least one method is used for the deposition by any of the above methods. Of a ceramic high-order structure that forms an unoriented ceramic single-crystal particle layer by electrophoretic deposition by applying only an electric field to the suspension of ceramic single-crystal particles with a charged part layer A tenth method for producing the ceramic high-order structure having a three-dimensional pattern formed on the surface of the electrode substrate, and a eleventh method for producing the ceramic single crystal particles by any one of the methods described above. And a method for manufacturing a ceramics higher-order structure that is dried and fired after deposition.
[0013]
Also, twelfthly, the invention of this application provides a ceramic high-order structure in which single crystal particles are oriented, characterized by being manufactured by any one of the above methods.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention of this application has the features as described above, and embodiments thereof will be described below.
[0015]
First of all, what is characteristic is that the invention of this application firstly aligns the individual particles under a strong magnetic field using the magnetocrystalline anisotropy of the charged and dispersed ceramic single crystal particles. Second, an electric field is applied to cause electrophoresis to deposit. Thus, a ceramic higher-order structure in which the orientation of the single crystal particles and the layer thickness of the oriented single crystal particles are highly controlled is realized.
[0016]
Note that the ceramic higher-order structure in the invention of this application is not limited to a ceramic single body manufactured using only a suspension having the same orientation of ceramic single crystal particles, but also a suspension having different orientations of ceramic single crystal particles and other forms. And ceramic laminates manufactured by combining the above.
[0017]
A method for producing a ceramic higher-order structure in which single-crystal particles are oriented by a magnetic field electrophoresis method as described above according to the invention of this application has not been known at all.
[0018]
The invention of this application will be described with reference to the drawings. FIG. 1 shows single crystal particles having a crystal structure other than cubic, and the ceramic single crystal particles used in the invention of this application also have such a structure. ing. FIG. 2 shows a mode in which the single crystal particles having such a structure are rotated under the influence of the magnetic field (B).
[0019]
FIGS. 3 to 9 are schematic diagrams illustrating a method of manufacturing a ceramic higher-order structure using ceramic single crystal particles for each typical process.
[0020]
FIG. 3 shows a suspension of ceramic single crystal particles (1) by dispersing ceramic single crystal particles in a solution obtained by adding an acid to distilled water to adjust the hydrogen ion concentration (pH) to a weak acidity of 4.0 to 6.0. (2) is shown. The dispersed ceramic single crystal particles (1) are charged in the suspension (2). FIG. 4 shows an aspect in which the ceramic single crystal particles (1) are oriented by applying an upward magnetic field to the suspension (2). In FIG. 5, an electrode substrate having an upper surface serving as a cathode substrate (3) and an lower surface serving as an anode substrate (4) is immersed in a suspension in which the ceramic single crystal particles (1) are oriented, and a direct current (DC) is applied. This shows a state in which the ceramic single crystal particles (1) which have been oriented in this way are deposited on the cathode substrate (3) above the magnetic field in a state where they are oriented.
[0021]
FIG. 6 shows an outline of the apparatus of the invention of this application, and shows an embodiment of electrophoresis (EPD) in a strong magnetic field (10 T). 6 (B) shows the direction of the magnetic field, (5) shows the superconducting magnet, and (6) shows the copper wire.
[0022]
FIGS. 5 and 6 show only a mode in which the direction of application of the magnetic field (B) and the direction of the electric field (↓) are vertical in order to facilitate understanding of the invention of this application.
[0023]
Generally, in the relationship between the direction of the applied magnetic field (B) and the direction of the electric field (↓), setting the electrophoresis direction of the charged ceramic single crystal particles parallel to the magnetic field direction means that the charged particles cross the magnetic field. It is preferable to prevent the generation of Lorentz force and the generation of vortex (stirring) in the slurry due to the Lorentz force, but it is not always necessary to set the direction of electrophoresis and the direction of the magnetic field in parallel. For example, FIGS. Various embodiments are considered, as shown schematically in FIG.
[0024]
FIG. 10 shows a ceramic structure in which ceramic single crystal particles are oriented in various directions on a substrate. This ceramic structure is separated from the cathode substrate (3) and dried. After drying, baking is performed at a temperature of, for example, 1200C to 2000C for about 1 to 5 hours.
[0025]
FIG. 11 schematically shows a thin screen body in which ceramic single crystal particles are oriented, and FIG. 12 schematically shows a laminated body in which ceramic single crystal particles are oriented so that the direction differs for each layer. This is shown in FIG.
[0026]
11 and 12 illustrate a part of the embodiment of this application, and show the strength and direction of the magnetic field and electric field, the concentration and the particle size of the ceramic single crystal particles in the suspension, and the accumulation. Various conditions such as the presence or absence of subsequent firing and the temperature and time at that time are appropriately determined in consideration of the type of the target ceramic single crystal particles, the layer thickness after deposition, the productivity of the ceramic structure, the application, etc. It goes without saying that it is determined.
[0027]
For example, it is generally preferred that the ceramic single crystal particles have an average particle size in the range of 0.02 to 3.0 μm. The strength of the magnetic field is not particularly limited, and it is possible to use about 1 T (tesla). However, it has been confirmed that a large orientation is observed when the strength of the magnetic field is 5 T (tesla) or more.
[0028]
However, with respect to the electric field, when a too strong electric field is applied, the degree of orientation is rather increased due to an increase in resistance from the solvent due to an increase in the electrophoresis speed of the ceramic single crystal particles and a gas generated on the electrode surface due to the electrolysis of the solvent. It is also conceivable that it will decrease.
[0029]
Further, according to the invention of this application, it is possible to manufacture an oriented ceramic structure having a three-dimensional pattern on the surface by arbitrarily processing the surface of the electrode substrate.
[0030]
Here, the electrode substrate means an arbitrary shape such as a curved plate or a bulk body. Furthermore, a multi-layer structure may be used, and the direction of the magnetic field may be changed for each deposition layer, or a non-oriented layer deposited without applying a magnetic field may be interposed.
[0031]
As described above, according to the invention of this application, a ceramic structure in which the orientation of single crystal particles is arbitrarily controlled by a simple operation of applying a strong magnetic field and applying an electric field to a suspension composed of surface-charged ceramic single crystal particles. Can be obtained. In addition, according to the invention of this application, a ceramic structure having an arbitrary thickness can be easily manufactured by controlling the energization time and the intensity of the voltage or current.
[0032]
Therefore, examples will be shown below, and the invention of this application will be described in more detail. Of course, the invention is not limited by the following examples.
[0033]
【Example】
<Example 1>
Spherical α-alumina single crystal particles having an average particle size of 0.15 μm are put into distilled water, and the pH is adjusted to 4.0 and 6.0 using nitric acid, respectively, and then, ultrasonic irradiation is performed, so that the particle surface becomes positive. Two suspensions of charged, highly dispersed and slightly aggregated were prepared. Each suspension was placed at the center of the magnetic field of the superconducting magnet, and a magnetic field of 10 T (tesla) was applied to orient the individual particles.
[0034]
In this state, a pair of palladium electrodes was inserted into the suspension so that the upper portion was a cathode, and a DC voltage of 30 V was applied to deposit particles on the upper substrate by electrophoresis. After drying the deposit, it was peeled off from the substrate (3) and baked at 1600 ° C. for 2 hours in the air. It is considered that the sintered aluminum (7) and oxygen (9) elements are arranged as shown in FIG.
[0035]
FIG. 14 shows a fired ceramic higher-order structure. The ceramic higher-order structure was polished in a vertical direction (Top plane) and a horizontal direction (Side plane) with respect to the magnetic field, and the structure was observed by X-ray diffraction and an optical microscope.
[0036]
As a result of X-ray diffraction, when electrophoresis and deposition were performed with a magnetic field of 10 T (tesla) using a high-dispersion suspension adjusted to pH 4, as shown in the graph of FIG. A large change was observed, and it was confirmed that the C-plane of α-alumina was oriented in a direction perpendicular to the magnetic field.
[0037]
On the other hand, when a high-dispersion suspension adjusted to pH 4 was used but electrophoresis was performed without applying a magnetic field, deposition was performed as shown in the graph of FIG. No change is observed in the diffraction peak.
[0038]
The graph in FIG. 17 is a graph comparing the results of electrophoresis and deposition in a magnetic field of 10 T (tesla) using a slightly aggregated suspension adjusted to pH 6, but the C plane is slightly oriented perpendicular to the magnetic field. However, it was confirmed that the degree was low.
[0039]
This is presumably because the slurry of pH 6 is more condensed than the slurry of pH 4, so that the rotation of the alumina single crystal particles is hindered and the degree of orientation is lowered.
[0040]
FIG. 18 shows that a suspension having a pH of 4 was formed using α-alumina single crystal particles (average particle size: 0.2 μm), and the angle between the electric field and the magnetic field was changed to 0 °, 45 °, and 90 ° to change the Pd. FIG. 9 shows the results of X-ray diffraction of the crystal orientation state of the sample after firing the ceramic higher-order structure deposited on the cathode substrate at 1600 ° C. for 2 hours.
[0041]
When the migration direction of the particles is parallel to the magnetic field (angle = 0 °), the alumina unit cell is inclined by 17.5 ° with respect to the (006) plane and the (0012) plane which are the C plane (bottom plane) and the C plane. Diffraction intensity is high on the (1010) plane and the (018) plane inclined at 21.5 °.
[0042]
On the other hand, when the angle is 45 °, the diffraction intensity of (116) inclined at 42.3 ° with respect to the C plane is the highest, and the (104) plane inclined at 38.3 ° and 57.6 ° are also inclined. The (012) plane, the (024) plane, and the (113) plane inclined by 61.2 ° have high diffraction intensities.
Further, when the migration direction of the particles and the magnetic field are orthogonal (angle = 90 °), the diffraction intensities of the (110), (030), and (220) planes orthogonal to the C plane are high.
Among the X-ray diffraction peaks, the degree of orientation P (%) of the particles was defined by the following equation from the intensity of the plane (006) at an angle of 0 ° with respect to the C plane and the plane (110) at 90 degrees.
[0043]
P = (I 006 + I 110 ) × 100
Table 1 shows the degree of orientation calculated according to this equation.
[0044]
[Table 1]
Figure 2004131363
A slurry deposited at a magnetic field of 10 T (tesla) in a state where the angle between the electric field and the magnetic field is 0 ° using a slurry of pH 4 is sintered at 1600 ° C. for 2 hours, and then heated at 1400 ° C. for 2 hours. FIG. 19 (Top surface) and FIG. 20 (Side surface) show the structures of the top surface and the side surface observed by an optical microscope after the corrosion treatment. As is clear from FIG. 20, on the Side plane (FIG. 20), which is a direction parallel to the C-plane of α-alumina, it was observed that the particles grew horizontally in parallel with the magnetic field, but the effect of thermal corrosion was observed. Single crystal grain boundaries were not clearly observed on the Top plane (FIG. 19), which is expected to be less susceptible to cracking.
[0045]
<Example 2>
Spherical α-alumina single crystal particles having an average particle size of 0.15 μm are put into distilled water, the pH is adjusted to 4.0 using nitric acid, and then the surface is irradiated with ultrasonic waves. A suspension was prepared. By dividing this suspension, one is placed in a strong magnetic field of 10 T, and the other is placed outside the magnetic field of the magnet, and electrophoresis and deposition are alternately performed on the same substrate between the two suspensions, so that α An alumina <blended / non-oriented> laminate was produced. After the laminate was dried at room temperature, it was peeled off from the substrate and fired in the air at 1600 ° C. for 2 hours.
[0046]
The surface of the fired sample was polished in the direction parallel to the magnetic field (Side), and subjected to heat corrosion treatment at 1400 ° C. for 2 hours.
[0047]
A cross-sectional photograph by this optical microscope is shown in FIG. 21. In FIG. 21, a portion indicated by an O layer (Oriented layer) is an oriented layer, and a portion indicated by an R layer (Randomly oriented layer) is a non-oriented layer. . The difference between the oriented layer (0 layer) and the non-oriented layer (R layer) caused by the difference in the thermal corrosion rate is clearly shown. FIG. 22 is an enlarged photograph of the surface of the O layer and the R layer shown in FIG.
[0048]
【The invention's effect】
As described in detail above, according to the invention of this application, it is possible to easily control the orientation and layer thickness of single crystal particles without requiring a mold or a container for cast molding as in the related art, and to achieve advanced ceramics. A single-layer or multilayer ceramic higher-order structure in which single-crystal particles are oriented is provided.
[Brief description of the drawings]
FIG. 1 shows the structure of single crystal particles having a crystal structure other than cubic and the anisotropy of magnetic susceptibility.
FIG. 2 schematically shows the orientation in a magnetic field (B) due to crystal magnetic anisotropy.
FIG. 3 shows a state of ceramic single crystal particles in a suspension.
FIG. 4 is a schematic diagram showing a state in which ceramic single crystal particles are oriented by a strong magnetic field.
FIG. 5 is a schematic diagram showing a state in which ceramic single crystal particles are electrophoresed and deposited.
FIG. 6 shows an outline of the device of the invention of this application.
FIG. 7 shows an embodiment in which the angle between an electric field and a magnetic field is 0 °.
FIG. 8 shows an embodiment in which the angle between an electric field and a magnetic field is 45 °.
FIG. 9 shows an embodiment in which the angle between an electric field and a magnetic field is 90 °.
FIG. 10 shows an oriented multilayer ceramic deposit.
FIG. 11 is a thin film in which the crystal orientation is oriented.
FIG. 12 shows a laminate in which the crystal orientation is oriented or non-oriented.
FIG. 13 is a diagram showing a structure of a ceramic higher-order structure and a layout of a C-plane.
FIG. 14 shows a ceramic higher-order structure after sintering.
FIG. 15 is an X-ray diffraction diagram illustrating the effect of a magnetic field on the single crystal particle orientation of a single α-alumina at 10 T, pH 4.
FIG. 16 is an X-ray diffraction diagram exemplifying the effect of a magnetic field on the single crystal grain orientation of a single α-alumina at 0 T, pH 4.
FIG. 17 is an X-ray diffraction diagram comparing the effect of hydrogen ion concentration in suspension on the orientation of α-alumina single crystal particles.
FIG. 18 is an X-ray diffraction showing a difference in a crystal orientation state when an angle between an electric field and a magnetic field is changed.
FIG. 19 is an optical microscope photograph of a top surface of a single body of α-alumina.
FIG. 20 is an optical microscope photograph of a Side surface of a single body of α-alumina.
FIG. 21 is an optical microscope photograph showing an oriented part and a non-oriented part of a single crystal body of α-alumina.
FIG. 22 is an enlarged photograph of an oriented part and a non-oriented part of a single crystal body of α-alumina.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic single crystal particle 2 Suspension 3 Cathode substrate 4 Anode substrate 5 Superconducting magnet 6 Copper wire 7 Aluminum element 8 Oxygen element B Electric field direction

Claims (12)

帯電させたセラミックス単結晶粒子のサスペンションに磁場を印加することにより単結晶粒子を配向させ、その配向を保持した状態でサスペンションに電場を印加し、帯電したセラミックス単結晶粒子を電気泳動させながら電極基板もしくはその上のセラミックス単結晶粒子層上に堆積させることを特徴とする単結晶粒子が配向されたセラミックス高次構造体の製造方法。A magnetic field is applied to the suspension of the charged ceramic single crystal particles to orient the single crystal particles, an electric field is applied to the suspension while maintaining the orientation, and the charged ceramic single crystal particles are electrophoresed while the electrode substrate is being electrophoresed. Alternatively, a method for producing a ceramic high-order structure in which single-crystal particles are oriented, wherein the method is deposited on a ceramic single-crystal particle layer thereon. 磁場に対して電場の方向を変化させながら堆積することを特徴とする請求項1のセラミックス高次構造体の製造方法。2. The method according to claim 1, wherein the deposition is performed while changing the direction of the electric field with respect to the magnetic field. 磁場に対して電場の方向を堆積層毎に変化させながら堆積することを特徴とする請求項1または2のセラミックス高次構造体の製造方法。3. The method according to claim 1, wherein the deposition is performed while changing the direction of the electric field with respect to the magnetic field for each deposition layer. 磁場の方向に対する電場の方向を0°、45°、90°のいずれかの角度にすることを特徴とする請求項3のセラミックス高次構造体の製造方法。4. The method according to claim 3, wherein the direction of the electric field with respect to the direction of the magnetic field is any one of 0 °, 45 °, and 90 °. セラミックス単結晶粒子がαアルミナ単結晶粒子であることを特徴とする請求項1ないし4のいずれかのセラミックス高次構造体の製造方法。5. The method according to claim 1, wherein the ceramic single crystal particles are α-alumina single crystal particles. 磁場の強さを10T以上にすることを特徴とする請求項1ないし5のいずれかのセラミックス高次構造体の製造方法。6. The method according to claim 1, wherein the intensity of the magnetic field is 10 T or more. サスペンションを弱酸性に調整することを特徴とする請求項1ないし6のいずれかのセラミックス高次構造体の製造方法。7. The method for manufacturing a ceramic high-order structure according to claim 1, wherein the suspension is adjusted to be weakly acidic. セラミックス単結晶粒子の平均粒径が0.02〜3.0μmであることを特徴とする請求項1ないし7のいずれかのセラミックス高次構造体の製造方法。8. The method according to claim 1, wherein the ceramic single crystal particles have an average particle size of 0.02 to 3.0 [mu] m. 請求項1ないし8のいずれかの方法による堆積に際し、少くとも一部の層を帯電させたセラミックス単結晶粒子のサスペンションに電場のみを印加して電気泳動堆積して無配向セラミックス単結晶粒子層として形成することを特徴とするセラミックス高次構造体の製造方法。9. A method according to claim 1, wherein at least a part of the suspension of the ceramic single crystal particles is charged by applying only an electric field and electrophoretically deposited to form a non-oriented ceramic single crystal particle layer. A method for producing a ceramics higher-order structure, characterized by being formed. 電極基板は、その表面に立体模様が施されていることを特徴とする請求項1ないし9のいずれかのセラミックス高次構造体の製造方法。The method according to any one of claims 1 to 9, wherein the electrode substrate has a three-dimensional pattern formed on a surface thereof. 請求項1ないし10のいずれかの方法によりセラミックス単結晶粒子を堆積した後に乾燥および焼成することを特徴とするセラミックス高次構造体の製造方法。A method for manufacturing a ceramics higher-order structure, comprising drying and firing after depositing ceramic single crystal particles by the method according to any one of claims 1 to 10. 請求項1ないし11のいずれかの方法により製造されたものであることを特徴とする単結晶粒子が配向されたセラミックス高次構造体。A ceramic high-order structure in which single-crystal particles are oriented, which is manufactured by the method according to claim 1.
JP2003079130A 2002-08-16 2003-03-20 Multilayer ceramic high-order structure and manufacturing method thereof Expired - Lifetime JP4576522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079130A JP4576522B2 (en) 2002-08-16 2003-03-20 Multilayer ceramic high-order structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002237617 2002-08-16
JP2003079130A JP4576522B2 (en) 2002-08-16 2003-03-20 Multilayer ceramic high-order structure and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006276451A Division JP4635189B2 (en) 2002-08-16 2006-10-10 Method for controlling orientation angle in method for producing structure in which single crystal particles are oriented

Publications (2)

Publication Number Publication Date
JP2004131363A true JP2004131363A (en) 2004-04-30
JP4576522B2 JP4576522B2 (en) 2010-11-10

Family

ID=32301062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079130A Expired - Lifetime JP4576522B2 (en) 2002-08-16 2003-03-20 Multilayer ceramic high-order structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4576522B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161828A (en) * 2005-12-13 2007-06-28 National Institute Of Advanced Industrial & Technology Method for controlling orientation of organic microcrystal
JP2007286448A (en) * 2006-04-19 2007-11-01 Kyoritsu Kagaku Sangyo Kk Actuator and display device using actuator
US7482042B2 (en) 2004-09-29 2009-01-27 Fujifilm Corporation Film forming method and film forming apparatus
WO2009082964A1 (en) * 2007-12-26 2009-07-09 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences A polycrystalline alumina transparent ceramic with optimized orientation and preparing method thereof
US8092777B2 (en) 2008-02-04 2012-01-10 Toyota Jidosha Kabushiki Kaisha Process for producing anisotropic magnetic material and anisotropic magnetic material
WO2012008253A1 (en) * 2010-07-14 2012-01-19 シャープ株式会社 Method for disposing fine objects, apparatus for arranging fine objects, illuminating apparatus and display apparatus
WO2013140607A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Solid electrolyte, solid electrolyte production method, cell, and cell pack
JP2014077201A (en) * 2006-10-10 2014-05-01 Oerlikon Trading Truebbach Coating system having at least one double oxide mixed crystal coating
JP2019144525A (en) * 2017-10-13 2019-08-29 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Method and system for arranging large amount of micro component device
JP2020026379A (en) * 2018-08-15 2020-02-20 出光興産株式会社 Polycrystalline alumina substrate and laminate
US10748792B2 (en) 2017-10-13 2020-08-18 Maven Optronics Co., Ltd. Method and system for mass arrangement of micro-component devices

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482042B2 (en) 2004-09-29 2009-01-27 Fujifilm Corporation Film forming method and film forming apparatus
JP2007161828A (en) * 2005-12-13 2007-06-28 National Institute Of Advanced Industrial & Technology Method for controlling orientation of organic microcrystal
JP2007286448A (en) * 2006-04-19 2007-11-01 Kyoritsu Kagaku Sangyo Kk Actuator and display device using actuator
JP2014077201A (en) * 2006-10-10 2014-05-01 Oerlikon Trading Truebbach Coating system having at least one double oxide mixed crystal coating
WO2009082964A1 (en) * 2007-12-26 2009-07-09 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences A polycrystalline alumina transparent ceramic with optimized orientation and preparing method thereof
US8092777B2 (en) 2008-02-04 2012-01-10 Toyota Jidosha Kabushiki Kaisha Process for producing anisotropic magnetic material and anisotropic magnetic material
CN102971873A (en) * 2010-07-14 2013-03-13 夏普株式会社 Method for disposing fine objects, apparatus for arranging fine objects, illuminating apparatus and display apparatus
WO2012008253A1 (en) * 2010-07-14 2012-01-19 シャープ株式会社 Method for disposing fine objects, apparatus for arranging fine objects, illuminating apparatus and display apparatus
US9181630B2 (en) 2010-07-14 2015-11-10 Sharp Kabushiki Kaisha Method for disposing fine objects, apparatus for arranging fine objects, illuminating apparatus and display apparatus
WO2013140607A1 (en) * 2012-03-23 2013-09-26 株式会社 東芝 Solid electrolyte, solid electrolyte production method, cell, and cell pack
US10892517B2 (en) 2012-03-23 2021-01-12 Kabushiki Kaisha Toshiba Solid electrolyte, manufacturing method of solid electrolyte, battery and battery pack
JP2019144525A (en) * 2017-10-13 2019-08-29 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Method and system for arranging large amount of micro component device
US10748792B2 (en) 2017-10-13 2020-08-18 Maven Optronics Co., Ltd. Method and system for mass arrangement of micro-component devices
JP2020026379A (en) * 2018-08-15 2020-02-20 出光興産株式会社 Polycrystalline alumina substrate and laminate
JP7260869B2 (en) 2018-08-15 2023-04-19 出光興産株式会社 Polycrystalline alumina substrate and laminate

Also Published As

Publication number Publication date
JP4576522B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4576522B2 (en) Multilayer ceramic high-order structure and manufacturing method thereof
JP2010254560A (en) Ceramic, piezoelectric device, and method for producing the device
KR102308852B1 (en) BiScO3-PbTiO3 PIEZOELECTRIC MATERIAL COMPRISING BaTiO3 SEED LAYERS, AND METHOD OF FABRICATING THE SAME
Le Ferrand Magnetic slip casting for dense and textured ceramics: A review of current achievements and issues
JP5615591B2 (en) Method for producing crystal particles and method for producing crystal-oriented ceramics
CN110615467B (en) Barium titanate substrate-shaped template seed crystal with preferred orientation along &lt;111&gt; and A-site composition
EA005348B1 (en) Method of electrolytic reduction of metal oxides such as titanium dioxide and process applications
JP5676148B2 (en) Crystal-oriented ceramic composite and piezoelectric / electrostrictive element
JPH06340468A (en) Crystal-oriented zinc oxide sintered compact
JP2011230373A (en) Method of manufacturing ceramics, and piezoelectric material
Sakka et al. Forming and microstructure control of ceramics by electrophoretic deposition (EPD)
TW200949872A (en) Process for producing dielectric film and process for producing capacitor layer forming material using the process for producing dielectric film
JP4635189B2 (en) Method for controlling orientation angle in method for producing structure in which single crystal particles are oriented
He et al. Piezoelectric nanogenerators based on self-poled two-dimensional Li-doped ZnO microdisks
JPH0264065A (en) Production of ceramics containing oriented crystal grain
JP5523166B2 (en) Ceramics and piezoelectric / electrostrictive element
EP2374772A1 (en) Ceramic, and piezoelectri/electrostriction element
Vriami et al. Hydrothermally synthesized BaTiO3 textured in a strong magnetic field
JP2014012620A (en) Production method of orientation ceramic, orientation ceramic, and ceramic electronic component
CN109111222A (en) A kind of multiferroic ceramics and preparation method thereof with this structure of viral in Austria of Co doping
TW572866B (en) Centrifugal sintering method and use thereof
Chen et al. Effect of suction force and starting powders on microstructure of Bi4Ti3O12 ceramics prepared by magnetic alignment via slip casting
WO2015093436A1 (en) Piezoelectric ceramic with crystal orientation, production method therefor, and piezoelectric element
JP6813441B2 (en) Oriented ceramic sintered body and its manufacturing method
Uchikoshi et al. Electrophoretic deposition of orientation-controlled zeolite L layer on porous ceramic substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070604

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4576522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term