WO2015093436A1 - Piezoelectric ceramic with crystal orientation, production method therefor, and piezoelectric element - Google Patents

Piezoelectric ceramic with crystal orientation, production method therefor, and piezoelectric element Download PDF

Info

Publication number
WO2015093436A1
WO2015093436A1 PCT/JP2014/083134 JP2014083134W WO2015093436A1 WO 2015093436 A1 WO2015093436 A1 WO 2015093436A1 JP 2014083134 W JP2014083134 W JP 2014083134W WO 2015093436 A1 WO2015093436 A1 WO 2015093436A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
oriented
piezoelectric ceramic
piezoelectric
orientation
Prior art date
Application number
PCT/JP2014/083134
Other languages
French (fr)
Japanese (ja)
Inventor
智紹 加藤
航士 山田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2015553526A priority Critical patent/JPWO2015093436A1/en
Publication of WO2015093436A1 publication Critical patent/WO2015093436A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Definitions

  • the present invention relates to a crystal-oriented piezoelectric ceramic, a manufacturing method thereof, and a piezoelectric element.
  • piezoelectric materials used in piezoelectric devices.
  • a piezoelectric ceramic made of PbZrO 3 —PbTiO 3 (PZT) which is a lead-containing perovskite ferroelectric, exhibits excellent piezoelectric characteristics.
  • PZT ceramics have been widely used in the fields of electronics, mechatronics, automobiles and the like.
  • the piezoelectric ceramic is required to have a large piezoelectric constant d33 (mechanical displacement ratio per electric field in 33 directions).
  • a piezoelectric ceramic in which a crystal is oriented (hereinafter referred to as a crystal oriented piezoelectric ceramic) is attracting attention as compared with a conventional non-oriented piezoelectric ceramic.
  • Patent Document 1 discloses a lead-free crystal-oriented piezoelectric ceramic.
  • an isotropic perovskite compound represented by the general formula: ABO 3 wherein the main component of the A site element is K and / or Na, and the main component of the B site element is Nb, Sb, and Crystal-oriented piezoelectric ceramics comprising a polycrystal having a main phase of the first perovskite-type pentavalent metal acid alkali compound as Ta and / or a specific crystal plane of each crystal grain constituting the polycrystal Is disclosed.
  • An object of the present invention is to provide a lead-free crystal-oriented piezoelectric ceramic having a large piezoelectric constant d33, a piezoelectric element, and a method for manufacturing the piezoelectric ceramic.
  • the crystal-oriented piezoelectric ceramic of the present disclosure is a crystal-oriented piezoelectric ceramic containing a lead-free perovskite compound as a main component, and the perovskite compound has the general formula: (1-s) A1B1O 3 -sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements and contains Nb, M is at least one element of Group 4A and contains Zr, and 0 ⁇ s ⁇ 0.15), and the crystal-oriented piezoelectric ceramic includes a plurality of oriented crystals having crystal orientations aligned with each other, and a plurality of non-oriented crystals having crystal orientations in an irregular state.
  • the average crystal grain size of the non-oriented crystal is larger than 1.0 ⁇ m and not larger than 5.0 ⁇ m, and the degree of orientation by the Lotgering method is 85% or more and less than 100%.
  • the number d33 is 350 pC / N or more.
  • the above-mentioned crystal-oriented piezoelectric ceramic has a degree of orientation by the Lotgering method of 90% or more, an average crystal grain size of the plurality of non-oriented crystals of 1.3 ⁇ m to 4.5 ⁇ m, and a piezoelectric constant d33 of 400 pC / N or more. It is preferable that
  • the relative density is preferably 95.0% or more and 98.5% or less.
  • piezoelectric element in which a plurality of ceramic layers including these crystal-oriented piezoelectric ceramics and a plurality of electrodes are formed, and the plurality of electrodes and the plurality of ceramic layers are alternately laminated.
  • the method for producing a crystal-oriented piezoelectric ceramic according to the present disclosure includes a step of preparing a first crystal powder of a bismuth layered structure compound including a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer, and reducing Bi from the first crystal powder.
  • a step of preparing a plate-like crystal powder comprising the first perovskite compound obtained by mixing the additive raw material with the plate-like crystal powder, and the overall formula: (1-s) A1B1O 3 — sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of a transition metal element and contains Nb, and M is at least one element of Group 4A and is Zr
  • the oxygen partial pressure is preferably 7 ⁇ 10 ⁇ 14 atm or more and 4 ⁇ 10 ⁇ 13 atm or less.
  • the sintering temperature is preferably 1135 ° C. or higher and 1170 ° C. or lower.
  • the present invention it is possible to provide a crystal-oriented piezoelectric ceramic that is lead-free and has a large piezoelectric constant d33. Thereby, since the amount of displacement of ceramics increases even with a small voltage difference, a lead-free piezoelectric element with good response can be provided.
  • the crystal-oriented piezoelectric ceramic generally has a larger piezoelectric constant d33 as the relative density after sintering is higher.
  • the crystal-oriented piezoelectric ceramic using the piezoelectric material having the composition system represented by the general formula: (1-s) A1B1O 3 -sBaMO 3 is sufficient only by increasing the relative density.
  • the piezoelectric constant d33 may not be obtained.
  • the present inventors have obtained crystal-oriented piezoelectric ceramics having extremely high d33 by setting the average crystal grain size of non-oriented crystals (hereinafter referred to as non-oriented crystals) within a predetermined range. I found out that Hereinafter, embodiments of the crystal-oriented piezoelectric ceramic, the manufacturing method thereof, and the piezoelectric element of the present invention will be described. First, the crystal-oriented piezoelectric ceramic will be described.
  • the crystal-oriented piezoelectric ceramic of the present embodiment contains a ceramic represented by the following general formula (1) as a main component.
  • the main component is a lead-free perovskite type compound.
  • A1B1O 3 -sBaMO 3 (0 ⁇ s ⁇ 0.15)
  • A1 is at least one element selected from alkali metals
  • B1 is at least one element of transition metal elements and contains Nb
  • M is at least one element of Group 4A and contains Zr.
  • the crystal-oriented piezoelectric ceramic may not be composed of only the perovskite type compound having the composition defined by the general formula (1), and contains 80 mol% or more of the ceramic having the composition represented by the general formula (1). In other words, a high piezoelectric constant d33 is exhibited. That is, it is sufficient if the composition represented by the general formula (1) is included as a main component. In this case, the relative density of the main component may be 95.0% or more and 98.5% or less.
  • Composition represented by A1B1O 3 is an alkali metal-containing niobium oxide.
  • A1 is at least one element selected from alkali metals
  • B1 is at least one element of transition metal elements and contains Nb.
  • the alkali metal-containing niobium oxide having this composition is known as a composition of piezoelectric ceramics having a tetragonal perovskite structure that is easy to obtain a high piezoelectric constant while being lead-free.
  • A1 is at least one selected from alkali metal (Li, Na, K).
  • A1 includes all of Li, K and Na.
  • A1B1O 3 is expressed by the formula is represented by K 1-xy Na x Li y (Nb 1-z Q z) O 3.
  • Q is at least one transition metal element other than Nb, preferably Nb.
  • x, y, and z satisfy 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 0.3.
  • Li can also have the effect of increasing the Curie temperature of crystal-oriented piezoelectric ceramics and the effect of increasing the piezoelectric constant by increasing the sinterability. Moreover, the effect which improves mechanical strength can also be show
  • the Li content y exceeds 0.3 the piezoelectric constant tends to decrease.
  • the content y of Li in the alkali metal is preferably 0 ⁇ y ⁇ 0.3.
  • Q is not essential, but can be added within the range of x.
  • the ranges of x, y, and z are more preferably 0.3 ⁇ x ⁇ 0.7, 0.05 ⁇ y ⁇ 0.2, and 0 ⁇ z ⁇ 0.2.
  • BaMO 3 can have the effect of increasing the dielectric constant.
  • M preferably contains 80 mass% or more of Zr as group 4A.
  • A1B1O 3 and BaMO 3 are contained in the piezoelectric ceramic in a ratio represented by the general formula (1).
  • a piezoelectric ceramic having a high piezoelectric constant d33 and a high Curie temperature can be obtained.
  • s is preferably greater than 0.05. Thereby, a higher piezoelectric constant d33 can be obtained.
  • a more preferable range of s is 0.065 ⁇ s ⁇ 0.10.
  • a material having a composition represented by (R ⁇ A2) TiO 3 can be further added to the above composition.
  • the above general formula is represented by the following general formula (1 ′).
  • A1 is at least one element selected from alkali metals
  • B1 is at least one element of transition metal elements and contains Nb
  • M is at least one element of Group 4A and contains Zr
  • R is at least one element of rare earth elements (including Y)
  • A2 is at least one element selected from alkali metals
  • s and t are 0 ⁇ s ⁇ 0.15, 0 ⁇ t ⁇ 0.03 is satisfied.
  • (R ⁇ A2) TiO 3 is a ceramic composition having a rhombohedral perovskite structure. By mixing the composition represented by (R ⁇ A2) TiO 3 with the composition represented by A1B1O 3 , a piezoelectric ceramic having a phase boundary such as a tetragonal crystal-rhombus crystal can be obtained.
  • the (R ⁇ A2) of the (R ⁇ A2) TiO 3 refers to (R 0.5 A2 0.5 ).
  • R is particularly preferably at least one selected from Y, La and Ce, and among them, La is more preferable. Since rare earth elements such as La, Y, and Ce, which have a low standard free energy of formation of oxides, are used, these elements cause little volatilization during sintering and can suppress fluctuations in the composition of the ceramic.
  • A2 is particularly preferably at least one selected from the group consisting of Li, Na, and K, and Na is more preferable among them.
  • the piezoelectric constant d33 can be increased.
  • FIG. 1 shows a cross section perpendicular to the thickness direction of the oriented plate crystal powder of the crystal oriented piezoelectric ceramic of the present embodiment.
  • the crystal-oriented piezoelectric ceramic of the present embodiment includes a plurality of oriented crystals a (crystal orientation is (100)) in which crystal orientations are aligned with each other, and a plurality of crystal orientations that exist in an irregular state. It has a non-oriented crystal b.
  • Each oriented crystal a is obtained by growing a plate-like crystal powder, and each non-oriented crystal b is obtained by crystallizing an additive raw material.
  • the plurality of oriented crystals a have crystal orientations aligned in the thickness direction (100) of the plate.
  • the plurality of non-oriented crystals b have an isotropic (random) crystal orientation. That is, the crystal orientations of the plurality of non-oriented crystals b do not match (align).
  • the granular black portion is a void.
  • the oriented crystal a often has a larger particle size than the non-oriented crystal b.
  • the crystal refers to a region of crystal grains that is generally a single crystal.
  • a non-oriented crystal can be identified by analyzing the orientation of the crystal with an electron backscattering pattern EBSP (Electron Back Scattering Pattern).
  • EBSP Electro Back Scattering Pattern
  • each crystal can be displayed in different colors depending on the angle at which the crystal orientation is shifted from the (100) direction.
  • Each crystal in a region that is clustered in an irregular crystal orientation is this non-oriented crystal.
  • the average crystal grain size of non-oriented crystals is larger than 1.0 ⁇ m and not larger than 5.0 ⁇ m.
  • the average crystal grain size of the non-oriented crystal is 1.0 ⁇ m or less, grain growth due to diffusion does not occur sufficiently, and the piezoelectric constant d33 is relatively small. This is considered to be caused by the fact that the plate-like crystal powder does not grow.
  • the average crystal grain size of the non-oriented crystal exceeds 5.0 ⁇ m, the non-oriented crystal grows excessively, and on the contrary, the grain growth of the plate-like crystal powder is suppressed. In this case as well, the piezoelectric constant d33 is improved. It is thought that it is not connected. A method for measuring the average crystal grain size of the non-oriented crystal will be described later.
  • the oxygen partial pressure (hereinafter sometimes referred to as PO 2 ) of the atmosphere during sintering can be set within a predetermined range. It is valid. It is considered that oxygen vacancies introduced into the ceramics are related to the diffusion rate, and high diffusivity is ensured by introducing sufficient oxygen vacancies.
  • the atmosphere during sintering is preferably a reducing atmosphere having an oxygen partial pressure of 1 ⁇ 10 ⁇ 14 atm or more and 3 ⁇ 10 ⁇ 10 atm or less.
  • the average crystal grain size of the non-oriented crystal can be increased to more than 1.0 ⁇ m.
  • crystal oriented piezoelectric ceramics having a piezoelectric constant d33 of 350 pC / N or more can be obtained. Under a high oxygen partial pressure exceeding 3 ⁇ 10 ⁇ 10 atm, sufficient oxygen defects are not introduced, grain growth due to diffusion does not occur sufficiently, and plate-like crystal powder does not grow. For this reason, it is considered that the piezoelectric constant d33 is not improved.
  • the average crystal grain size of the non-oriented crystal can be set to 5.0 ⁇ m or less.
  • a low oxygen partial pressure of less than 1 ⁇ 10 ⁇ 14 atm it is considered that the grain growth of the plate-like crystal powder is suppressed and does not lead to an improvement in the piezoelectric constant d33.
  • the crystal-oriented piezoelectric ceramic of the present embodiment has an orientation degree by the Lotgering method of 85% or more and less than 100%.
  • the degree of orientation is 90% or more and less than 100%.
  • the crystal-oriented piezoelectric ceramic of the present embodiment has a piezoelectric constant d33 of 350 pC / N or more.
  • the piezoelectric constant is 400 pC / N or more.
  • the crystal-oriented piezoelectric ceramic of the present embodiment has a high piezoelectric constant, and can be used for various applications as a bulk sintered body.
  • an electrode can be formed to form a piezoelectric element.
  • the piezoelectric element may include a plurality of ceramic layers including crystal-oriented piezoelectric ceramics and a plurality of electrodes, and the plurality of electrodes and the plurality of ceramic layers may be alternately stacked. In this case, for example, a metal such as Ag can be used for the electrode.
  • a laminated piezoelectric body is composed of crystal-oriented piezoelectric ceramics
  • the relative density can be obtained by measuring the porosity.
  • the crystal orientation piezoelectric ceramic of the present embodiment depends on whether the porosity ⁇ is 1.5% or more and 5% or less. Further, it can be determined whether it is preferable.
  • the crystal-oriented piezoelectric ceramic according to the present embodiment can be manufactured, for example, by the following manufacturing process.
  • Step of Preparing First Crystal Powder A step of preparing a first crystal powder of a bismuth layered structure compound comprising a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer, which is the first step (1). Will be explained.
  • the first crystal powder has a crystal structure in which (Bi 2 O 2 ) 2+ layers 2 and pseudo-perovskite layers 1 are alternately stacked. Since the crystal is grown in a plate shape in the subsequent steps, it can be used as a template for the plate crystal powder as described later.
  • the first crystal powder is a general formula: (Bi 2 O 2 ) 2+ (Bi 0.5 A3 m-1.5 Nb m O 3m + 1 ) 2 ⁇ (where A3 is selected from alkali metals). Or an element represented by m is an integer of 2 or more.
  • the left side shows the (Bi 2 O 2 ) 2+ layer
  • the right side shows the composition of the pseudo-perovskite layer.
  • the general formula (Bi 2 O 2 ) 2+ (A3 m-1 B2 m O 3m + 1 ) 2 ⁇ (where A3 is an alkali metal)
  • B2 is at least one element selected from 4, 5 and 6 valent elements, and m is an integer of 2 or more.
  • A3 is preferably at least one element selected from Li, K, or Na.
  • B2 is preferably at least one element of Nb and Ta.
  • raw materials are prepared (S1), mixed (S2), the mixed raw materials are dried, and a first flux such as NaCl is added (S3).
  • a first flux such as NaCl
  • an alkali metal chloride or fluoride such as NaCl or KCl, nitrate, sulfate, or the like can be used.
  • the raw material to which the first flux is added is heated in the air at 700 ° C. or higher and 1300 ° C. or lower (S4), and the raw material is reacted to grow a crystal that becomes the first crystal powder.
  • a reaction product composed of the first crystal powder and the flux can be obtained.
  • multistage heat treatment can also be employed.
  • the heating time is preferably set to 1 minute or longer. Long-time heating tends to decrease the aspect ratio of the obtained plate-like powder shape as the treatment time becomes longer, and is preferably 10 hours or less.
  • the reaction product (first intermediate fired body) after heating is filled with flux around it and becomes a lump.
  • the first flux is removed from the reaction product (S5).
  • a method of melting the first flux by immersing the reactant in warm water may be used. Thereby, only the first crystal powder can be taken out.
  • Step (2) Step of obtaining plate-like crystal powder
  • the step of preparing plate-like crystal powder made of the first perovskite type compound in which Bi is reduced from the first crystal powder, which is step (2), will be described below. . This step is shown in steps S6 to S10 in FIG.
  • the first crystal powder, the first additive such as Na 2 CO 3 for generating the plate crystal powder, and the flux of NaCl or the like that melts at a temperature at which the first crystal powder and the first additive can react. 2 flux) (S6, S7).
  • the above-described A1 element compound of the crystal-oriented ceramic represented by A1B1O 3 for example, an A1 element oxide or carbonate material can be used.
  • the amount of the first additive added is adjusted so that the molar ratio of the A1 element to the B1 element becomes 1: 1 after the reduction of the Bi component (S10) with respect to the first crystal powder.
  • a means of adding a raw material in an organic solvent and mixing with a ball mill or the like can be used.
  • the second flux is used to promote crystal growth by the reaction between the first crystal powder and the first additive in the solution. Therefore, it is preferable to use a material that has a melting point that is lower than that of the first crystal powder or the first additive. Moreover, it is preferable that it is a composition which does not contain elements other than the composition of the desired plate-like crystal powder by reaction. For example, alkali metal chlorides such as NaCl and KCl can be used.
  • the second flux is easily dissolved in water or a solvent, the second flux is added and mixed after drying the organic solvent or the like.
  • the amount of the second flux added is preferably 10 mass% or more, more preferably 30 mass% or more with respect to the first crystal powder.
  • the mixed material is fired at a temperature at which the first crystal powder and the first additive can react (S8).
  • a first intermediate fired body is obtained by this firing.
  • Calcination is preferably performed at 600 ° C. or higher and 1300 ° C. or lower. If the firing is less than 600 ° C., composition conversion from the first crystal powder to the plate-like crystal powder hardly occurs, and if it exceeds 1300 ° C., the first crystal powder dissolves and is integrally fired to form a powder. It becomes difficult to do.
  • Calcination is preferably held at the above temperature for 0.5 hour or more. If it is less than 0.5 hour, composition conversion from the first crystal powder to the plate-like crystal powder hardly occurs.
  • the firing time is more preferably 3 hours or more. Further, if the firing time exceeds 24 hours, the production time becomes long and the productivity is lowered, so that it is preferably 24 hours or less, and more preferably 20 hours or less.
  • the second flux is removed from the first intermediate fired body (S9).
  • means for immersing the first intermediate fired body in warm water and stirring it, and filtering the melted second flux can be employed. Thereby, the second flux can be removed.
  • the Bi component remaining in the plate-like powder remaining after removing the second flux is reduced (S10).
  • This powder is put into a pickling solution in which water and an acid such as nitric acid are mixed and pickled, and the Bi component is dissolved in the solution.
  • the powder from which the Bi component has been removed becomes a plate-like crystal powder used in the present invention, and is precipitated in the pickling solution.
  • the plate-like crystal powder can be extracted by removing the pickling solution from the supernatant and drying the residue. Pickling can be repeated multiple times.
  • this plate-like crystal powder maintains the same shape using the plate-like shape of the first crystal powder as a template, a plate-like crystal powder with a high aspect ratio can be obtained.
  • the plate-like crystal powder may be a perovskite-type compound represented by the general formula A1B1O 3.
  • A1 is particularly preferably at least one selected from the group consisting of Li, K and Na.
  • B1 is particularly preferably at least one element selected from 4, 5, and 6-valent elements.
  • Step (3) Step of obtaining a mixture having the composition represented by the general formula (1)
  • an additive raw material is mixed with the plate-like crystal powder which is the step (3) of the production method of the present invention.
  • step S11 the plate crystal powder and the additive raw material are mixed.
  • the additive raw material is mixed with the plate crystal powder to obtain a general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, and B1 is a transition metal)
  • the plate-like crystal powder is preferably added at a ratio of 0.1 to 10 mol% with respect to the additive raw material.
  • step S12 the step of using the mixture as the molded body, which is the fourth step of the production method of the present invention, will be described. This step is shown as step S12 in FIG.
  • the plate crystal powder is molded so as to be oriented.
  • the plate crystal powder is molded so as to be oriented.
  • plate crystal powder 3 as shown in FIG.
  • the sheet-like oriented molded body 10 existing in an oriented state is obtained.
  • the additive raw material is powdery, and the BET value is preferably 2.0 m 2 / g or more and 10 m 2 / g or less.
  • the degree of orientation of the plate-like crystal powder dispersed in the sheet-like molded body can be changed.
  • a laminated body in which sheet-like molded bodies are laminated can be used, or one in which electrodes such as Ag, Ni, and Cu are formed between the layers can be used.
  • Step of obtaining sintered body the oriented molded body as the step (5) is subjected to reduction in an oxygen partial pressure of 1 ⁇ 10 ⁇ 14 atm or more and 3 ⁇ 10 ⁇ 10 atm or less. A process of sintering will be described. This step is indicated by step S13 in FIG.
  • the obtained oriented molded body is sintered.
  • the degree of orientation by the Lotgering method is 85% or more and less than 100%, and the piezoelectric constant d33 jumps.
  • a crystallographically oriented piezoelectric ceramic of 350 pC / N or higher can be obtained.
  • the degree of orientation by the Lotgering method is 90% or more, and the crystal orientation in which the piezoelectric constant d33 is 400 pC / N or more. Piezoelectric ceramics are obtained.
  • the degree of orientation by the Lotgering method is 90.5% or more
  • the piezoelectric constant d33 is 420 pC / N or more. A crystal-oriented piezoelectric ceramic is obtained.
  • the oxygen partial pressure can be adjusted by using a known preparation method, for example, by adjusting the supply amount of water vapor and hydrogen.
  • Sintering is preferably performed at a temperature of 1135 ° C. or higher and 1170 ° C. or lower in a reducing atmosphere. By sintering at this temperature, a sintered body having a relative density of 95% or more and 98.5% or less, and further 96% or more and less than 97.5% can be obtained.
  • the crystal orientation piezoelectric ceramic increases in the degree of orientation by increasing the relative density (density relative to the true density), and accordingly, the piezoelectric constant d33 increases. It is considered that a large piezoelectric constant d33 can be obtained.
  • composition-type piezoelectric material represented by the general formula: (1-s) A1B1O 3 —sBaMO 3 does not always have a correlation between the relative density and the degree of orientation. It turned out that it does not contribute to the improvement of the constant d33. If the relative density is in the range of 95% or more and 98.5% or less, which is a little lower, the degree of orientation is the highest, and accordingly, a high piezoelectric constant d33 is obtained. (6) Step of applying polarization treatment to the sintered body
  • An electrode is formed on the ceramic, which is a sintered body obtained by the above process, and subjected to polarization treatment. Due to the polarization treatment, the direction of spontaneous polarization in the ceramic is aligned, and the piezoelectric characteristics are exhibited.
  • a known polarization treatment generally used in the production of piezoelectric ceramics can be used.
  • the fired body on which the electrode is formed is held at a temperature of room temperature to 200 ° C. with a silicone bath or the like, and a voltage of about 0.5 kV / mm to 6 kV / mm is applied. Thereby, crystal-oriented piezoelectric ceramics having piezoelectric characteristics can be obtained.
  • the oxygen partial pressure can be evaluated using an oxygen concentration meter having a commercially available YTZ (yttrium stabilized zirconia) sensor.
  • the measurement method used a method such as extracting from the furnace using an alumina tube so that the atmosphere in the vicinity of the work in the electric furnace that creates a gas atmosphere can be directly sampled.
  • the partial pressure of oxygen can be adjusted by a method of containing a certain amount of water vapor by a method such as bubbling in a gas containing 0 to 4 mol% of hydrogen based on an inert gas such as nitrogen or argon.
  • the oxygen partial pressure that can be created at this time can be calculated from the following equations 1 and 2 using the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O.
  • Equation 1 ⁇ G f is the standard production Gibbs energy of water vapor, R is a gas constant, and T is an absolute temperature.
  • composition The composition was measured by SEM-EDX (Energy Dispersive X-ray spectroscopy). As measurement conditions, the acceleration voltage was 15 kV, the current was 100 nA, and the beam diameter was 1 ⁇ m.
  • piezoelectric constant d33 After the polarization treatment, the piezoelectric constant d33 is measured.
  • an Ag electrode was formed on the ceramic by sputtering, and a 4.0 kV / mm DC electric field was applied for 10 minutes at 413 K (140 ° C.).
  • the piezoelectric constant d33 was measured with a d33 meter (manufactured by Institute of Speech, Chinese Academy of Sciences).
  • the true density is calculated by calculating the mass of the perovskite-type unit cell from the charged composition, calculating the volume of the unit cell from the XRD (X-Ray Diffraction) measurement result of the sintered body, and dividing the mass of the unit cell. This was adopted as the true density.
  • Example 1 First, by the steps (S1 to S5) shown in FIG. 2, a first crystal powder of a bismuth layer structure compound composed of a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer was prepared.
  • the mixed raw material was mixed with 100% by mass of NaCl as a flux with respect to the raw material, and then dry mixed for 10 minutes with a coarse pulverizer (S3).
  • the raw material after flux addition was subjected to two-stage calcination which was held in air at 850 ° C. for 1 hour and then held at 1100 ° C. for 2 hours.
  • the temperature increase and decrease were about 200 ° C./h (S4).
  • FIG. 7 is a SEM observation photograph of the first crystal powder. It can be confirmed that the crystals are plate-like.
  • FIG. 8 shows the X-ray diffraction result of the first crystal powder
  • FIG. 9 shows the result of specifying the compound using the X-ray diffraction result. All X-ray diffraction was performed using a Cu K ⁇ radiation source.
  • a plate-like crystal powder made of the first perovskite compound obtained by reducing Bi from the first crystal powder by the manufacturing steps (S6 to S10) shown in FIG. 2 was prepared.
  • Na 2 CO 3 was used as the first additive, and an amount such that Na and Nb were 1: 1 after the reaction was added. These were mixed by a ball mill. Ethanol was used as a solvent and zirconia balls were used as media, and the mixture was mixed at 94 rpm for 4 hours. The mixture was taken out from the ball mill container and dried in an atmosphere of 130 ° C. Thereafter, the media was separated by a sieve (S6).
  • the mixed raw material was mixed with NaCl as a second flux by 100 mass% with respect to the first crystal powder, and then dry-mixed for 10 minutes with a coarse pulverizer (S7).
  • the mixed material composed of the first crystal powder, the first additive, and the flux was fired at 950 ° C. for 8 hours in the atmosphere to obtain a second intermediate fired body.
  • the temperature increase and decrease were about 200 ° C./h (S8).
  • step S9 pickling was performed to reduce the Bi component from the second intermediate fired body.
  • the material to be treated obtained in step S9 was placed in a pickling solution in which pure water and nitric acid were mixed at a ratio of about 3: 1 to 10: 1 and stirred. Thereafter, the supernatant liquid in which the Bi component was melted was removed. Further, the pickling solution was added, stirred, and the supernatant was removed repeatedly. Thereafter, the residue was dried to obtain a plate-like crystal powder made of NaNbO 3 (S10).
  • the obtained plate crystal powder had an aspect ratio (ratio of plate thickness to maximum diameter) of about 10.
  • the additive raw material is mixed with the plate-like crystal powder in the step (S11) shown in FIG. 3, and the general formula: (1-s) A1B1O 3 -sBaMO 3 (where A1 is selected from alkali metals) B1 is at least one element of transition metal elements and contains Nb, M is at least one element of Group 4A and contains Zr, and 0 ⁇ s ⁇ 0.15)
  • A1 is selected from alkali metals
  • B1 is at least one element of transition metal elements and contains Nb
  • M is at least one element of Group 4A and contains Zr, and 0 ⁇ s ⁇ 0.15)
  • the mixture of the composition represented by this was obtained.
  • ethanol was added at 200 to 300 mass% with respect to the mixture and butanol was added at 50 to 100 mass% with respect to the mixture.
  • a plasticizer was also added.
  • dioctyl phthalate was added as a plasticizer in an amount of 5 to 15 mass% with respect to the mixture.
  • a binder was also added.
  • 5 to 15 mass% of polyvinyl butyral was added as a binder to the mixture.
  • the slurry thus obtained was formed into a sheet (S12).
  • a sample for comparison is prepared by mixing nitrogen and water containing 0.01 to 2% of hydrogen, the atmosphere in the furnace is changed from 2.4 ⁇ 10 ⁇ 8 atm to 3.9 ⁇ 10.
  • a reducing atmosphere was prepared so that the oxygen partial pressure was -15 atm.
  • the sintering temperature was 1150 ° C.
  • the obtained crystal-oriented piezoelectric ceramic was measured for oxygen partial pressure PO 2 , degree of orientation, average crystal grain size of non-oriented crystals, piezoelectric constant d33, and relative density.
  • Table 1 shows the results.
  • FIG. 10 shows the relationship between oxygen partial pressure (PO 2 ) and orientation degree, oxygen partial pressure (PO 2 ), and piezoelectric constant d33.
  • FIG. 11 shows the relationship between oxygen partial pressure (PO 2 ) and relative density.
  • FIG. 6 is an observation result of the structure of sample No. 3 in Table 1.
  • the degree of orientation with respect to the oxygen partial pressure PO 2 draws a gentle curve and takes a maximum value in the vicinity of about 1 ⁇ 10 ⁇ 12 to 1 ⁇ 10 ⁇ 11 atm, whereas the oxygen partial pressure PO 2.
  • the piezoelectric constant d33 with respect to takes a maximum value locally. That is, when sintered in a reducing atmosphere with an oxygen partial pressure PO 2 of less than 1 ⁇ 10 ⁇ 14 atm or more than 3 ⁇ 10 ⁇ 10 atm, a crystal having a piezoelectric constant d33 of less than 350 pC / N, even if the degree of orientation is high. It tends to be oriented piezoelectric ceramics.
  • the piezoelectric constant d33 can be rapidly increased by slightly changing the oxygen partial pressure PO 2 .
  • the oxygen partial pressure during firing is a reducing atmosphere of 1 ⁇ 10 ⁇ 14 atm or more and 3 ⁇ 10 ⁇ 10 atm or less
  • a crystal-oriented piezoelectric ceramic having a piezoelectric constant d33 of 350 pC / N or more is obtained.
  • the average crystal grain size of the non-oriented crystal of the crystal oriented piezoelectric ceramic obtained at this time is larger than 1.0 ⁇ m and not larger than 5.0 ⁇ m.
  • a crystal-oriented piezoelectric ceramic having a piezoelectric constant d33 of 400 pC / N or more is obtained, and the oxygen partial pressure is A crystal-oriented piezoelectric ceramic having a piezoelectric constant d33 of 420 pC / N or more was obtained when it was 1.1 ⁇ 10 ⁇ 13 atm or more and 3 ⁇ 10 ⁇ 13 atm or less.
  • the crystal-oriented piezoelectric ceramic obtained in this example has a relative density in the range of 96% or more and 97.0% or less.
  • Example 2 evaluation was performed in the same manner as in Example 1 except that the range of s in the general formula: (1-s) A1B1O 3 —sBaMO 3 was changed within the range of 0 ⁇ s ⁇ 0.15.
  • the average crystal grain size of the non-oriented crystals could be within the above range by setting the oxygen partial pressure PO 2 to be the same as in Example 1.
  • crystal orientation piezoelectric ceramics having a large piezoelectric constant d33 were obtained by using this oxygen partial pressure PO 2 .
  • Example 2 The relationship between the relative density and the degree of orientation was examined by changing the sintering temperature. A sample was prepared in the same manner as in Example 1 except for the conditions described below.
  • the sintering temperature was 1110 ° C, 1130 ° C, 1145 ° C (Example), 1150 ° C (Example), 1175 ° C, 1190 ° C.
  • the reducing atmosphere was an atmosphere of 2% hydrogen in nitrogen, and the oxygen partial pressure PO 2 was 3 ⁇ 10 ⁇ 13 atm.
  • FIG. 12 shows the relationship between the sintering temperature and the relative density, and the relationship between the sintering temperature and the degree of orientation.
  • the crystal-oriented piezoelectric ceramic of the example sintered at a temperature of 1145 ° C. or more and 1150 ° C. or less has a relative density of 95% or more and 98.5% or less.
  • the degree of orientation is 85% or more and less than 100%.
  • the crystal-oriented piezoelectric ceramic of this embodiment has a tendency that the relative density increases as the sintering temperature becomes higher in the range of 1110 ° C. to 1190 ° C., but the degree of orientation is around 1140 ° C. Sintered one shows high value. That is, the relative density and the degree of orientation do not have a linear relationship, and the degree of orientation takes the maximum value in the range of 1135 ° C. to 1170 ° C.
  • FIG. 13 shows the relationship between the relative density and the degree of orientation. It can be seen that the degree of orientation takes the maximum value when the relative density is in the range of 95% to 98.5%.
  • the crystal-oriented piezoelectric ceramic obtained at a sintering temperature of less than 1135 ° C. or more than 1170 ° C. has a relative density of less than 95% or more than 98.5% and an orientation degree of less than 85%.
  • the piezoelectric constant d33 was not measurable because the piezoelectric constant was not expressed because the electrodes were energized (shorted) during the polarization process.
  • the crystal-oriented piezoelectric ceramic obtained at a sintering temperature of 1135 ° C. or higher and 1170 ° C. or lower has a relative density of 95% or higher and 98.5% or lower, and an orientation degree of 85% or higher.
  • the piezoelectric constant d33 showed a large value of 300 pC / N or more.
  • the value obtained by dividing the porosity (%) value from 100% was the same value as the relative density.
  • the general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements, and Nb
  • the crystal orientation piezoelectric ceramic represented by 0 ⁇ s ⁇ 0.15) does not necessarily increase the degree of orientation and increase the piezoelectric constant d33 if the relative density is high. It was found that the relative density of 95% or more and 98.5% or less, which is slightly lower than before, is good.
  • the Na materials and Nb raw material to be NaNbO 3 of 96mol against the plate-like crystal powder 4mol was added to obtain a mixture having a composition represented by NaNbO 3.
  • crystal oriented piezoelectric ceramics were produced in the same manner as in Example 1 along the steps (S11 to S13) shown in FIG.
  • Example 2 In the same manner as in Example 1, the true density, relative density, orientation degree, and piezoelectric constant d33 of the obtained crystal-oriented piezoelectric ceramic were measured.
  • FIG. 14 shows the relationship between the sintering temperature and relative density, and the sintering temperature and orientation degree.
  • the comparatively oriented crystallographic piezoelectric ceramics of NaNbO 3 composition has a tendency that the relative density increases on the high temperature side when the sintering temperature is in the range of 1100 ° C. to 1140 ° C., and the degree of orientation tends to increase accordingly. is there.
  • FIG. 15 shows the relationship between the relative density and the degree of orientation in the crystal-oriented piezoelectric ceramic of the comparative example.
  • the degree of orientation is as large as 80% or more.
  • the degree of orientation becomes higher as the relative density is higher can be confirmed as in the conventional knowledge.

Abstract

The piezoelectric ceramic with crystal orientation includes a lead-free perovskite-type compound as the main component and is characterized in that: the piezoelectric ceramic is represented by the general formula (1-s)A1B1O3-sBaMO3 (where A1 represents at least one species of element selected from alkaline metals, B1 represents at least one species of element among the transition metal elements and contains Nb, M represents at least one species of element among the Group 4A and contains Zr, and 0< s ≤ 0.15); the piezoelectric ceramic has a plurality of oriented crystals, whereof the crystallographic orientation is aligned with one another, and a plurality of non-oriented crystals present in an irregular crystallographic orientation state; the average crystal particle size for the plurality of non-oriented crystals is between 1.0 μm exclusive and 5.0 μm inclusive; the degree of orientation is between 85% inclusive and 100% exclusive according to the Lotgering method; and the piezoelectric constant d33 is 350 pC/N or greater.

Description

結晶配向圧電セラミックス、その製造方法、及び圧電体素子Crystal-oriented piezoelectric ceramic, manufacturing method thereof, and piezoelectric element
 本発明は、結晶配向圧電セラミックス、その製造方法、及び圧電体素子に関する。 The present invention relates to a crystal-oriented piezoelectric ceramic, a manufacturing method thereof, and a piezoelectric element.
 従来、圧電デバイスに用いられる圧電材料として、種々のセラミックス材料が開発されている。中でも、鉛含有ペロブスカイト型強誘電体である、PbZrO3-PbTiO3(PZT)からなる圧電セラミックスは、優れた圧電特性を示す。このため、PZTのセラミックスは、エレクトロニクス・メカトロニクス・自動車等の分野において、広く用いられてきた。 Conventionally, various ceramic materials have been developed as piezoelectric materials used in piezoelectric devices. Among them, a piezoelectric ceramic made of PbZrO 3 —PbTiO 3 (PZT), which is a lead-containing perovskite ferroelectric, exhibits excellent piezoelectric characteristics. For this reason, PZT ceramics have been widely used in the fields of electronics, mechatronics, automobiles and the like.
 しかし、近年、環境保全に対する意識の高まりから、Pb、Hg、Cd、Cr6+などの金属を電子・電気機器に使用しない傾向が高まり、欧州を中心に使用禁止令(RoHS指令)が発令され施行されている。 However, in recent years, due to increasing awareness of environmental conservation, the tendency to not use metals such as Pb, Hg, Cd, and Cr 6+ in electronic and electrical equipment has increased, and a ban on use (RoHS Directive) has been issued mainly in Europe. It has been enforced.
 従来の鉛を含む圧電セラミックスの広範な利用を考慮すると、環境に配慮した無鉛圧電セラミックスの研究が、重要かつ急務である。このため、従来のPZT系の圧電セラミックスの性能に匹敵する性能を発揮し得る非鉛系の圧電セラミックスが関心を集めている。 Considering the wide use of conventional lead-containing piezoelectric ceramics, research on lead-free piezoelectric ceramics that are environmentally friendly is an important and urgent task. For this reason, there is an interest in lead-free piezoelectric ceramics that can exhibit performance comparable to that of conventional PZT piezoelectric ceramics.
 また、圧電セラミックスには、大きな圧電定数d33(33方向の電界当たりの機械的変位割合)が求められる。 Also, the piezoelectric ceramic is required to have a large piezoelectric constant d33 (mechanical displacement ratio per electric field in 33 directions).
 比較的高い圧電定数d33を有する多結晶のセラミックスとして、従来の無配向圧電セラミックスに対して、結晶を配向させた圧電セラミックス(以下、結晶配向圧電セラミックスという)が注目されている。 As a polycrystalline ceramic having a relatively high piezoelectric constant d33, a piezoelectric ceramic in which a crystal is oriented (hereinafter referred to as a crystal oriented piezoelectric ceramic) is attracting attention as compared with a conventional non-oriented piezoelectric ceramic.
 例えば特許文献1は、非鉛系結晶配向圧電セラミックスを開示している。具体的には、一般式:ABO3で表される等方性ペロブスカイト型化合物であって、Aサイト元素の主成分がK及び/又はNaであり、Bサイト元素の主成分がNb、Sb及び/又はTaである第1のペロブスカイト型5価金属酸アルカリ化合物を主相とする多結晶体からなり、かつ、多結晶体を構成する各結晶粒の特定の結晶面が配向した結晶配向圧電セラミックスを開示している。 For example, Patent Document 1 discloses a lead-free crystal-oriented piezoelectric ceramic. Specifically, an isotropic perovskite compound represented by the general formula: ABO 3 , wherein the main component of the A site element is K and / or Na, and the main component of the B site element is Nb, Sb, and Crystal-oriented piezoelectric ceramics comprising a polycrystal having a main phase of the first perovskite-type pentavalent metal acid alkali compound as Ta and / or a specific crystal plane of each crystal grain constituting the polycrystal Is disclosed.
特開2003-12373号公報JP 2003-12373 A
 従来の非鉛系の結晶配向圧電セラミックスでは、より高い圧電定数d33を有することが求められていた。 Conventional lead-free crystal-oriented piezoelectric ceramics have been required to have a higher piezoelectric constant d33.
 本発明は、圧電定数d33が大きな非鉛系結晶配向圧電セラミックス、圧電体素子および圧電セラミックスの製造方法を提供することを目的とする。 An object of the present invention is to provide a lead-free crystal-oriented piezoelectric ceramic having a large piezoelectric constant d33, a piezoelectric element, and a method for manufacturing the piezoelectric ceramic.
 本開示の結晶配向圧電セラミックスは、非鉛のペロブスカイト型化合物を主成分として含む結晶配向圧電セラミックスであって、前記ペロブスカイト型化合物は、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表され、前記結晶配向圧電セラミックスは、互いに結晶方位が揃った複数の配向結晶と、結晶方位が不規則な状態で存在する複数の非配向結晶を有し、前記複数の非配向結晶の平均結晶粒径が1.0μmより大きく、5.0μm以下であり、ロットゲーリング法による配向度が85%以上100%未満、圧電定数d33が350pC/N以上である。 The crystal-oriented piezoelectric ceramic of the present disclosure is a crystal-oriented piezoelectric ceramic containing a lead-free perovskite compound as a main component, and the perovskite compound has the general formula: (1-s) A1B1O 3 -sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements and contains Nb, M is at least one element of Group 4A and contains Zr, and 0 < s ≦ 0.15), and the crystal-oriented piezoelectric ceramic includes a plurality of oriented crystals having crystal orientations aligned with each other, and a plurality of non-oriented crystals having crystal orientations in an irregular state. The average crystal grain size of the non-oriented crystal is larger than 1.0 μm and not larger than 5.0 μm, and the degree of orientation by the Lotgering method is 85% or more and less than 100%. The number d33 is 350 pC / N or more.
 上記の結晶配向圧電セラミックスは、ロットゲーリング法による配向度が90%以上、前記複数の非配向結晶の平均結晶粒径が1.3μm以上4.5μm以下であり、圧電定数d33が400pC/N以上とすることが好ましい。 The above-mentioned crystal-oriented piezoelectric ceramic has a degree of orientation by the Lotgering method of 90% or more, an average crystal grain size of the plurality of non-oriented crystals of 1.3 μm to 4.5 μm, and a piezoelectric constant d33 of 400 pC / N or more. It is preferable that
 相対密度は95.0%以上98.5%以下とすることが好ましい。 The relative density is preferably 95.0% or more and 98.5% or less.
 これらの結晶配向圧電セラミックスに複数の電極を形成して圧電体素子とすることができる。 It is possible to form a piezoelectric element by forming a plurality of electrodes on these crystal-oriented piezoelectric ceramics.
 また、これらの結晶配向圧電セラミックスを含む複数のセラミックス層と、複数の電極とを形成し、この複数の電極と複数のセラミックス層とを交互に積層した圧電素子とすることもできる。 Also, it is possible to form a piezoelectric element in which a plurality of ceramic layers including these crystal-oriented piezoelectric ceramics and a plurality of electrodes are formed, and the plurality of electrodes and the plurality of ceramic layers are alternately laminated.
 本開示の結晶配向圧電セラミックスの製造方法は、(Bi222+層と擬ペロブスカイト層からなるビスマス層状構造化合物の第1結晶粉末を用意する工程、前記第1結晶粉末からBiを低減することで得られる第1のペロブスカイト型化合物からなる板状結晶粉末を用意する工程、前記板状結晶粉末に添加原料材を混合して、全体として、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表される組成の混合物とする工程、前記混合物を成形体とする工程、前記成形体を、酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気中で焼結する工程、及び、焼結体に分極処理を施す工程を包含する。 The method for producing a crystal-oriented piezoelectric ceramic according to the present disclosure includes a step of preparing a first crystal powder of a bismuth layered structure compound including a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer, and reducing Bi from the first crystal powder. A step of preparing a plate-like crystal powder comprising the first perovskite compound obtained by mixing the additive raw material with the plate-like crystal powder, and the overall formula: (1-s) A1B1O 3 — sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of a transition metal element and contains Nb, and M is at least one element of Group 4A and is Zr A process having a composition represented by 0 <s ≦ 0.15), a process using the mixture as a molded body, and the molded body having an oxygen partial pressure of 1 × 10 −14 atm or more and 3 × 10 -1 It includes a step of sintering in a reducing atmosphere of 0 atm or less, and a step of subjecting the sintered body to a polarization treatment.
 前記還元雰囲気中で焼結する工程において、酸素分圧を7×10-14atm以上4×10-13atm以下とすることが好ましい。 In the step of sintering in the reducing atmosphere, the oxygen partial pressure is preferably 7 × 10 −14 atm or more and 4 × 10 −13 atm or less.
 前記焼結する工程において、焼結温度を1135℃以上1170℃以下とすることが好ましい。 In the sintering step, the sintering temperature is preferably 1135 ° C. or higher and 1170 ° C. or lower.
 本発明によれば、非鉛で圧電定数d33が大きい結晶配向圧電セラミックスを提供できる。これにより、セラミックスは小さい電圧差でも変位量が大きくなるので、応答性の良い非鉛の圧電素子を提供できる。 According to the present invention, it is possible to provide a crystal-oriented piezoelectric ceramic that is lead-free and has a large piezoelectric constant d33. Thereby, since the amount of displacement of ceramics increases even with a small voltage difference, a lead-free piezoelectric element with good response can be provided.
本発明の結晶配向圧電セラミックスの結晶のSEM観察写真(1500倍)である。It is a SEM observation photograph (1500 times) of the crystal | crystallization of the crystal orientation piezoelectric ceramic of this invention. 本発明の製造方法の工程(板状結晶粉末の作製まで)の一例を示す図である。It is a figure which shows an example of the process (until preparation of plate-shaped crystal powder) of the manufacturing method of this invention. 本発明の製造方法の工程(図2の工程以降)の一例を示す図である。It is a figure which shows an example of the process (after the process of FIG. 2) of the manufacturing method of this invention. 本発明の製造方法に用いる第1結晶粉末の層状構造の模式図である。It is a schematic diagram of the layered structure of the 1st crystal powder used for the manufacturing method of this invention. 本発明の製造方法に用いる、板状結晶粉末が配向したシート状の成形体を示す断面模式図である。It is a cross-sectional schematic diagram which shows the sheet-like molded object which the plate-shaped crystal powder orientated used for the manufacturing method of this invention. 本発明の結晶配向圧電セラミックスの非配向結晶のSEM観察写真(5000倍)である。It is a SEM observation photograph (5000 times) of the non-oriented crystal | crystallization of the crystal orientation piezoelectric ceramic of this invention. 本発明の製造方法に用いる第1結晶粉末のSEM観察写真(500倍)を示す図である。It is a figure which shows the SEM observation photograph (500 times) of the 1st crystal powder used for the manufacturing method of this invention. 本発明の製造方法に用いる第1結晶粉末のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the 1st crystal powder used for the manufacturing method of this invention. 本発明の製造方法に用いる第1結晶粉末の組成の詳細を示す図である。It is a figure which shows the detail of a composition of the 1st crystal powder used for the manufacturing method of this invention. 本発明の結晶配向圧電セラミックスの製造方法における焼成雰囲気中の酸素分圧(PO2)と配向度、酸素分圧(PO2)と圧電定数d33の関係を示す図である。Orientation degree of the oxygen partial pressure in the firing atmosphere (PO 2) in the manufacturing method of the grain-oriented piezoelectric ceramic of the present invention, is a diagram showing the relationship between the piezoelectric constant d33 and the oxygen partial pressure (PO 2). 本発明の結晶配向圧電セラミックスの製造方法における焼成雰囲気中の酸素分圧(PO2)と相対密度の関係を示す図である。Is a diagram showing the relationship between the oxygen partial pressure (PO 2) and the relative density in the firing atmosphere in the method for manufacturing a grain-oriented piezoelectric ceramic of the present invention. 本発明の結晶配向圧電セラミックスの焼結温度と相対密度、焼結温度と配向度の関係を示す図である。It is a figure which shows the relationship between the sintering temperature and relative density of the crystal orientation piezoelectric ceramic of this invention, and a sintering temperature and orientation degree. 本発明の結晶配向圧電セラミックスの相対密度と配向度の関係を示す図である。It is a figure which shows the relationship between the relative density and orientation degree of the crystal orientation piezoelectric ceramic of this invention. 比較例の結晶配向圧電セラミックスの焼結温度と相対密度、焼結温度と配向度の関係を示す図である。It is a figure which shows the relationship between the sintering temperature and relative density of a crystal orientation piezoelectric ceramic of a comparative example, and a sintering temperature and orientation degree. 比較例の結晶配向圧電セラミックスの相対密度と配向度の関係を示す図である。It is a figure which shows the relationship between the relative density and orientation degree of the crystal orientation piezoelectric ceramic of a comparative example.
 結晶配向圧電セラミックスは、一般に焼結後の相対密度が高いほど大きな圧電定数d33を有する。しかし、本発明者が検討したところ、一般式:(1-s)A1B1O3-sBaMO3で表される組成系の圧電材料を用いた結晶配向圧電セラミックスは、相対密度を高くしただけでは十分な圧電定数d33が得られない場合があることが分かった。さらに詳細な検討の結果、本発明者は、配向していない結晶(以下、非配向結晶という)の平均結晶粒径を所定の範囲にすることで、極めて高いd33を持つ結晶配向圧電セラミックスが得られることを見出した。以下、本発明の結晶配向圧電セラミックス、その製造方法、及び圧電体素子の実施形態を説明する。まず、結晶配向圧電セラミックスを説明する。 The crystal-oriented piezoelectric ceramic generally has a larger piezoelectric constant d33 as the relative density after sintering is higher. However, as a result of investigation by the present inventor, it is sufficient that the crystal-oriented piezoelectric ceramic using the piezoelectric material having the composition system represented by the general formula: (1-s) A1B1O 3 -sBaMO 3 is sufficient only by increasing the relative density. It has been found that the piezoelectric constant d33 may not be obtained. As a result of further detailed studies, the present inventors have obtained crystal-oriented piezoelectric ceramics having extremely high d33 by setting the average crystal grain size of non-oriented crystals (hereinafter referred to as non-oriented crystals) within a predetermined range. I found out that Hereinafter, embodiments of the crystal-oriented piezoelectric ceramic, the manufacturing method thereof, and the piezoelectric element of the present invention will be described. First, the crystal-oriented piezoelectric ceramic will be described.
 1.結晶配向圧電セラミックス
 [結晶配向圧電セラミックスの組成]
 本実施形態の結晶配向圧電セラミックスは、下記一般式(1)で示されるセラミックスを主成分として含む。主成分は、非鉛(lead-free)のペロブスカイト型化合物である。
 (1-s)A1B1O3-sBaMO3(0<s≦0.15)・・・(1)
ここでA1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含む。
1. Crystal Oriented Piezoelectric Ceramics [Composition of Crystal Oriented Piezoelectric Ceramics]
The crystal-oriented piezoelectric ceramic of the present embodiment contains a ceramic represented by the following general formula (1) as a main component. The main component is a lead-free perovskite type compound.
(1-s) A1B1O 3 -sBaMO 3 (0 <s ≦ 0.15) (1)
Here, A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements and contains Nb, and M is at least one element of Group 4A and contains Zr.
 結晶配向圧電セラミックスは、一般式(1)で規定される組成のペロブスカイト型化合物のみによって構成されていなくてもよく、上記一般式(1)で表される組成を有するセラミックスを80mol%以上含んでいれば高い圧電定数d33を示す。つまり、上記一般式(1)で表される組成物を主成分として含んでいればよい。この場合、主成分の相対密度が、95.0%以上98.5%以下であればよい。 The crystal-oriented piezoelectric ceramic may not be composed of only the perovskite type compound having the composition defined by the general formula (1), and contains 80 mol% or more of the ceramic having the composition represented by the general formula (1). In other words, a high piezoelectric constant d33 is exhibited. That is, it is sufficient if the composition represented by the general formula (1) is included as a main component. In this case, the relative density of the main component may be 95.0% or more and 98.5% or less.
 A1B1O3で示される組成物は、アルカリ金属含有ニオブ酸化物である。具体的には、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含む。この組成のアルカリ金属含有ニオブ酸化物は、非鉛で有りながら高い圧電定数を得やすい正方晶系ペロブスカイト構造を有する圧電セラミックスの組成として知られている。 Composition represented by A1B1O 3 is an alkali metal-containing niobium oxide. Specifically, A1 is at least one element selected from alkali metals, and B1 is at least one element of transition metal elements and contains Nb. The alkali metal-containing niobium oxide having this composition is known as a composition of piezoelectric ceramics having a tetragonal perovskite structure that is easy to obtain a high piezoelectric constant while being lead-free.
 より具体的には、A1B1O3で示される組成物において、A1はアルカリ金属(Li、Na、K)から選ばれる少なくとも一種である。好ましくは、A1はLi、K及びNaのすべてを含む。 More specifically, in the composition represented by A1B1O 3, A1 is at least one selected from alkali metal (Li, Na, K). Preferably, A1 includes all of Li, K and Na.
 好ましくは、A1B1O3は、組成式:K1-x-yNaxLiy(Nb1-zz)O3で表される。ここで、QはNb以外の遷移金属元素の少なくとも一種であり、好ましくはNbである。x、y、zは、0<x<1、0<y<1、0≦z≦0.3を満たす。 Preferably, A1B1O 3 is expressed by the formula is represented by K 1-xy Na x Li y (Nb 1-z Q z) O 3. Here, Q is at least one transition metal element other than Nb, preferably Nb. x, y, and z satisfy 0 <x <1, 0 <y <1, and 0 ≦ z ≦ 0.3.
 アルカリ金属として、K及びNaの両方が含まれていることにより、KまたはNaが単独に含まれる場合に比べて高い圧電定数を発揮し得る。また、Liは、結晶配向圧電セラミックスのキュリー温度を高める効果や、焼結性を高めることで圧電定数を高める効果を奏し得る。また、機械的強度を向上させる効果も奏し得る。但し、Liの含有量yが0.3を超えると圧電定数が下がりやすい。このため、アルカリ金属中のLiの含有量yは好ましくは0<y≦0.3である。Qは必須ではないが上記xの範囲であれば添加可能である。x、y、zの範囲は、より好ましくは0.3≦x≦0.7、0.05≦y≦0.2、0≦z≦0.2である。 By including both K and Na as the alkali metal, a higher piezoelectric constant can be exhibited than when K or Na is included alone. Li can also have the effect of increasing the Curie temperature of crystal-oriented piezoelectric ceramics and the effect of increasing the piezoelectric constant by increasing the sinterability. Moreover, the effect which improves mechanical strength can also be show | played. However, when the Li content y exceeds 0.3, the piezoelectric constant tends to decrease. For this reason, the content y of Li in the alkali metal is preferably 0 <y ≦ 0.3. Q is not essential, but can be added within the range of x. The ranges of x, y, and z are more preferably 0.3 ≦ x ≦ 0.7, 0.05 ≦ y ≦ 0.2, and 0 ≦ z ≦ 0.2.
 BaMO3は誘電率を高める効果を奏し得る。Mは4A族としてZrを80mass%以上含むことが好ましい。 BaMO 3 can have the effect of increasing the dielectric constant. M preferably contains 80 mass% or more of Zr as group 4A.
 A1B1O3及びBaMO3は、上記一般式(1)で表される比率で圧電セラミックスに含まれる。 A1B1O 3 and BaMO 3 are contained in the piezoelectric ceramic in a ratio represented by the general formula (1).
 BaMO3の含有比率sが0<s≦0.15の範囲である場合、高い圧電定数d33及び高いキュリー温度を持つ圧電セラミックスを得ることができる。一方、sが0、もしくは、sが0.15を超えると、圧電定数d33が低くなりすぎて実用的な圧電セラミックスを得ることが困難となる。sは0.05より大きいことが好ましい。これにより、さらに高い圧電定数d33を得ることができる。より好ましいsの範囲は0.065≦s≦0.10である。 When the content ratio s of BaMO 3 is in the range of 0 <s ≦ 0.15, a piezoelectric ceramic having a high piezoelectric constant d33 and a high Curie temperature can be obtained. On the other hand, when s is 0 or s exceeds 0.15, the piezoelectric constant d33 becomes too low, making it difficult to obtain a practical piezoelectric ceramic. s is preferably greater than 0.05. Thereby, a higher piezoelectric constant d33 can be obtained. A more preferable range of s is 0.065 ≦ s ≦ 0.10.
 上記組成に、さらに(R・A2)TiO3で表される組成の材料を添加することができる。その場合、上記一般式は、下記一般式(1’)で示される。
(1-s-t)A1B1O3-sBaMO3-t(R・A2)TiO3
                     ・・・・・・・・(1’)
ここで、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、Rは希土類元素(Yを含む)の少なくとも一種の元素であり、A2はアルカリ金属から選択される少なくとも一種の元素であり、s、tは、0<s≦0.15、0<t≦0.03を満たす。
A material having a composition represented by (R · A2) TiO 3 can be further added to the above composition. In that case, the above general formula is represented by the following general formula (1 ′).
(1-st) A1B1O 3 —sBaMO 3 —t (R · A2) TiO 3
... (1 ')
Here, A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements and contains Nb, M is at least one element of Group 4A and contains Zr , R is at least one element of rare earth elements (including Y), A2 is at least one element selected from alkali metals, and s and t are 0 <s ≦ 0.15, 0 <t ≦ 0.03 is satisfied.
 (R・A2)TiO3は菱面晶系のペロブスカイト構造を有するセラミックス組成物である。(R・A2)TiO3で表される組成物を、A1B1O3で表される組成物と混合することによって、正方晶―菱面晶等の相境界を持つ圧電セラミックスが得られる。 (R · A2) TiO 3 is a ceramic composition having a rhombohedral perovskite structure. By mixing the composition represented by (R · A2) TiO 3 with the composition represented by A1B1O 3 , a piezoelectric ceramic having a phase boundary such as a tetragonal crystal-rhombus crystal can be obtained.
 上記一般式の場合、tが0.03を超えると、高価な希土類の使用量が増え、原料コストが増す。好ましいtの範囲は0.005≦t≦0.02である。 In the case of the above general formula, when t exceeds 0.03, the amount of expensive rare earth used increases and the raw material cost increases. A preferable range of t is 0.005 ≦ t ≦ 0.02.
 上記(R・A2)TiO3の(R・A2)とは(R0.5A20.5)を指す。0.5は有効数字の範囲を含み、つまりは、RとA2の比は、R:A2=0.45:0.54~0.54:0.45の範囲である。 The (R · A2) of the (R · A2) TiO 3 refers to (R 0.5 A2 0.5 ). 0.5 includes a range of significant digits, that is, the ratio of R to A2 is in the range of R: A2 = 0.45: 0.54 to 0.54: 0.45.
 Rは、特に、Y、La、Ceから選ばれる少なくとも一種が好ましく、その中でもさらにLaが好ましい。酸化物の標準生成自由エネルギーが低いLa、Y、Ce等の希土類元素を用いるので、これらの元素は焼結中の揮散が少なく、セラミックスの組成の変動を抑えることができる。 R is particularly preferably at least one selected from Y, La and Ce, and among them, La is more preferable. Since rare earth elements such as La, Y, and Ce, which have a low standard free energy of formation of oxides, are used, these elements cause little volatilization during sintering and can suppress fluctuations in the composition of the ceramic.
 A2は、特に、Li、Na、Kからなる群から選ばれる少なくとも一種が好ましく、その中でもさらにNaが好ましい。この元素を用いることで圧電定数d33を高めることができる。 A2 is particularly preferably at least one selected from the group consisting of Li, Na, and K, and Na is more preferable among them. By using this element, the piezoelectric constant d33 can be increased.
 [結晶配向圧電セラミックスの結晶構造]
 図1は、本実施形態の結晶配向圧電セラミックスの、配向させた板状結晶粉末の厚さ方向に直交する断面を示している。図1から分かるように、本実施形態の結晶配向圧電セラミックスは、互いに結晶方位が揃った複数の配向結晶a(結晶方位は(100))と、結晶方位が不規則な状態で存在する複数の非配向結晶bを有する。各配向結晶aは板状結晶粉末が粒成長したものであり、各非配向結晶bは添加原料材が結晶化したものである。
[Crystal structure of crystal-oriented piezoelectric ceramics]
FIG. 1 shows a cross section perpendicular to the thickness direction of the oriented plate crystal powder of the crystal oriented piezoelectric ceramic of the present embodiment. As can be seen from FIG. 1, the crystal-oriented piezoelectric ceramic of the present embodiment includes a plurality of oriented crystals a (crystal orientation is (100)) in which crystal orientations are aligned with each other, and a plurality of crystal orientations that exist in an irregular state. It has a non-oriented crystal b. Each oriented crystal a is obtained by growing a plate-like crystal powder, and each non-oriented crystal b is obtained by crystallizing an additive raw material.
 複数の配向結晶aは板の厚さ方向(100)に揃った結晶方位を有している。複数の非配向結晶bは等方的(ランダム)に結晶方位が存在する。つまり、複数の非配向結晶bの結晶方位は互いに一致して(揃って)いない。なお、配向結晶領域a中、粒状の黒色部は空隙である。配向結晶aは非配向結晶bよりも大きい粒径を持つことが多い。ここで結晶とは、概ね単結晶である結晶粒の領域をいう。 The plurality of oriented crystals a have crystal orientations aligned in the thickness direction (100) of the plate. The plurality of non-oriented crystals b have an isotropic (random) crystal orientation. That is, the crystal orientations of the plurality of non-oriented crystals b do not match (align). In the oriented crystal region a, the granular black portion is a void. The oriented crystal a often has a larger particle size than the non-oriented crystal b. Here, the crystal refers to a region of crystal grains that is generally a single crystal.
 非配向結晶は、電子後方散乱パターンEBSP(Electron Back Scattering Pattern)で結晶の方位を解析することで、判別できる。EBSPでの解析は結晶の方位が(100)の方向からずれた角度によって各結晶を色分けして表示することが可能である。結晶方位が不規則な状態で群集する領域の各結晶がこの非配向結晶である。 A non-oriented crystal can be identified by analyzing the orientation of the crystal with an electron backscattering pattern EBSP (Electron Back Scattering Pattern). In the analysis by EBSP, each crystal can be displayed in different colors depending on the angle at which the crystal orientation is shifted from the (100) direction. Each crystal in a region that is clustered in an irregular crystal orientation is this non-oriented crystal.
 非配向結晶の平均結晶粒径は1.0μmより大きく、5.0μm以下である。非配向結晶の平均結晶粒径が1.0μm以下である場合、拡散による粒成長が十分生じず、圧電定数d33は比較的小さい。これは板状結晶粉末が粒成長しないことが要因であると考えられる。 The average crystal grain size of non-oriented crystals is larger than 1.0 μm and not larger than 5.0 μm. When the average crystal grain size of the non-oriented crystal is 1.0 μm or less, grain growth due to diffusion does not occur sufficiently, and the piezoelectric constant d33 is relatively small. This is considered to be caused by the fact that the plate-like crystal powder does not grow.
 一方、非配向結晶の平均結晶粒径が5.0μmを超える場合、非配向結晶が過大に粒成長することでかえって板状結晶粉末の粒成長が抑制され、この場合も圧電定数d33の向上に繋がらないと考えられる。非配向結晶の平均結晶粒径の測定方法は後述する。 On the other hand, when the average crystal grain size of the non-oriented crystal exceeds 5.0 μm, the non-oriented crystal grows excessively, and on the contrary, the grain growth of the plate-like crystal powder is suppressed. In this case as well, the piezoelectric constant d33 is improved. It is thought that it is not connected. A method for measuring the average crystal grain size of the non-oriented crystal will be described later.
 本発明者の知見によれば、非配向結晶の大きさを制御するために、焼結時の雰囲気の酸素分圧(以下、PO2ということがある)を所定の範囲内に設定することが有効である。セラミックス内に導入される酸素欠陥が拡散の速度に関係し、充分な酸素欠陥が導入されることで高い拡散性が確保されると考えられる。 According to the knowledge of the present inventor, in order to control the size of the non-oriented crystal, the oxygen partial pressure (hereinafter sometimes referred to as PO 2 ) of the atmosphere during sintering can be set within a predetermined range. It is valid. It is considered that oxygen vacancies introduced into the ceramics are related to the diffusion rate, and high diffusivity is ensured by introducing sufficient oxygen vacancies.
 焼結時の雰囲気は、酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気であることが好ましい。 The atmosphere during sintering is preferably a reducing atmosphere having an oxygen partial pressure of 1 × 10 −14 atm or more and 3 × 10 −10 atm or less.
 酸素分圧を3×10-10atm以下とすることで、非配向結晶の平均結晶粒径を1.0μm超に大きくすることができる。また、圧電定数d33が350pC/N以上である結晶配向圧電セラミックスを得ることが出来る。3×10-10atmを超える高酸素分圧下では充分な酸素欠陥が導入されず、拡散による粒成長が十分生じず、板状結晶粉末が粒成長しない。このため、圧電定数d33の向上に繋がらないと考えられる。 By setting the oxygen partial pressure to 3 × 10 −10 atm or less, the average crystal grain size of the non-oriented crystal can be increased to more than 1.0 μm. In addition, crystal oriented piezoelectric ceramics having a piezoelectric constant d33 of 350 pC / N or more can be obtained. Under a high oxygen partial pressure exceeding 3 × 10 −10 atm, sufficient oxygen defects are not introduced, grain growth due to diffusion does not occur sufficiently, and plate-like crystal powder does not grow. For this reason, it is considered that the piezoelectric constant d33 is not improved.
 一方、酸素分圧を1×10-14atm以上とすることで、非配向結晶の平均結晶粒径を5.0μm以下にすることができる。1×10-14atm未満の低酸素分圧では、板状結晶粉末の粒成長はかえって抑制され、圧電定数d33の向上に繋がらないと考えられる。 On the other hand, by setting the oxygen partial pressure to 1 × 10 −14 atm or more, the average crystal grain size of the non-oriented crystal can be set to 5.0 μm or less. At a low oxygen partial pressure of less than 1 × 10 −14 atm, it is considered that the grain growth of the plate-like crystal powder is suppressed and does not lead to an improvement in the piezoelectric constant d33.
 [結晶配向圧電セラミックスの物性]
 本実施形態の結晶配向圧電セラミックスは、85%以上100%未満のロットゲーリング法による配向度を備える。好ましくは、配向度は、90%以上、100%未満である。
[Physical properties of crystal-oriented piezoelectric ceramics]
The crystal-oriented piezoelectric ceramic of the present embodiment has an orientation degree by the Lotgering method of 85% or more and less than 100%. Preferably, the degree of orientation is 90% or more and less than 100%.
 また、本実施形態の結晶配向圧電セラミックスは、350pC/N以上の圧電定数d33を備える。好ましくは、圧電定数は、400pC/N以上である。 Further, the crystal-oriented piezoelectric ceramic of the present embodiment has a piezoelectric constant d33 of 350 pC / N or more. Preferably, the piezoelectric constant is 400 pC / N or more.
 本実施形態の結晶配向圧電セラミックスにおいて、配向度が、90%以上、100%未満である場合に、400pC/N以上の圧電定数d33が得られる。 In the crystal-oriented piezoelectric ceramic of this embodiment, when the degree of orientation is 90% or more and less than 100%, a piezoelectric constant d33 of 400 pC / N or more is obtained.
 2.圧電体素子
 本実施形態の結晶配向圧電セラミックスは高い圧電定数を備えており、バルク状の焼結体として、種々の用途に用いることができる。また、電極を形成して圧電体素子とすることができる。例えば、バルク状の焼結体である結晶配向圧電セラミックスの2つの主面に電極を形成し、圧電体素子を構成することができる。また、圧電素子は、結晶配向圧電セラミックスを含む複数のセラミックス層と、複数の電極とを備え、複数の電極と複数のセラミックス層とが交互に積層されていてもよい。この場合、電極には、例えば、Ag等の金属を用いることができる。
2. Piezoelectric Element The crystal-oriented piezoelectric ceramic of the present embodiment has a high piezoelectric constant, and can be used for various applications as a bulk sintered body. Moreover, an electrode can be formed to form a piezoelectric element. For example, it is possible to form a piezoelectric element by forming electrodes on two main surfaces of a crystal-oriented piezoelectric ceramic that is a bulk sintered body. The piezoelectric element may include a plurality of ceramic layers including crystal-oriented piezoelectric ceramics and a plurality of electrodes, and the plurality of electrodes and the plurality of ceramic layers may be alternately stacked. In this case, for example, a metal such as Ag can be used for the electrode.
 なお結晶配向圧電セラミックスによって積層圧電体を構成する場合、電極等の別の材料が各セラミックス層間に存在するのため、このような圧電素子における結晶配向圧電セラミックスの相対密度を測定することは一般的には難しい。この場合、空隙率を測定することで相対密度を求めることができる。空隙率φは、セラミックスの断面積S、その断面積上に存在するボイドの面積Spとして、φ=Sp/Sの式から算出することができ、積層圧電体からでも算出できる。この空隙率φの値を100(%)から除算した値は相対密度と同じ値であるので、空隙率φが1.5%以上5%以下かどうかで、本実施形態の結晶配向圧電セラミックスとしてさらに好ましいものであるか判別可能である。 When a laminated piezoelectric body is composed of crystal-oriented piezoelectric ceramics, it is common to measure the relative density of crystal-oriented piezoelectric ceramics in such piezoelectric elements because other materials such as electrodes exist between the ceramic layers. It is difficult to do. In this case, the relative density can be obtained by measuring the porosity. The porosity φ can be calculated from the equation φ = Sp / S as the cross-sectional area S of the ceramic and the area Sp of the void existing on the cross-sectional area, and can also be calculated from the laminated piezoelectric material. Since the value obtained by dividing the value of porosity φ from 100 (%) is the same value as the relative density, the crystal orientation piezoelectric ceramic of the present embodiment depends on whether the porosity φ is 1.5% or more and 5% or less. Further, it can be determined whether it is preferable.
 3. 結晶配向圧電セラミックスの製造方法
 以下に、本発明の結晶配向圧電セラミックスの製造方法の一実施形態を説明する。本実施形態の結晶配向圧電セラミックスは、例えば、以下の製造工程で製造することができる。
(1)(Bi222+層と擬ペロブスカイト層からなるビスマス層状構造化合物の第1結晶粉末を用意する工程、
(2)前記第1結晶粉末からBiを低減した第1のペロブスカイト型化合物からなる板状結晶粉末を用意する工程、
(3)前記板状結晶粉末に添加原料材を混合して、全体として、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表される組成の混合物とする工程、
(4)前記混合物を成形体とする工程、
(5)前記成形体を、酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気中で焼結する工程、
(6)焼結体に分極処理を施す工程
3. Method for Producing Crystal Oriented Piezoelectric Ceramics One embodiment of the method for producing crystal oriented piezoelectric ceramics of the present invention will be described below. The crystal-oriented piezoelectric ceramic according to the present embodiment can be manufactured, for example, by the following manufacturing process.
(1) preparing a first crystal powder of a bismuth layered structure compound comprising a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer;
(2) preparing a plate-like crystal powder comprising the first perovskite type compound with reduced Bi from the first crystal powder;
(3) An additive raw material is mixed with the plate-like crystal powder, and the general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals) , B1 is at least one element of transition metal elements and contains Nb, M is at least one element of Group 4A and contains Zr, and a mixture having a composition represented by 0 <s ≦ 0.15) The process of
(4) a step of using the mixture as a molded body,
(5) sintering the molded body in a reducing atmosphere having an oxygen partial pressure of 1 × 10 −14 atm to 3 × 10 −10 atm;
(6) Step of applying polarization treatment to the sintered body
 以下、図2および図3に示すフローチャートを参照しながら各工程を説明する。 Hereinafter, each process will be described with reference to the flowcharts shown in FIGS.
 (1)第1結晶粉末を用意する工程
 以下に、第(1)の工程である(Bi222+層と擬ペロブスカイト層からなるビスマス層状構造化合物の第1結晶粉末を用意する工程を説明する。
(1) Step of Preparing First Crystal Powder A step of preparing a first crystal powder of a bismuth layered structure compound comprising a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer, which is the first step (1). Will be explained.
 第1結晶粉末は、図4に模式図を示すように、(Bi222+層2と擬ペロブスカイト層1が交互に積み重なった結晶構造を有する。その後の工程においても板状に結晶が育成されるので、後述するように板状結晶粉末の雛形として使用できる。 As shown schematically in FIG. 4, the first crystal powder has a crystal structure in which (Bi 2 O 2 ) 2+ layers 2 and pseudo-perovskite layers 1 are alternately stacked. Since the crystal is grown in a plate shape in the subsequent steps, it can be used as a template for the plate crystal powder as described later.
 本実施形態では、たとえば、第1結晶粉末は、一般式:(Bi222+(Bi0.5A3m-1.5Nbm3m+12-(但し、A3はアルカリ金属から選択される少なくとも一種の元素であり、mは2以上の整数)で表されるものを用いることができる。この一般式において、左側が(Bi222+層を示しており、右側が擬ペロブスカイト層の組成を示している。 In the present embodiment, for example, the first crystal powder is a general formula: (Bi 2 O 2 ) 2+ (Bi 0.5 A3 m-1.5 Nb m O 3m + 1 ) 2− (where A3 is selected from alkali metals). Or an element represented by m is an integer of 2 or more. In this general formula, the left side shows the (Bi 2 O 2 ) 2+ layer, and the right side shows the composition of the pseudo-perovskite layer.
 他にも、擬ペロブスカイト層がBiを含まない第1結晶粉末として、一般式:(Bi222+(A3m-1B2m3m+12-(但し、A3はアルカリ金属から選択される少なくとも一種の元素であり、B2は4,5,6価の元素から選択される少なくとも一つの元素であり、mは2以上の整数)で表されるものを用いることもできる。A3はLi、K、又はNaから選択される少なくとも一つの元素であることが好ましい。B2はNb、Taの少なくとも一つの元素であることが好ましい。 In addition, as the first crystal powder in which the pseudo-perovskite layer does not contain Bi, the general formula: (Bi 2 O 2 ) 2+ (A3 m-1 B2 m O 3m + 1 ) 2− (where A3 is an alkali metal) And B2 is at least one element selected from 4, 5 and 6 valent elements, and m is an integer of 2 or more. A3 is preferably at least one element selected from Li, K, or Na. B2 is preferably at least one element of Nb and Ta.
 先ず原料を準備し(S1)、混合し(S2)、混合した原料を乾燥後、NaCl等の第1フラックスを添加(S3)する。第1フラックスとして、例えばNaCl,KCl等のアルカリ金属の塩化物やフッ化物、硝酸塩、硫酸塩等を用いることができる。 First, raw materials are prepared (S1), mixed (S2), the mixed raw materials are dried, and a first flux such as NaCl is added (S3). As the first flux, for example, an alkali metal chloride or fluoride such as NaCl or KCl, nitrate, sulfate, or the like can be used.
 その後、第1フラックスを添加した原料を大気中で700℃以上1300℃以下で加熱し(S4)、原料を反応させて、第1結晶粉末となる結晶を成長させる。この加熱により、第1結晶粉末とフラックスからなる反応物を得ることができる。加熱する際、多段熱処理を採用することもできる。第1結晶粉末とフラックスを十分に反応させるためには加熱時間を1分以上とすることが好ましい。長時間の加熱は処理時間が長くなるとともに、得られる板状粉末形状のアスペクト比が小さくなる傾向にあり、10時間以下とすることが好ましい。加熱後の反応物(第1の中間焼成体)はその周りにフラックスが充填されており、塊状になる。 Thereafter, the raw material to which the first flux is added is heated in the air at 700 ° C. or higher and 1300 ° C. or lower (S4), and the raw material is reacted to grow a crystal that becomes the first crystal powder. By this heating, a reaction product composed of the first crystal powder and the flux can be obtained. When heating, multistage heat treatment can also be employed. In order to sufficiently react the first crystal powder and the flux, the heating time is preferably set to 1 minute or longer. Long-time heating tends to decrease the aspect ratio of the obtained plate-like powder shape as the treatment time becomes longer, and is preferably 10 hours or less. The reaction product (first intermediate fired body) after heating is filled with flux around it and becomes a lump.
 その後、反応物から第1フラックスを除去する(S5)。この工程は、反応物を温水中に浸漬して第1フラックスを溶融する手法を用いてもよい。これにより第1結晶粉末のみを取り出すことができる。 Thereafter, the first flux is removed from the reaction product (S5). In this step, a method of melting the first flux by immersing the reactant in warm water may be used. Thereby, only the first crystal powder can be taken out.
 (2)板状結晶粉末を得る工程
 以下に、第(2)の工程である前記第1結晶粉末からBiを低減した第1のペロブスカイト型化合物からなる板状結晶粉末を用意する工程を説明する。この工程は、図2においては、工程S6~S10で示される。
(2) Step of obtaining plate-like crystal powder The step of preparing plate-like crystal powder made of the first perovskite type compound in which Bi is reduced from the first crystal powder, which is step (2), will be described below. . This step is shown in steps S6 to S10 in FIG.
 第1結晶粉末と、板状結晶粉末を生成するためのNa2CO3等の第1添加材と、第1結晶粉末と第1添加材が反応可能な温度で溶融するNaCl等のフラックス(第2フラックス)とを混合する(S6、S7)。 The first crystal powder, the first additive such as Na 2 CO 3 for generating the plate crystal powder, and the flux of NaCl or the like that melts at a temperature at which the first crystal powder and the first additive can react. 2 flux) (S6, S7).
 第1添加材として、上述したA1B1O3で示される結晶配向セラミックスのA1元素の化合物、例えばA1元素の酸化物や炭酸塩等の材料を用いることができる。第1添加材の添加量は、第1結晶粉末に対してA1元素とB1元素のモル比がBi成分の低減(S10)後に1:1になるように仕込み量を調整する。 As the first additive, the above-described A1 element compound of the crystal-oriented ceramic represented by A1B1O 3 , for example, an A1 element oxide or carbonate material can be used. The amount of the first additive added is adjusted so that the molar ratio of the A1 element to the B1 element becomes 1: 1 after the reduction of the Bi component (S10) with respect to the first crystal powder.
 第1添加材を混合するには、例えば、有機溶媒中に原料を添加してボールミル等で混合する手段を用いることができる。 In order to mix the first additive, for example, a means of adding a raw material in an organic solvent and mixing with a ball mill or the like can be used.
 第2フラックスは溶液中で第1結晶粉末と第1添加材が反応して結晶成長を促進させるために用いる。そのため、第1結晶粉末や第1添加材よりも融点が低温で先に溶融するものを用いることが好ましい。また、反応により所望の板状結晶粉末の組成以外の元素が含まれない組成であることが好ましい。例えばNaCl、KCl等のアルカリ金属の塩化物を用いることができる。 The second flux is used to promote crystal growth by the reaction between the first crystal powder and the first additive in the solution. Therefore, it is preferable to use a material that has a melting point that is lower than that of the first crystal powder or the first additive. Moreover, it is preferable that it is a composition which does not contain elements other than the composition of the desired plate-like crystal powder by reaction. For example, alkali metal chlorides such as NaCl and KCl can be used.
 この第2フラックスは水や溶媒に溶解しやすいため、有機溶媒等を乾燥した後に第2フラックスを添加して混合する。第2フラックスの添加量は第1結晶粉末に対して10mass%以上であることが好ましく、30mass%以上であることがより好ましい。 Since this second flux is easily dissolved in water or a solvent, the second flux is added and mixed after drying the organic solvent or the like. The amount of the second flux added is preferably 10 mass% or more, more preferably 30 mass% or more with respect to the first crystal powder.
 その後、混合した材料を第1結晶粉末と第1添加材が反応可能な温度で焼成する(S8)。この焼成により第1の中間焼成体が得られる。 Thereafter, the mixed material is fired at a temperature at which the first crystal powder and the first additive can react (S8). A first intermediate fired body is obtained by this firing.
 焼成は600℃以上1300℃以下で行うことが好ましい。焼成が600℃未満では、第1結晶粉末から板状結晶粉末への組成変換が起こり難く、1300℃超であると、第1結晶粉末が溶解し、一体的に焼成されてしまい、粉末状にすることが難しくなる。 Calcination is preferably performed at 600 ° C. or higher and 1300 ° C. or lower. If the firing is less than 600 ° C., composition conversion from the first crystal powder to the plate-like crystal powder hardly occurs, and if it exceeds 1300 ° C., the first crystal powder dissolves and is integrally fired to form a powder. It becomes difficult to do.
 焼成は、上記の温度で0.5時間以上保持することが好ましい。0.5時間未満では第1結晶粉末から板状結晶粉末への組成変換が起こり難い。焼成時間は3時間以上とすることがさらに好ましい。また、焼成時間が24時間を超えると製造時間が長くなり生産性が低下するので24時間以下とすることが好ましく、20時間以下とすることがさらに好ましい。 Calcination is preferably held at the above temperature for 0.5 hour or more. If it is less than 0.5 hour, composition conversion from the first crystal powder to the plate-like crystal powder hardly occurs. The firing time is more preferably 3 hours or more. Further, if the firing time exceeds 24 hours, the production time becomes long and the productivity is lowered, so that it is preferably 24 hours or less, and more preferably 20 hours or less.
 次に、第1の中間焼成体から第2フラックスを除去する(S9)。第1の中間焼成体から第2フラックスを除去するには、第1の中間焼成体を温水中に浸漬して攪拌し、溶融した第2フラックスをろ過する手段が採用できる。これにより第2フラックスを除去することができる。 Next, the second flux is removed from the first intermediate fired body (S9). In order to remove the second flux from the first intermediate fired body, means for immersing the first intermediate fired body in warm water and stirring it, and filtering the melted second flux can be employed. Thereby, the second flux can be removed.
 次に、第2フラックスを除去した後に残る板状の粉末に残存するBi成分を低減する(S10)。水と硝酸等の酸を混合した酸洗い液にこの粉末を入れて酸洗いし、Bi成分を液中に溶解させる。Bi成分が除去された粉末は本発明に用いる板状結晶粉末となり、酸洗い液中に沈殿する。上澄みの酸洗い液を除去し、残留物を乾燥することで板状結晶粉末が抽出できる。酸洗いは複数回繰り返すことができる。 Next, the Bi component remaining in the plate-like powder remaining after removing the second flux is reduced (S10). This powder is put into a pickling solution in which water and an acid such as nitric acid are mixed and pickled, and the Bi component is dissolved in the solution. The powder from which the Bi component has been removed becomes a plate-like crystal powder used in the present invention, and is precipitated in the pickling solution. The plate-like crystal powder can be extracted by removing the pickling solution from the supernatant and drying the residue. Pickling can be repeated multiple times.
 この板状結晶粉末は第1結晶粉末の板状形状を雛形として同様の形状が維持されているため、アスペクト比の高い板状結晶粉末を得ることができる。 Since this plate-like crystal powder maintains the same shape using the plate-like shape of the first crystal powder as a template, a plate-like crystal powder with a high aspect ratio can be obtained.
 この板状結晶粉末は、一般式A1B1O3で表されるペロブスカイト型化合物とすることができる。この板状結晶粉末において、A1はLi、K及びNaからなる群から選択される少なくとも一つとすることが特に好ましい。また、B1は4、5、6価の元素から選択される少なくとも一つの元素とすることが特に好ましい。 The plate-like crystal powder may be a perovskite-type compound represented by the general formula A1B1O 3. In this plate-like crystal powder, A1 is particularly preferably at least one selected from the group consisting of Li, K and Na. B1 is particularly preferably at least one element selected from 4, 5, and 6-valent elements.
 (3)一般式(1)で示される組成を有する混合物を得る工程
 以下に、本発明の製造方法の第(3)の工程である前記板状結晶粉末に添加原料材を混合して、全体として、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表される組成の混合物とする工程を説明する。この工程は、図3においては、工程S11で示される。
(3) Step of obtaining a mixture having the composition represented by the general formula (1) Below, an additive raw material is mixed with the plate-like crystal powder which is the step (3) of the production method of the present invention. A general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements and contains Nb; M represents at least one element of Group 4A, which includes Zr, and describes a process of making a mixture having a composition represented by 0 <s ≦ 0.15). This step is shown as step S11 in FIG.
 工程S11で示すように、板状結晶粉末と添加原料材を混合する。 As shown in step S11, the plate crystal powder and the additive raw material are mixed.
 添加原料材は、板状結晶粉末と混合することで、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、0<s≦0.15)で表される組成となる原料を用いる。 The additive raw material is mixed with the plate crystal powder to obtain a general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, and B1 is a transition metal) A raw material having a composition represented by 0 <s ≦ 0.15), which is at least one kind of element and contains Nb, is used.
 板状結晶粉末は、添加原料材に対して0.1~10mol%の割合で添加することが好ましい。 The plate-like crystal powder is preferably added at a ratio of 0.1 to 10 mol% with respect to the additive raw material.
 (4)成形体を得る工程
 以下に、本発明の製造方法の第(4)の工程である前記混合物を成形体とする工程について説明する。この工程は、図3においては、工程S12で示される。
(4) Step of Obtaining Molded Body Hereinafter, the step of using the mixture as the molded body, which is the fourth step of the production method of the present invention, will be described. This step is shown as step S12 in FIG.
 板状結晶粉末と添加原料材を混合した後、板状結晶粉末が配向されるように成形する。例えば、板状結晶粉末、添加原料材、バインダー、可塑剤、溶剤を混ぜ、スラリー状にし、シート状成形体とすることで、図5に示すような板状結晶粉末3が添加原料材4の中で配向した状態で存在するシート状の配向性成形体10が得られる。 After the plate crystal powder and the additive raw material are mixed, the plate crystal powder is molded so as to be oriented. For example, by mixing plate crystal powder, additive raw material, binder, plasticizer, and solvent into a slurry and forming a sheet-like molded body, plate crystal powder 3 as shown in FIG. The sheet-like oriented molded body 10 existing in an oriented state is obtained.
 添加原料材は粉末状とし、そのBET値は、2.0m2/g以上10m2/g以下とすることが好ましい。 The additive raw material is powdery, and the BET value is preferably 2.0 m 2 / g or more and 10 m 2 / g or less.
 スラリーの粘度と成形するシートの厚さにより、シート状成形体に分散された板状結晶粉末の配向度を変えることができる。 Depending on the viscosity of the slurry and the thickness of the sheet to be molded, the degree of orientation of the plate-like crystal powder dispersed in the sheet-like molded body can be changed.
 配向性成形体は、シート状の成形体を積層した積層体を用いることもできるし、その層間にAg,Ni,Cu等の電極を形成したものを用いることもできる。 As the oriented molded body, a laminated body in which sheet-like molded bodies are laminated can be used, or one in which electrodes such as Ag, Ni, and Cu are formed between the layers can be used.
 (5)焼結体を得る工程
 以下に、第(5)の工程である前記配向性成形体を、酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気中で焼結する工程を説明する。この工程は、図3においては、工程S13で示される。
(5) Step of obtaining sintered body Hereinafter, the oriented molded body as the step (5) is subjected to reduction in an oxygen partial pressure of 1 × 10 −14 atm or more and 3 × 10 −10 atm or less. A process of sintering will be described. This step is indicated by step S13 in FIG.
 得られた配向性成形体を焼結する。酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気中で焼結することで、ロットゲーリング法による配向度が85%以上100%未満であり、圧電定数d33が飛躍的に向上した、350pC/N以上の結晶配向圧電セラミックスが得られる。 The obtained oriented molded body is sintered. By sintering in a reducing atmosphere with an oxygen partial pressure of 1 × 10 −14 atm or more and 3 × 10 −10 atm or less, the degree of orientation by the Lotgering method is 85% or more and less than 100%, and the piezoelectric constant d33 jumps. Thus, a crystallographically oriented piezoelectric ceramic of 350 pC / N or higher can be obtained.
 この際、酸素分圧を7×10-14atm以上4×10-13atm以下とすることで、ロットゲーリング法による配向度が90%以上であり、圧電定数d33が400pC/N以上の結晶配向圧電セラミックスが得られる。 At this time, by setting the oxygen partial pressure to 7 × 10 −14 atm or more and 4 × 10 −13 atm or less, the degree of orientation by the Lotgering method is 90% or more, and the crystal orientation in which the piezoelectric constant d33 is 400 pC / N or more. Piezoelectric ceramics are obtained.
 さらに、酸素分圧を1.1×10-13atm以上3×10-13atm以下とすることで、ロットゲーリング法による配向度が90.5%以上であり、圧電定数d33が420pC/N以上の結晶配向圧電セラミックスが得られる。 Furthermore, by setting the oxygen partial pressure to 1.1 × 10 −13 atm or more and 3 × 10 −13 atm or less, the degree of orientation by the Lotgering method is 90.5% or more, and the piezoelectric constant d33 is 420 pC / N or more. A crystal-oriented piezoelectric ceramic is obtained.
 酸素分圧の調整は、例えば、水蒸気及び水素の供給量を調整して行うなど、公知の調製方法を用いることができる。 The oxygen partial pressure can be adjusted by using a known preparation method, for example, by adjusting the supply amount of water vapor and hydrogen.
 焼結は、還元雰囲気中、1135℃以上1170℃以下の温度で焼結することが好ましい。この温度で焼結することで、相対密度が95%以上98.5%以下、さらには96%以上97.5%未満の焼結体とすることができる。一般的には、結晶配向圧電セラミックスは、相対密度(真密度に対する密度)を高くすることで配向度が高まり、それに伴い圧電定数d33が大きくなるとの認識があり、相対密度を高くすれば配向度が高まるので大きな圧電定数d33が得られると考えられている。しかし、一般式:(1-s)A1B1O3-sBaMO3で表される組成系の圧電材料は、相対密度と配向度は常に相関があるわけではなく、つまり、相対密度を高めることが必ずしも圧電定数d33の向上に寄与するものではないことがわかった。相対密度が少し低めの95%以上98.5%以下の範囲であると配向度が最も高まり、それに伴い、高い圧電定数d33が得られる。
(6)焼結体に分極処理を施す工程
Sintering is preferably performed at a temperature of 1135 ° C. or higher and 1170 ° C. or lower in a reducing atmosphere. By sintering at this temperature, a sintered body having a relative density of 95% or more and 98.5% or less, and further 96% or more and less than 97.5% can be obtained. In general, it is recognized that the crystal orientation piezoelectric ceramic increases in the degree of orientation by increasing the relative density (density relative to the true density), and accordingly, the piezoelectric constant d33 increases. It is considered that a large piezoelectric constant d33 can be obtained. However, the composition-type piezoelectric material represented by the general formula: (1-s) A1B1O 3 —sBaMO 3 does not always have a correlation between the relative density and the degree of orientation. It turned out that it does not contribute to the improvement of the constant d33. If the relative density is in the range of 95% or more and 98.5% or less, which is a little lower, the degree of orientation is the highest, and accordingly, a high piezoelectric constant d33 is obtained.
(6) Step of applying polarization treatment to the sintered body
 上記工程によって得られた焼結体であるセラミックスに、電極を形成し、分極処理を施す。分極処理により、セラミックス中の自発分極の向きが揃い、圧電特性が発現する。分極処理には圧電セラミックスの製造に一般に用いられる公知の分極処理を用いることができる。例えば、電極を形成した焼成体を、シリコーン浴などによって室温以上200℃以下の温度に保持し、0.5kV/mm以上6kV/mm程度の電圧をかける。これにより、圧電特性を備えた結晶配向圧電セラミックスを得ることができる。 An electrode is formed on the ceramic, which is a sintered body obtained by the above process, and subjected to polarization treatment. Due to the polarization treatment, the direction of spontaneous polarization in the ceramic is aligned, and the piezoelectric characteristics are exhibited. For the polarization treatment, a known polarization treatment generally used in the production of piezoelectric ceramics can be used. For example, the fired body on which the electrode is formed is held at a temperature of room temperature to 200 ° C. with a silicone bath or the like, and a voltage of about 0.5 kV / mm to 6 kV / mm is applied. Thereby, crystal-oriented piezoelectric ceramics having piezoelectric characteristics can be obtained.
 4.物性の測定等
 以下に、本願における、酸素分圧、組成、配向度、非配向結晶の平均結晶粒径、圧電定数d33、真密度、相対密度の測定方法を説明する。
4). Measurement of physical properties, etc. Hereinafter, methods for measuring oxygen partial pressure, composition, orientation degree, average crystal grain size of non-oriented crystals, piezoelectric constant d33, true density, and relative density in the present application will be described.
 [酸素分圧]
 酸素分圧は市販のYTZ(イットリウム安定化ジルコニア)センサーを有する酸素濃度計を用いて評価することができる。測定方法はガス雰囲気を作りだす電気炉内のワーク近傍の雰囲気を直接サンプリングできるようにアルミナ管を用いて炉内から抽出するなどの手法を用いた。
[Oxygen partial pressure]
The oxygen partial pressure can be evaluated using an oxygen concentration meter having a commercially available YTZ (yttrium stabilized zirconia) sensor. The measurement method used a method such as extracting from the furnace using an alumina tube so that the atmosphere in the vicinity of the work in the electric furnace that creates a gas atmosphere can be directly sampled.
 なお酸素分圧の調整は、窒素やアルゴンなどの不活性ガスをベースに水素を0~4mol%含むガスにバブリング等の手法により一定量の水蒸気を含有させる手法にて調整することができる。このとき作りだせる酸素分圧は水素分圧PH2と水蒸気分圧PH2Oを用いて下記数1、数2から計算することができる。数1中、ΔGfは水蒸気の標準生成ギブスエネルギー、Rは気体定数、Tは絶対温度である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
The partial pressure of oxygen can be adjusted by a method of containing a certain amount of water vapor by a method such as bubbling in a gas containing 0 to 4 mol% of hydrogen based on an inert gas such as nitrogen or argon. The oxygen partial pressure that can be created at this time can be calculated from the following equations 1 and 2 using the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O. In Equation 1, ΔG f is the standard production Gibbs energy of water vapor, R is a gas constant, and T is an absolute temperature.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 [組成]
 組成は、SEM-EDX ( Energy Dispersive X-ray spectroscopy )により測定した。測定条件として加速電圧を15kV、電流を100nA、ビーム径を1μmとした。
[composition]
The composition was measured by SEM-EDX (Energy Dispersive X-ray spectroscopy). As measurement conditions, the acceleration voltage was 15 kV, the current was 100 nA, and the beam diameter was 1 μm.
 [圧電定数d33]
 分極処理を施した後に圧電定数d33を測定する。分極処理は、セラミックスにAg電極をスパッターで形成し、413K(140℃)にて4.0kV/mmの直流電界を10分間印加した。
[Piezoelectric constant d33]
After the polarization treatment, the piezoelectric constant d33 is measured. For the polarization treatment, an Ag electrode was formed on the ceramic by sputtering, and a 4.0 kV / mm DC electric field was applied for 10 minutes at 413 K (140 ° C.).
 圧電定数d33はd33メータ(中国科学院声学研究所製)にて測定した。 The piezoelectric constant d33 was measured with a d33 meter (manufactured by Institute of Speech, Chinese Academy of Sciences).
 [配向度]
 配向度はロットゲーリング法により測定した。
[Orientation]
The degree of orientation was measured by the Lotgering method.
 具体的には、Cu-Kα線を用いてXRDの結果から求めた。XRDは焼結体の表面を研削した面で2θ:5°~80°の範囲で測定した。XRDの測定結果より下記ロットゲーリングの数3及び数4により配向度fを算出した。ここで、Pは圧電セラミックスの残留分極値であり、ΣI{h00}とは{h00}に由来する回折ピークの全積分強度和、ΣI{hkl}は観測されたすべての回折ピークの積分強度を総和した値を示す。またP0は無配向の圧電セラミックスの残留分極値であり、板状結晶粉末を用いずに焼結体を作製し、上記と同様にして数3から算出した。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Specifically, it was obtained from the XRD result using Cu-Kα rays. XRD was measured in the range of 2θ: 5 ° to 80 ° on a surface obtained by grinding the surface of the sintered body. From the measurement results of XRD, the degree of orientation f was calculated by the following Lotgering numbers 3 and 4. Here, P is the remanent polarization value of the piezoelectric ceramic, ΣI {h00} is the sum of all integrated intensities of diffraction peaks derived from {h00}, and ΣI {hkl} is the integrated intensities of all observed diffraction peaks. The sum is shown. P 0 is the remanent polarization value of the non-oriented piezoelectric ceramic. A sintered body was prepared without using the plate-like crystal powder, and was calculated from Equation 3 in the same manner as described above.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 [非配向結晶の平均結晶粒径]
 EBSPで非配向結晶の領域を確認し、図6に示すように走査型電子顕微鏡(SEM)による背面反射電子像(BSE:5000倍)で撮影する。画像解析ソフト(フリーソフト:ImageJ、http://rsb.info.nih.gov/ij/)で、各結晶(n1,n2,・・nz)の最大径Lと面積Sをそれぞれ測定し、その積の値(L・S)の総和Σ(L・S)(=L・S1+L・S2+・・+L・Sz)を算出する。また、画像解析ソフトで非配向結晶の総面積Σ(S)(=S1+S2+・・+Sz)を算出する。このΣ(L・S)をΣ(S)で除した値を非配向結晶の平均結晶粒径とした。
[Average crystal grain size of non-oriented crystals]
The region of the non-oriented crystal is confirmed by EBSP, and as shown in FIG. 6, the back-scattered electron image (BSE: 5000 times) is taken with a scanning electron microscope (SEM). The maximum diameter L and area S of each crystal (n1, n2, .. nz) are measured with image analysis software (free software: ImageJ, http://rsb.info.nih.gov/ij/) The sum Σ (L · S) of the product values (L · S) (= L · S1 + L · S2 + ·· + L · Sz) is calculated. Further, the total area Σ (S) (= S1 + S2 + .. + Sz) of the non-oriented crystal is calculated by image analysis software. The value obtained by dividing Σ (L · S) by Σ (S) was defined as the average grain size of the non-oriented crystals.
 [真密度]
 真密度は、仕込み組成からペロブスカイト型構造の単位胞の質量を算出し、焼結体のXRD(X-Ray Diffraction)の測定結果より、単位胞の体積を算出し、前記単位胞の質量を除したものを真密度として採用した。
[True density]
The true density is calculated by calculating the mass of the perovskite-type unit cell from the charged composition, calculating the volume of the unit cell from the XRD (X-Ray Diffraction) measurement result of the sintered body, and dividing the mass of the unit cell. This was adopted as the true density.
 [相対密度]
 相対密度は、上記の真密度を100%とし、その真密度に対する実測した密度(アルキメデス法で測定)の割合を%表記した。
[Relative density]
The relative density was expressed as a percentage of the actually measured density (measured by Archimedes method) with respect to the true density as 100%.
 5.実施例
 本発明の実施例をさらに詳細に述べる。
5. Examples of the present invention will be described in more detail.
 (実施例1)
 先ず図2に示す工程(S1~S5)によって、(Bi222+層と擬ペロブスカイト層からなるビスマス層状構造化合物の第1結晶粉末を用意した。
Example 1
First, by the steps (S1 to S5) shown in FIG. 2, a first crystal powder of a bismuth layer structure compound composed of a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer was prepared.
 一般式:(Bi222+(Bi0.5m-1.5Nbm3m+12-において、AがNa、m=5となるBi2.5Na3.5Nb518となるように、Bi23、Na2CO3、Nb25の原料をそれぞれ秤量した(S1)。 In the general formula: (Bi 2 O 2 ) 2+ (Bi 0.5 A m-1.5 Nb m O 3m + 1 ) 2− , so that A becomes Na, m = 5, Bi 2.5 Na 3.5 Nb 5 O 18 , Bi 2 O 3 , Na 2 CO 3 , and Nb 2 O 5 were weighed (S1).
 これらの原料をボールミルにより混合した。溶媒としてエタノール、メディアとしてジルコニアボールを用い、回転数94rpmで24時間混合した。ボールミルの容器からメディアと原料を取り出し、130℃の大気中で乾燥した。その後、篩によりメディアと原料を分離した(S2)。 These materials were mixed by a ball mill. Ethanol was used as a solvent and zirconia balls were used as a medium, and mixed for 24 hours at a rotation speed of 94 rpm. The media and raw materials were taken out from the ball mill container and dried in the air at 130 ° C. Thereafter, the media and the raw material were separated by a sieve (S2).
 分離した原料に、フラックスとしてNaClを原料に対して100mass%混合し、粗粉砕機で10分間乾式混合した(S3)。 The mixed raw material was mixed with 100% by mass of NaCl as a flux with respect to the raw material, and then dry mixed for 10 minutes with a coarse pulverizer (S3).
 フラックス添加後の原料に、大気中で850℃×1時間で保持後、1100℃×2時間で保持する2段仮焼を施した。昇温及び降温は約200℃/hとした(S4)。 The raw material after flux addition was subjected to two-stage calcination which was held in air at 850 ° C. for 1 hour and then held at 1100 ° C. for 2 hours. The temperature increase and decrease were about 200 ° C./h (S4).
 得られた第1の中間焼成体からフラックス成分を除去するため、95℃~100℃の温水中に浸漬し、3時間放置した。その後、温水中で60分間攪拌し脱水する工程を3回繰り返した(S5)。これにより一般式:Bi2.5Na3.5Nb518からなる第1結晶粉末を得た。 In order to remove the flux component from the obtained first intermediate fired body, it was immersed in warm water at 95 ° C. to 100 ° C. and left for 3 hours. Thereafter, the process of stirring and dehydrating in warm water for 60 minutes was repeated three times (S5). Thus the general formula: to give a first crystalline powder consisting of Bi 2.5 Na 3.5 Nb 5 O 18 .
 図7は第1結晶粉末のSEM観察写真である。結晶が板状であることが確認できる。 FIG. 7 is a SEM observation photograph of the first crystal powder. It can be confirmed that the crystals are plate-like.
 図8は第1結晶粉末のX線回折結果を示し、図9はそのX線回折結果を用いて化合物の特定を行った結果を示す。なお、X線回折は全てCuのKα線源を用いた。 FIG. 8 shows the X-ray diffraction result of the first crystal powder, and FIG. 9 shows the result of specifying the compound using the X-ray diffraction result. All X-ray diffraction was performed using a Cu Kα radiation source.
 得られた結晶はほとんどが一般式:Bi2.5Na3.5Nb518で表せられるものである。但し、一般式:Bi2.5Na3.5Nb518の他にも、一般式:(Bi222+(Bi0.5m-1.5Nbm3m+12-において、m=2となるBi2.5Na0.5Nb29と、m=4となるBi2.5Na2.5Nb415の化合物も確認できる。 Most of the crystals obtained are represented by the general formula: Bi 2.5 Na 3.5 Nb 5 O 18 . However, in addition to the general formula: Bi 2.5 Na 3.5 Nb 5 O 18 , in the general formula: (Bi 2 O 2 ) 2+ (Bi 0.5 A m-1.5 Nb m O 3m + 1 ) 2− , m = 2 A compound of Bi 2.5 Na 0.5 Nb 2 O 9 and Bi 2.5 Na 2.5 Nb 4 O 15 of m = 4 can be confirmed.
 次に図2に示す製造工程(S6~S10)によって第1結晶粉末からBiを低減することで得られる第1のペロブスカイト型化合物からなる板状結晶粉末を用意した。 Next, a plate-like crystal powder made of the first perovskite compound obtained by reducing Bi from the first crystal powder by the manufacturing steps (S6 to S10) shown in FIG. 2 was prepared.
 第1添加材としてNa2CO3を用い、反応後にNaとNbが1:1になる量を添加した。これらをボールミルにより混合した。溶媒としてエタノール、メディアとしてジルコニアボールを用い、回転数94rpmで4時間混合した。ボールミルの容器から混合物を取り出し、130℃の大気中で乾燥した。その後、篩によりメディアを分離した(S6)。 Na 2 CO 3 was used as the first additive, and an amount such that Na and Nb were 1: 1 after the reaction was added. These were mixed by a ball mill. Ethanol was used as a solvent and zirconia balls were used as media, and the mixture was mixed at 94 rpm for 4 hours. The mixture was taken out from the ball mill container and dried in an atmosphere of 130 ° C. Thereafter, the media was separated by a sieve (S6).
 分離した原料に、第2フラックスとしてNaClを第1結晶粉末に対して100mass%混合し、粗粉砕機で10分間乾式混合した(S7)。 The mixed raw material was mixed with NaCl as a second flux by 100 mass% with respect to the first crystal powder, and then dry-mixed for 10 minutes with a coarse pulverizer (S7).
 第1結晶粉末、第1添加材、及びフラックスからなる混合材料に、大気中で950℃×8時間で保持する焼成を行い、第2の中間焼成体を得た。昇温及び降温は約200℃/hとした(S8)。 The mixed material composed of the first crystal powder, the first additive, and the flux was fired at 950 ° C. for 8 hours in the atmosphere to obtain a second intermediate fired body. The temperature increase and decrease were about 200 ° C./h (S8).
 第2の中間焼成体から第2フラックス成分を低減するため、95℃~100℃の温水中に浸漬し、3時間放置した。その後、温水中で60分間攪拌し脱水する工程を3回繰り返した(S9)。 In order to reduce the second flux component from the second intermediate fired body, it was immersed in warm water of 95 ° C. to 100 ° C. and left for 3 hours. Thereafter, the step of stirring and dehydrating in warm water for 60 minutes was repeated three times (S9).
 その後、酸洗いして第2の中間焼成体からBi成分を低減した。純水と硝酸を3:1~10:1程度の比率で混合した酸洗い液の中に、工程S9で得られた被処理物を入れ、攪拌した。その後Bi成分が溶融した上澄み液を除去した。さらに、酸洗い液の添加、攪拌、上澄み液の除去を繰り返し行った。その後、残存物を乾燥させて、NaNbO3からなる板状結晶粉末を得た(S10)。得られた板状結晶粉末のアスペクト比(板厚と最大直径の比)は約10であった。 Thereafter, pickling was performed to reduce the Bi component from the second intermediate fired body. The material to be treated obtained in step S9 was placed in a pickling solution in which pure water and nitric acid were mixed at a ratio of about 3: 1 to 10: 1 and stirred. Thereafter, the supernatant liquid in which the Bi component was melted was removed. Further, the pickling solution was added, stirred, and the supernatant was removed repeatedly. Thereafter, the residue was dried to obtain a plate-like crystal powder made of NaNbO 3 (S10). The obtained plate crystal powder had an aspect ratio (ratio of plate thickness to maximum diameter) of about 10.
 次に、図3に示す工程(S11)によって板状結晶粉末に添加原料材を混合して、全体として、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表される組成の混合物を得た。 Next, the additive raw material is mixed with the plate-like crystal powder in the step (S11) shown in FIG. 3, and the general formula: (1-s) A1B1O 3 -sBaMO 3 (where A1 is selected from alkali metals) B1 is at least one element of transition metal elements and contains Nb, M is at least one element of Group 4A and contains Zr, and 0 <s ≦ 0.15) The mixture of the composition represented by this was obtained.
 本実施例では、NaNbO3からなる板状結晶粉末Xmolに対し、(K0.414Na0.46-XLi0.046Ba0.08)(Nb0.92-XZr0.08)O3からなる添加原材料を混合した。本実施例では板状結晶粉末の上記Xの値を1(mol)とした。これにより、全体で板状結晶粉末が1mol%含まれる、(K0.414Na0.46Li0.046Ba0.08)(Nb0.92Zr0.08)O3で表される組成とした。上記一般式でのsの値は0.08である(S11)。 In this embodiment, with respect to the plate-like crystal powder Xmol consisting NaNbO 3, it was mixed with added raw materials consisting of (K 0.414 Na 0.46-X Li 0.046 Ba 0.08) (Nb 0.92-X Zr 0.08) O 3. In this example, the value of X of the plate-like crystal powder was 1 (mol). As a result, a composition represented by (K 0.414 Na 0.46 Li 0.046 Ba 0.08 ) (Nb 0.92 Zr 0.08 ) O 3 containing 1 mol% of plate crystal powder as a whole was obtained. The value of s in the above general formula is 0.08 (S11).
 次に図3に示す工程(S12)によって、混合物の成形体を得た。 Next, a molded body of the mixture was obtained by the step (S12) shown in FIG.
 先ず混合物をスラリー状にするため、得られた混合物に、エタノールを混合物に対して200~300mass%、ブタノールを混合物に対して50~100mass%添加した。また、可塑剤を添加した。本実施例では可塑剤としてフタル酸ジオクチルを混合物に対して5~15mass%添加した。また、バインダーを添加した。本実施例ではバインダーとしてポリビニルブチラールを混合物に対して5~15mass%添加した。こうして得られたスラリーをシート状に成形した(S12)。 First, in order to make the mixture into a slurry, ethanol was added at 200 to 300 mass% with respect to the mixture and butanol was added at 50 to 100 mass% with respect to the mixture. A plasticizer was also added. In this example, dioctyl phthalate was added as a plasticizer in an amount of 5 to 15 mass% with respect to the mixture. A binder was also added. In this example, 5 to 15 mass% of polyvinyl butyral was added as a binder to the mixture. The slurry thus obtained was formed into a sheet (S12).
 次に、図3に示す工程(S13)によって、配向性成形体を焼結させた。 Next, the oriented molded body was sintered by the step (S13) shown in FIG.
 水素0.01~2%を含有する窒素と水蒸気を混合することで、比較用の試料も作製することを考慮し、炉内の雰囲気を2.4×10-8atmから3.9×10-15atmの酸素分圧になるように調製した還元雰囲気とした。焼結温度は1150℃とした。 Considering that a sample for comparison is prepared by mixing nitrogen and water containing 0.01 to 2% of hydrogen, the atmosphere in the furnace is changed from 2.4 × 10 −8 atm to 3.9 × 10. A reducing atmosphere was prepared so that the oxygen partial pressure was -15 atm. The sintering temperature was 1150 ° C.
 得られた結晶配向圧電セラミックスの、酸素分圧PO2、配向度、非配向結晶の平均結晶粒径、圧電定数d33、相対密度を測定した。表1にその結果を示す。また図10は、酸素分圧(PO2)と配向度、酸素分圧(PO2)と圧電定数d33の関係を示したものである。図11は、酸素分圧(PO2)と相対密度の関係を示したものである。図6は表1の試料No.3の組織の観察結果である。 The obtained crystal-oriented piezoelectric ceramic was measured for oxygen partial pressure PO 2 , degree of orientation, average crystal grain size of non-oriented crystals, piezoelectric constant d33, and relative density. Table 1 shows the results. FIG. 10 shows the relationship between oxygen partial pressure (PO 2 ) and orientation degree, oxygen partial pressure (PO 2 ), and piezoelectric constant d33. FIG. 11 shows the relationship between oxygen partial pressure (PO 2 ) and relative density. FIG. 6 is an observation result of the structure of sample No. 3 in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図10に示すように、酸素分圧PO2に対する配向度は緩やかなカーブを描き、およそ1×10-12~1×10-11atm付近で最大値を取るのに対し、酸素分圧PO2に対する圧電定数d33は極所的に最大値を取る。つまり、酸素分圧PO2が1×10-14atm未満、もしくは、3×10-10atm超の還元雰囲気中で焼結すると、配向度が高くとも、圧電定数d33が350pC/N未満の結晶配向圧電セラミックスになりやすい。 As shown in FIG. 10, the degree of orientation with respect to the oxygen partial pressure PO 2 draws a gentle curve and takes a maximum value in the vicinity of about 1 × 10 −12 to 1 × 10 −11 atm, whereas the oxygen partial pressure PO 2. The piezoelectric constant d33 with respect to takes a maximum value locally. That is, when sintered in a reducing atmosphere with an oxygen partial pressure PO 2 of less than 1 × 10 −14 atm or more than 3 × 10 −10 atm, a crystal having a piezoelectric constant d33 of less than 350 pC / N, even if the degree of orientation is high. It tends to be oriented piezoelectric ceramics.
 これに対し、1×10-14~1×10-10atmの範囲において、酸素分圧PO2を僅かに変えるだけで圧電定数d33を急激に高めることができる。具体的には、焼成時の酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気である場合、圧電定数d33が350pC/N以上である結晶配向圧電セラミックスを得ることができる。また、このとき得られる結晶配向圧電セラミックスの非配向結晶の平均結晶粒径は、1.0μmより大きく、5.0μm以下である。 On the other hand, in the range of 1 × 10 −14 to 1 × 10 −10 atm, the piezoelectric constant d33 can be rapidly increased by slightly changing the oxygen partial pressure PO 2 . Specifically, when the oxygen partial pressure during firing is a reducing atmosphere of 1 × 10 −14 atm or more and 3 × 10 −10 atm or less, a crystal-oriented piezoelectric ceramic having a piezoelectric constant d33 of 350 pC / N or more is obtained. Can do. Further, the average crystal grain size of the non-oriented crystal of the crystal oriented piezoelectric ceramic obtained at this time is larger than 1.0 μm and not larger than 5.0 μm.
 特に、本実施例では、酸素分圧が7×10-14atm以上4×10-13atm以下であれば、圧電定数d33が400pC/N以上の結晶配向圧電セラミックスが得られ、酸素分圧が1.1×10-13atm以上3×10-13atm以下であれば、圧電定数d33が420pC/N以上の結晶配向圧電セラミックスが得られた。 In particular, in this example, when the oxygen partial pressure is 7 × 10 −14 atm or more and 4 × 10 −13 atm or less, a crystal-oriented piezoelectric ceramic having a piezoelectric constant d33 of 400 pC / N or more is obtained, and the oxygen partial pressure is A crystal-oriented piezoelectric ceramic having a piezoelectric constant d33 of 420 pC / N or more was obtained when it was 1.1 × 10 −13 atm or more and 3 × 10 −13 atm or less.
 なお、図11に示すように本実施例で得られた結晶配向圧電セラミックスは、相対密度がいずれも96%以上97.0%以下の範囲にある。 As shown in FIG. 11, the crystal-oriented piezoelectric ceramic obtained in this example has a relative density in the range of 96% or more and 97.0% or less.
 また、一般式:(1-s)A1B1O3-sBaMO3のsの範囲を0<s≦0.15の範囲で変え、それ以外は上記実施例1と同様に評価した。その結果、上記実施例1と同様の酸素分圧PO2にすることで非配向結晶の平均結晶粒径を上記範囲にすることができた。また、この酸素分圧PO2にすることで大きな圧電定数d33を持つ結晶配向圧電セラミックスが得られた。 In addition, evaluation was performed in the same manner as in Example 1 except that the range of s in the general formula: (1-s) A1B1O 3 —sBaMO 3 was changed within the range of 0 <s ≦ 0.15. As a result, the average crystal grain size of the non-oriented crystals could be within the above range by setting the oxygen partial pressure PO 2 to be the same as in Example 1. Moreover, crystal orientation piezoelectric ceramics having a large piezoelectric constant d33 were obtained by using this oxygen partial pressure PO 2 .
 (実施例2)
 焼結温度を変え、相対密度と配向度の関係について調べた。以下に示す条件以外は実施例1と同様にして試料を作製した。
(Example 2)
The relationship between the relative density and the degree of orientation was examined by changing the sintering temperature. A sample was prepared in the same manner as in Example 1 except for the conditions described below.
 焼結温度は、1110℃、1130℃、1145℃(実施例)、1150℃(実施例)、1175℃、1190℃とした。 The sintering temperature was 1110 ° C, 1130 ° C, 1145 ° C (Example), 1150 ° C (Example), 1175 ° C, 1190 ° C.
 還元雰囲気は水素2%の窒素中雰囲気で、酸素分圧PO2は3×10-13atmとした。 The reducing atmosphere was an atmosphere of 2% hydrogen in nitrogen, and the oxygen partial pressure PO 2 was 3 × 10 −13 atm.
 得られた結晶配向圧電セラミックスの、真密度、相対密度、配向度、圧電定数d33を測定した。結果を表2に示す。また、焼結温度と相対密度、焼結温度と配向度の関係を図12に示す。 The true density, relative density, orientation degree, and piezoelectric constant d33 of the obtained crystal-oriented piezoelectric ceramic were measured. The results are shown in Table 2. FIG. 12 shows the relationship between the sintering temperature and the relative density, and the relationship between the sintering temperature and the degree of orientation.
 1145℃以上1150℃以下の温度で焼結した実施例の結晶配向圧電セラミックスは、相対密度が95%以上98.5%以下となっている。また配向度は85%以上100%未満となっている。 The crystal-oriented piezoelectric ceramic of the example sintered at a temperature of 1145 ° C. or more and 1150 ° C. or less has a relative density of 95% or more and 98.5% or less. The degree of orientation is 85% or more and less than 100%.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図12に示されるように、本実施形態の結晶配向圧電セラミックスは、焼結温度が1110℃~1190℃の範囲で高温側になるほど相対密度が高まる傾向にあるが、配向度は1140℃近傍で焼結したものが高い数値を示す。即ち、相対密度と配向度はリニアな関係になく、1135℃以上1170℃以下の範囲の中で配向度が最大値をとる。 As shown in FIG. 12, the crystal-oriented piezoelectric ceramic of this embodiment has a tendency that the relative density increases as the sintering temperature becomes higher in the range of 1110 ° C. to 1190 ° C., but the degree of orientation is around 1140 ° C. Sintered one shows high value. That is, the relative density and the degree of orientation do not have a linear relationship, and the degree of orientation takes the maximum value in the range of 1135 ° C. to 1170 ° C.
 図13は、相対密度と配向度の関係を示したものである。相対密度が95%以上98.5%以下の範囲の中で配向度が最大値をとることがわかる。 FIG. 13 shows the relationship between the relative density and the degree of orientation. It can be seen that the degree of orientation takes the maximum value when the relative density is in the range of 95% to 98.5%.
 焼結温度が1135℃未満もしくは1170℃超で得られた結晶配向圧電セラミックスは、相対密度が95%未満もしくは98.5%を超えており、配向度は85%未満である。また、圧電定数d33は分極処理の際に電極間が通電(ショート)したため圧電定数が発現しておらず測定不能であった。 The crystal-oriented piezoelectric ceramic obtained at a sintering temperature of less than 1135 ° C. or more than 1170 ° C. has a relative density of less than 95% or more than 98.5% and an orientation degree of less than 85%. The piezoelectric constant d33 was not measurable because the piezoelectric constant was not expressed because the electrodes were energized (shorted) during the polarization process.
 これに対して、焼結温度が1135℃以上1170℃以下で得られた結晶配向圧電セラミックスは、相対密度が95%以上98.5%以下であり、配向度が85%以上である。また、圧電定数d33は300pC/N以上の大きな値を示した。 On the other hand, the crystal-oriented piezoelectric ceramic obtained at a sintering temperature of 1135 ° C. or higher and 1170 ° C. or lower has a relative density of 95% or higher and 98.5% or lower, and an orientation degree of 85% or higher. The piezoelectric constant d33 showed a large value of 300 pC / N or more.
 また、空隙率(%)の値を100%から除算した値は相対密度と同じ値であった。 The value obtained by dividing the porosity (%) value from 100% was the same value as the relative density.
 なお、上記一般式:(1-s)A1B1O3-sBaMO3でsの値を0<s≦0.15の範囲で変えた組成でも同様の傾向が見られた。 The same tendency was observed even in the composition in which the value of s was changed in the range of 0 <s ≦ 0.15 in the general formula: (1-s) A1B1O 3 —sBaMO 3 .
 以上のことより、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、0<s≦0.15)で表される結晶配向圧電セラミックスは、相対密度が高ければ必然的に配向度が上がって圧電定数d33が高くなるというものではなく、望ましい相対密度の範囲があり、従来より若干低めの95%以上98.5%以下の相対密度とすることが良いことがわかった。 From the above, the general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, B1 is at least one element of transition metal elements, and Nb The crystal orientation piezoelectric ceramic represented by 0 <s ≦ 0.15) does not necessarily increase the degree of orientation and increase the piezoelectric constant d33 if the relative density is high. It was found that the relative density of 95% or more and 98.5% or less, which is slightly lower than before, is good.
 (比較例1)
 セラミックスの組成として、BaMO3を含まない、A1B1O3(NaNbO3)の組成を用いて比較実験を行った。
(Comparative Example 1)
A comparative experiment was conducted using a composition of A1B1O 3 (NaNbO 3 ) that does not contain BaMO 3 as the ceramic composition.
 実施例1と同様にして、板状結晶粉末(NaNbO3)を得た。 In the same manner as in Example 1, plate-like crystal powder (NaNbO 3 ) was obtained.
 この板状結晶粉末4molに対して96molのNaNbO3となるNa原料及びNb原料を添加して、NaNbO3で表される組成の混合物を得た。 The Na materials and Nb raw material to be NaNbO 3 of 96mol against the plate-like crystal powder 4mol was added to obtain a mixture having a composition represented by NaNbO 3.
 この混合物を、実施例1と同様にして、図3に示す工程(S11~S13)に沿って、結晶配向圧電セラミックスを作製した。 Using this mixture, crystal oriented piezoelectric ceramics were produced in the same manner as in Example 1 along the steps (S11 to S13) shown in FIG.
 実施例1と同様に、得られた結晶配向圧電セラミックスの、真密度、相対密度、配向度、圧電定数d33を測定した。 In the same manner as in Example 1, the true density, relative density, orientation degree, and piezoelectric constant d33 of the obtained crystal-oriented piezoelectric ceramic were measured.
 焼結温度と相対密度、焼結温度と配向度の関係を図14に示す。NaNbO3の組成からなる比較例の結晶配向圧電セラミックスは、焼結温度が1100℃~1140℃の範囲で高温側の方が相対密度が高まる傾向にあり、それに伴って配向度も大きくなる傾向にある。 FIG. 14 shows the relationship between the sintering temperature and relative density, and the sintering temperature and orientation degree. The comparatively oriented crystallographic piezoelectric ceramics of NaNbO 3 composition has a tendency that the relative density increases on the high temperature side when the sintering temperature is in the range of 1100 ° C. to 1140 ° C., and the degree of orientation tends to increase accordingly. is there.
 図15は比較例の結晶配向圧電セラミックスにおける相対密度と配向度の関係を示したものである。相対密度が96%以上となると、配向度も80%以上と大きく、本発明の結晶配向圧電セラミックスとは異なり、従来の知見どおり、相対密度が高いほど配向度が高くなる相関しか確認できない。 FIG. 15 shows the relationship between the relative density and the degree of orientation in the crystal-oriented piezoelectric ceramic of the comparative example. When the relative density is 96% or more, the degree of orientation is as large as 80% or more. Unlike the crystal-oriented piezoelectric ceramic of the present invention, only the correlation that the degree of orientation becomes higher as the relative density is higher can be confirmed as in the conventional knowledge.
 これらの結果から、一般式(1)で示されるセラミックスと、例えば、A1B1O3とでは、相対密度と配向度との関係は、異なっていることが分かる。 These results, and the ceramic represented by the general formula (1), for example, in the A1B1O 3, the relationship between the degree of orientation and the relative density is found to be different.
1   擬ペロブスカイト層
2   (Bi222+
3   板状結晶粉末
4   添加原料材
10  配向性成形体
1 Pseudo-Perovskite Layer 2 (Bi 2 O 2 ) 2+ Layer 3 Plate-like Crystal Powder 4 Additive Raw Material 10 Oriented Molded Body

Claims (8)

  1.  非鉛のペロブスカイト型化合物を主成分として含む結晶配向圧電セラミックスであって、
     前記ペロブスカイト型化合物は、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表され、
     前記結晶配向圧電セラミックスは、
     互いに結晶方位が揃った複数の配向結晶と、結晶方位が不規則な状態で存在する複数の非配向結晶を有し、前記複数の非配向結晶の平均結晶粒径が1.0μmより大きく、5.0μm以下であり、
     ロットゲーリング法による配向度が85%以上100%未満、圧電定数d33が350pC/N以上である結晶配向圧電セラミックス。
    A crystal-oriented piezoelectric ceramic containing a lead-free perovskite compound as a main component,
    The perovskite type compound has the general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, and B1 is at least one element of a transition metal element) Nb is included, M is at least one element of Group 4A, includes Zr, and is represented by 0 <s ≦ 0.15)
    The crystal-oriented piezoelectric ceramic is
    A plurality of oriented crystals in which the crystal orientations are aligned with each other and a plurality of non-oriented crystals in which the crystal orientations are irregular. The average crystal grain size of the plurality of non-oriented crystals is larger than 1.0 μm. 0.0 μm or less,
    A crystallographically oriented piezoelectric ceramic having an orientation degree by the Lotgering method of 85% or more and less than 100% and a piezoelectric constant d33 of 350 pC / N or more.
  2.  ロットゲーリング法による配向度が90%以上、前記複数の非配向結晶の平均結晶粒径が1.3μm以上4.5μm以下であり、
     圧電定数d33が400pC/N以上である請求項1に記載の結晶配向圧電セラミックス。
    The degree of orientation by the Lotgering method is 90% or more, the average crystal grain size of the plurality of non-oriented crystals is 1.3 μm or more and 4.5 μm or less,
    The crystal-oriented piezoelectric ceramic according to claim 1, wherein the piezoelectric constant d33 is 400 pC / N or more.
  3.  相対密度が95%以上98.5%以下である請求項1または2に記載の結晶配向圧電セラミックス。 3. The crystal-oriented piezoelectric ceramic according to claim 1, wherein the relative density is 95% or more and 98.5% or less.
  4.  請求項1から3のいずれかに記載の結晶配向圧電セラミックスと、前記結晶配向圧電セラミックスと接する複数の電極を備えた圧電体素子。 A piezoelectric element comprising the crystal-oriented piezoelectric ceramic according to any one of claims 1 to 3 and a plurality of electrodes in contact with the crystal-oriented piezoelectric ceramic.
  5.  請求項1から4のいずれかに記載の結晶配向圧電セラミックスを含む複数のセラミックス層と、
     複数の電極と
    を備え、前記複数の電極と前記複数のセラミックス層とが交互に積層された圧電素子。
    A plurality of ceramic layers comprising the crystal-oriented piezoelectric ceramic according to claim 1;
    A piezoelectric element comprising a plurality of electrodes, wherein the plurality of electrodes and the plurality of ceramic layers are alternately laminated.
  6.  (Bi222+層と擬ペロブスカイト層からなるビスマス層状構造化合物の第1結晶粉末を用意する工程、
     前記第1結晶粉末からBiを低減した第1のペロブスカイト型化合物からなる板状結晶粉末を用意する工程、
     前記板状結晶粉末に添加原料材を混合して、全体として、一般式:(1-s)A1B1O3-sBaMO3(但し、A1はアルカリ金属から選択される少なくとも一種の元素であり、B1は遷移金属元素の少なくとも一種の元素であってNbを含み、Mは4A族の少なくとも一種の元素であってZrを含み、0<s≦0.15)で表される組成の混合物とする工程、
     前記混合物を成形体とする工程、
     前記成形体を、酸素分圧が1×10-14atm以上3×10-10atm以下の還元雰囲気中で焼結する工程、及び、
     焼結体に分極処理を施す工程、
    を包含する結晶配向圧電セラミックスの製造方法。
    Preparing a first crystal powder of a bismuth layered structure compound comprising a (Bi 2 O 2 ) 2+ layer and a pseudo-perovskite layer;
    Preparing a plate-like crystal powder made of the first perovskite compound in which Bi is reduced from the first crystal powder;
    An additive raw material is mixed with the plate-like crystal powder, and the general formula: (1-s) A1B1O 3 —sBaMO 3 (where A1 is at least one element selected from alkali metals, and B1 is A step of forming a mixture having a composition represented by 0 <s ≦ 0.15), which is at least one element of a transition metal element and includes Nb, and M is at least one element of Group 4A and includes Zr;
    A step of using the mixture as a molded body,
    Sintering the molded body in a reducing atmosphere having an oxygen partial pressure of 1 × 10 −14 atm to 3 × 10 −10 atm; and
    Applying a polarization treatment to the sintered body;
    A method for producing a crystal-oriented piezoelectric ceramic comprising:
  7.  前記焼結する工程において、酸素分圧が7×10-14atm以上4×10-13atm以下である請求項6に記載の結晶配向圧電セラミックスの製造方法。 The method for producing a crystal-oriented piezoelectric ceramic according to claim 6, wherein, in the sintering step, an oxygen partial pressure is 7 × 10 −14 atm or more and 4 × 10 −13 atm or less.
  8.  前記焼結する工程において、焼結温度が1135℃以上1170℃以下であることを特徴とする請求項6または7に記載の結晶配向圧電セラミックスの製造方法。 The method for producing a crystal-oriented piezoelectric ceramic according to claim 6 or 7, wherein in the sintering step, a sintering temperature is 1135 ° C or higher and 1170 ° C or lower.
PCT/JP2014/083134 2013-12-16 2014-12-15 Piezoelectric ceramic with crystal orientation, production method therefor, and piezoelectric element WO2015093436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553526A JPWO2015093436A1 (en) 2013-12-16 2014-12-15 Crystal-oriented piezoelectric ceramic, manufacturing method thereof, and piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013258975 2013-12-16
JP2013-258975 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015093436A1 true WO2015093436A1 (en) 2015-06-25

Family

ID=53402782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083134 WO2015093436A1 (en) 2013-12-16 2014-12-15 Piezoelectric ceramic with crystal orientation, production method therefor, and piezoelectric element

Country Status (2)

Country Link
JP (1) JPWO2015093436A1 (en)
WO (1) WO2015093436A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031424A (en) * 2017-08-09 2019-02-28 日本特殊陶業株式会社 Leadless piezoelectric ceramic composition, piezoelectric element and apparatus utilizing the same
US11088297B2 (en) 2017-03-29 2021-08-10 Osram Oled Gmbh Method of separating a component using predetermined breaking position and a component obatined by such method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228227A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
WO2006117990A1 (en) * 2005-04-28 2006-11-09 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition, process for producing said piezoelectric ceramic composition, and piezoelectric ceramic electronic component
WO2008143160A1 (en) * 2007-05-16 2008-11-27 National Institute Of Advanced Industrial Science And Technology Piezoelectric ceramic, and piezoelectric, dielectric, and pyroelectric elements using the piezoelectric ceramic
CN101962292A (en) * 2010-09-16 2011-02-02 合肥工业大学 Alkali metal niobium-tantalum antimonite-based leadless piezoelectric ceramic and preparation method thereof
JP2013151404A (en) * 2011-12-26 2013-08-08 Tdk Corp Piezoelectric ceramic and piezoelectric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228227A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
WO2006117990A1 (en) * 2005-04-28 2006-11-09 Murata Manufacturing Co., Ltd. Piezoelectric ceramic composition, process for producing said piezoelectric ceramic composition, and piezoelectric ceramic electronic component
WO2008143160A1 (en) * 2007-05-16 2008-11-27 National Institute Of Advanced Industrial Science And Technology Piezoelectric ceramic, and piezoelectric, dielectric, and pyroelectric elements using the piezoelectric ceramic
CN101962292A (en) * 2010-09-16 2011-02-02 合肥工业大学 Alkali metal niobium-tantalum antimonite-based leadless piezoelectric ceramic and preparation method thereof
JP2013151404A (en) * 2011-12-26 2013-08-08 Tdk Corp Piezoelectric ceramic and piezoelectric device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEUNG-HWAN LEE ET AL.: "Electrical properties of lead-free 0.98(Na 0.5K 0.5Li 0.1)NbO 3-0.02Ba (Zr 0.52Ti 0.48)03 ceramics by sintering temperature", ELECTRONIC MATERIALS LETTERS, vol. 8, no. ISSUE, June 2012 (2012-06-01), pages 289 - 293 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088297B2 (en) 2017-03-29 2021-08-10 Osram Oled Gmbh Method of separating a component using predetermined breaking position and a component obatined by such method
JP2019031424A (en) * 2017-08-09 2019-02-28 日本特殊陶業株式会社 Leadless piezoelectric ceramic composition, piezoelectric element and apparatus utilizing the same

Also Published As

Publication number Publication date
JPWO2015093436A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5012528B2 (en) Crystal-oriented ceramics and method for producing the same
JP5557572B2 (en) Ceramics, piezoelectric element, and method for manufacturing piezoelectric element
JP4541985B2 (en) Method for producing polycrystal
EP1457471B1 (en) Crystal oriented ceramics and production method of same
JP4135389B2 (en) Method for producing crystal-oriented ceramics, anisotropic shaped powder and method for producing the same
JP5264673B2 (en) Piezoelectric ceramics, manufacturing method thereof, multilayer piezoelectric element, and manufacturing method thereof
JP4563957B2 (en) Method for producing crystal-oriented ceramics
JP2009114037A (en) Method of manufacturing crystal oriented ceramic
CN100371298C (en) Grain oriented ceramics and production method thereof
JP4534531B2 (en) Method for producing anisotropic shaped powder
JP2006137657A (en) Anisotropically shaped powder, method for producing the same, crystal-orientated ceramic, and method for producing the same
WO2015093436A1 (en) Piezoelectric ceramic with crystal orientation, production method therefor, and piezoelectric element
JP5423708B2 (en) Method for producing anisotropic shaped powder
JP5233778B2 (en) Method for producing anisotropically shaped powder and crystallographically oriented ceramics
JP2006124251A (en) Method for producing crystal-oriented ceramic
WO2015012344A1 (en) Crystal-oriented piezoelectric ceramic, piezoelectric element, and method for manufacturing crystal-oriented piezoelectric ceramic
Ullah et al. Dielectric, Ferroelectric and Strain Properties of (Bi 0.5 Na 0.5) 0.935 Ba 0.065 Ti 1− x (Al 0.5 Nb 0.5) x O 3 Lead-free Piezoelectric Ceramics
JP2016172664A (en) Crystal orientated piezoelectric ceramic and manufacturing method therefor
JP2015201566A (en) Crystal-oriented piezoelectric ceramic, manufacturing method thereof, and lamination type piezoelectric element
JP2009256147A (en) Anisotropically formed powder and method for manufacturing crystal oriented ceramic
JP4474882B2 (en) CRYSTAL-ORIENTED CERAMIC AND ITS MANUFACTURING METHOD, AND ANISOTROPIC POWDER AND ITS MANUFACTURING METHOD
JP2015222781A (en) Crystal-oriented piezoelectric ceramic and method for manufacturing the same
JP2010222193A (en) Method for manufacturing crystal-oriented ceramic
JP2006225188A (en) Anisotropic-shape powder and its manufacturing method and crystal-oriented ceramic and its manufacturing method
JP6579318B2 (en) Ion conductive ceramics and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14871668

Country of ref document: EP

Kind code of ref document: A1