JPS6266198A - Method of solidifying and processing radioactive waste solvent - Google Patents

Method of solidifying and processing radioactive waste solvent

Info

Publication number
JPS6266198A
JPS6266198A JP20737185A JP20737185A JPS6266198A JP S6266198 A JPS6266198 A JP S6266198A JP 20737185 A JP20737185 A JP 20737185A JP 20737185 A JP20737185 A JP 20737185A JP S6266198 A JPS6266198 A JP S6266198A
Authority
JP
Japan
Prior art keywords
waste solvent
solidified
solidifying
parts
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20737185A
Other languages
Japanese (ja)
Other versions
JPH0565039B2 (en
Inventor
今 哲郎
村山 保美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP20737185A priority Critical patent/JPS6266198A/en
Priority to FR8612979A priority patent/FR2591513B1/en
Priority to DE19863631794 priority patent/DE3631794A1/en
Publication of JPS6266198A publication Critical patent/JPS6266198A/en
Publication of JPH0565039B2 publication Critical patent/JPH0565039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products
    • C08K11/005Waste materials, e.g. treated or untreated sewage sludge
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/167Processing by fixation in stable solid media in polymeric matrix, e.g. resins, tars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、使用済核燃料再処理における溶媒抽出法等
で用いられた放射性廃溶媒、特にリン酸トリブチルの如
きリン酸系エステルを含む廃溶媒の固化処理方法に関す
るものでおる。
[Detailed Description of the Invention] <Industrial Application Field> This invention relates to radioactive waste solvents used in solvent extraction methods in spent nuclear fuel reprocessing, particularly waste solvents containing phosphate esters such as tributyl phosphate. This article relates to a solidification treatment method.

〈従来の技術〉 原子炉の使用済核燃料を再処理して核分裂生成物をウラ
ンやプルトニウムから分離除去する方法としては、溶媒
抽出法が最も広く用いられている。この方法には一般に
ドデカンの如き炭化水素で希釈されたリン酸トリブチル
(以下、rTBPJと略記する)力ζ溶媒として使用さ
れるが、使用済のTBP!処理するに際しては、これが
放射性廃棄物であるため、その処理方法には十分な配慮
が必要となる。
<Prior Art> Solvent extraction is the most widely used method for reprocessing spent nuclear fuel from nuclear reactors to separate and remove fission products from uranium and plutonium. In this method, tributyl phosphate (hereinafter abbreviated as rTBPJ) diluted with a hydrocarbon such as dodecane is generally used as a solvent, but used TBP! Since this is radioactive waste, sufficient consideration must be given to the method of disposal.

TBPを含む放射性廃溶媒(以下、rTBP含有廃溶媒
」と略記する)の処理方法としては、この廃溶媒を固化
処理する方法が従来から試みられており、例えば、TB
Pが塩化ビニル樹脂(以下、rPVcJと略記する)を
可塑化する性質を有していることに着目して、TBP含
有廃溶媒ど細片状PVCとを混合してTBP含有廃溶媒
を固化処理する方法が提案されている(特公昭53−3
2040号)。
As a treatment method for radioactive waste solvent containing TBP (hereinafter abbreviated as "rTBP-containing waste solvent"), methods of solidifying this waste solvent have been tried in the past.
Focusing on the fact that P has the property of plasticizing vinyl chloride resin (hereinafter abbreviated as rPVcJ), we solidified the TBP-containing waste solvent by mixing it with flaky PVC, such as the TBP-containing waste solvent. A method has been proposed to
No. 2040).

ま馨、本願と同一出願人により特許出願された固化処理
方法として、多官能性アクリル系またはメタクリル系単
量体といった熱硬化性可塑剤を含有するPVCプラスチ
ゾルをTBP含有廃溶媒と混合、1!拌し、必要に応じ
て加熱処理して固化させる方法がある(特願昭59−3
0042号)。
As a solidification treatment method filed by the same applicant as the present application, PVC plastisol containing a thermosetting plasticizer such as a polyfunctional acrylic or methacrylic monomer is mixed with a TBP-containing waste solvent, 1! There is a method of stirring and, if necessary, heat-treating to solidify (Patent Application No. 1986-3)
No. 0042).

〈発明が解決しようとする問題点〉 しかしながら上述した従来方法は、いずれも必ずしも満
足すべきものではない。すなわち、細片状PVCと撹拌
混合する固化処理方法によれば、TBPはPVCに吸収
膨潤するだけなので流動性は示さなくなるものの、軟ら
かいプディング状の粘度の固化体となるに過ぎない。こ
れを撹拌)変加熱すれば固化体の硬度は向上するが、P
VCは熱伝導性が悪いため長時間の加熱が必要であり、
しかも固化体の径が大きくなると内部まで熱が伝わりに
くくなり、内部が表面より著しく硬度の低い固化体しか
得られない。
<Problems to be Solved by the Invention> However, none of the above-mentioned conventional methods are necessarily satisfactory. That is, according to the solidification treatment method in which TBP is stirred and mixed with PVC in the form of strips, TBP merely absorbs and swells in the PVC, so although it no longer exhibits fluidity, it merely becomes a solidified material with a soft pudding-like viscosity. If this is stirred and heated at variable temperatures, the hardness of the solidified product will improve, but P
VC has poor thermal conductivity and requires long heating times.
Moreover, as the diameter of the solidified body increases, it becomes difficult for heat to be transmitted to the inside, and only a solidified body whose inside is significantly lower in hardness than the surface can be obtained.

廃溶媒中に含まれるドデカン量が多くなるほどこの傾向
が甚しい。
This tendency becomes more serious as the amount of dodecane contained in the waste solvent increases.

一方、PVCプラスチゾルと混合する固化処理方法によ
れば、外観2機械的強度(硬度、圧縮強度)、均質性と
いった固化体物性において比較的良好な固化体が得られ
るが、特にioo f!。
On the other hand, according to the solidification treatment method of mixing with PVC plastisol, a solidified product with relatively good physical properties such as appearance, mechanical strength (hardness, compressive strength), and homogeneity can be obtained, but especially ioo f! .

とサイズの大きな固化体を得る場合には固化体物性に改
良の余地がある。すなわち、PVCプラスチゾルとTB
P含有廃溶媒との混合物を低温加熱固化処理したときに
は、外観や均質性は良好であるが機械的強度が若干低い
。この理由は、PVCプラスチゾル調製時に粘度調整剤
としてパラフィンの使用が不可欠でおり、このPVCプ
ラスチゾルをTBP含有廃溶媒と混合すると、廃溶媒中
に含まれる一定量のドデカンの他に粘度調整剤としての
パラフィンが加算され、固化対象廃溶媒全量に占める炭
化水素総量(パラフィン+ドデカン)が増加することに
なり、その結果前られる固化体の機械的強度が低下する
ものと考えられる。また、機械的強度を向上させるため
にPVCプラスチゾルと丁BP含有廃Mとの混合物を高
温で長時間加熱固化処理したときは、加熱停止後に固化
体外周部で放熱に伴うPVCの収縮に起因する固化体の
収縮現象が生じるのに対し、固化体内部では蓄熱された
熱旧が放熱されないために残留熱応力が発生するが、硬
化後の熱硬化性可塑剤の抗応力を超えると、固化体内部
にクラックが発生しやすいという問題がある。
When obtaining a large solidified material, there is room for improvement in the physical properties of the solidified material. Namely, PVC plastisol and TB
When the mixture with the P-containing waste solvent is solidified by heating at low temperatures, the appearance and homogeneity are good, but the mechanical strength is slightly low. The reason for this is that it is essential to use paraffin as a viscosity modifier when preparing PVC plastisol, and when this PVC plastisol is mixed with TBP-containing waste solvent, in addition to a certain amount of dodecane contained in the waste solvent, paraffin is used as a viscosity modifier. It is thought that the addition of paraffin increases the total amount of hydrocarbons (paraffin + dodecane) in the total amount of waste solvent to be solidified, and as a result, the mechanical strength of the solidified material decreases. In addition, when a mixture of PVC plastisol and waste M containing DBP is heated and solidified at high temperature for a long time to improve mechanical strength, shrinkage of PVC due to heat dissipation occurs at the outer periphery of the solidified material after heating is stopped. While the shrinkage phenomenon of the solidified body occurs, residual thermal stress occurs because the heat accumulated inside the solidified body is not radiated. There is a problem that cracks are likely to occur internally.

そこでこの発明は、上述したごとき従来技術における欠
点を解消し、低温加熱固化処理によっても外観9機械強
度、均質性がいずれも良好で優れた物性の固化体を得る
ことができる放射性廃溶媒の固化処理方法を提供するこ
とを目的としてなされたものである。
Therefore, this invention solves the drawbacks of the prior art as described above, and aims to solidify a radioactive waste solvent that can obtain a solidified product with excellent physical properties, including good mechanical strength and homogeneity even by low-temperature heat solidification treatment. This was done for the purpose of providing a processing method.

〈問題点を解決するための手段〉 この発明による放射性廃溶媒の固化処理方法は、T’B
 P含有廃溶媒に固化処理剤としてPVC粉末、弾性ポ
リマーおよび吸湿剤を添加し撹拌混合したのち、この混
合物を加熱して固化させることを特徴とするものである
<Means for solving the problems> The radioactive waste solvent solidification treatment method according to the present invention is based on T'B
This method is characterized by adding PVC powder, an elastic polymer, and a moisture absorbent as a solidifying agent to a P-containing waste solvent, stirring and mixing the mixture, and then heating and solidifying the mixture.

この発明による固化処理の対象となる放射性廃溶媒とし
ては、放射性核種を含有したTBP等のリン酸系エステ
ルのほか、リン酸系エステルと脂肪族炭化水素、芳香族
炭化水素、塩素化炭化水素、鉱油、水等との混合物が挙
げられる。
Radioactive waste solvents to be subjected to the solidification treatment according to the present invention include phosphoric acid esters such as TBP containing radionuclides, as well as phosphoric acid esters and aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, Mixtures with mineral oil, water, etc. may be mentioned.

この発明において固化処理剤として用いる各成分の使用
割合は、PVC粉末ioo it部に対し一般的には弾
性ポリマー2〜10重量部および吸湿剤5〜25重量部
でおる。
In this invention, the proportions of each component used as a solidifying agent are generally 2 to 10 parts by weight of the elastic polymer and 5 to 25 parts by weight of the moisture absorbent per part of the PVC powder.

この発明で用いられるPVCとしては、塩化ビニル単独
重合体、塩化ビニルとこれと共重合可能な単量体との共
重合体、ざらにはこれらの混合物等から選ぶことができ
る。
The PVC used in this invention can be selected from vinyl chloride homopolymers, copolymers of vinyl chloride and monomers copolymerizable therewith, and mixtures thereof.

弾性ポリマーは引裂力に対する抗力を固化体に付与し、
加°熱停止後の固化体収縮現象に伴うクラック発生を防
止するとともに、併せて、それ自身が有する吸油性によ
りTBP含有含有媒溶媒中デカンを吸収し、固化体内部
の機械的強度低下の一因となるドデカンをできるだけ低
減せしめることによって、固化体の機械的強度を高め、
同時に固化体からのドデカンのブリードを防止する。か
ようなドデカン吸収性を有する弾性ポリマーとしては、
ポリノルボーネン等の物質が知られており、例えば「ノ
ーソレックス」((::dFChimie社(フランス
)製商品名)が市販品として入手できる。
The elastic polymer imparts resistance to tearing forces to the solidified body,
In addition to preventing the occurrence of cracks due to shrinkage of the solidified material after heating is stopped, it also absorbs decane in the TBP-containing medium due to its own oil absorbing properties, thereby preventing the decrease in mechanical strength inside the solidified material. By reducing dodecane, which is a contributing factor, as much as possible, the mechanical strength of the solidified product is increased,
At the same time, bleeding of dodecane from the solidified body is prevented. Elastic polymers with such dodecane absorbability include:
Substances such as polynorbornene are known, and, for example, "Nosolex" (trade name: manufactured by dFChimie (France)) is available as a commercial product.

吸湿剤は、TBP含有含有媒溶媒中入している水分を吸
湿除去して、加熱固化処理時に水分の揮発に起因する固
化体内部の発泡現象を防止するとともに、吸湿に伴う発
生水和反応熱により固化体中心部の温度を上昇させ、固
化体の機械的強度を向上させるものである。吸湿剤とし
ては、例えば酸化カルシウム、酸化バリウム。
The hygroscopic agent absorbs and removes the moisture contained in the TBP-containing solvent, thereby preventing the foaming phenomenon inside the solidified body caused by the volatilization of moisture during the heat solidification process, and also absorbing the heat of hydration reaction generated due to moisture absorption. This increases the temperature at the center of the solidified body and improves the mechanical strength of the solidified body. Examples of moisture absorbing agents include calcium oxide and barium oxide.

酸化ナトリウム、塩化カルシウム等が好ましく使用でき
る。
Sodium oxide, calcium chloride, etc. can be preferably used.

この発明を実施するに際しては、先ず上述したPVC粉
末粉末性弾性ポリマーび吸湿剤を放射性廃溶媒と混合し
、混合物をプラネタリ−ミキサー、ニーダ−、バタフラ
イミキサー、ヘンシェルミキサー、ディシルバー、リボ
ンブレンダー、ステータスミキサー、@拌ベラ等の慣用
的装置で良く撹拌混合する。
In carrying out this invention, first, the above-mentioned PVC powder powder elastic polymer and moisture absorbent are mixed with a radioactive waste solvent, and the mixture is mixed into a planetary mixer, a kneader, a butterfly mixer, a Henschel mixer, a Disilver, a ribbon blender, and a Status. Stir and mix thoroughly using a conventional device such as a mixer or a stirring spatula.

廃溶媒と固化処理剤との混合割合は、廃溶媒100重量
部に対して固化処理剤(PVC粉末。
The mixing ratio of the waste solvent and solidification agent is 100 parts by weight of the waste solvent to 100 parts by weight of the solidification agent (PVC powder).

弾性ポリマーおよび吸湿剤の合計ff1)80〜120
重量部の範囲が好ましい。
Total elastic polymer and moisture absorbent ff1) 80-120
Parts by weight ranges are preferred.

次いでこの混合物を容器外部から加熱し、一般的には8
0〜100℃の温度で約7時間固化処理を施すことによ
って物性の優れた固化体を1qることができる。
This mixture is then heated from outside the container, typically at 8
By performing solidification treatment at a temperature of 0 to 100°C for about 7 hours, 1 q of solidified material with excellent physical properties can be obtained.

〈実施例〉 以下に実施例および比較例を挙げてこの発明を詳述する
。なお「%」および「部」はいずれも重量基準を表わす
<Examples> The present invention will be described in detail below with reference to Examples and Comparative Examples. Note that both "%" and "part" are based on weight.

X直型ニー 固化処理する廃溶媒とて、TBP85%、n−ドデカン
10%および水5%からなる非放射性模擬廃溶媒を調製
し、この完溶!50にりを100λドラム缶内に投入し
た。
A non-radioactive simulated waste solvent consisting of 85% TBP, 10% n-dodecane, and 5% water was prepared as a waste solvent for X-direct knee solidification treatment, and this completely dissolved solvent was prepared. 50 pieces of garlic were put into a 100λ drum.

次に廃溶媒に対する固化処理剤の混合比が46′/′5
4(重量比)となるように、固化処理剤を投入した。固
化処理剤各成分の使用割合は下表に示した通りとした。
Next, the mixing ratio of solidification treatment agent to waste solvent is 46'/'5
The solidification treatment agent was added so that the weight ratio was 4 (weight ratio). The proportions of each component of the solidification treatment agent were as shown in the table below.

なお、PVC粉末は「ゼオン 43BJ  (日本ゼオ
ン■製)、弾性ポリマーは「ノーソレツクス」、および
吸湿剤は酸化カルシウムrCML#31j(近江化学■
製)を使用した。
The PVC powder was Zeon 43BJ (Nippon Zeon ■), the elastic polymer was Nosolex, and the moisture absorbent was calcium oxide rCML#31j (Ohmi Kagaku ■).
(manufactured by) was used.

次にドラム缶内の廃溶媒と固化処理剤をインドラムミキ
サーにより室温にて約1時間撹拌混合した。撹拌に伴い
混合液の液温か約10’C上昇したものの、混合液の粘
度は約250cpsと低かった。
Next, the waste solvent and solidification agent in the drum were stirred and mixed at room temperature for about 1 hour using an in-drum mixer. Although the temperature of the mixed solution rose by about 10'C with stirring, the viscosity of the mixed solution was as low as about 250 cps.

次にドラム缶内の混合液を低周波誘導加熱器により約8
0’Cで約7時間加熱処理して固化体とした。なお、加
熱後は加熱器フードを被せたまま約16時間自然放冷さ
せた。
Next, the mixed liquid in the drum was heated to about 800 ml using a low frequency induction heater.
The mixture was heat-treated at 0'C for about 7 hours to form a solidified product. After heating, the sample was left to cool naturally for about 16 hours with the heater hood covered.

得られた固化体の表面および内部のショアA硬度(J 
Is  K−7215)を測定したところ40〜50と
なり、比較的均質な物性を示した。
Shore A hardness (J
Is K-7215) was measured to be 40 to 50, indicating relatively homogeneous physical properties.

中心部の固化体サンプルの圧縮強度(JISK−720
8> を測定したところ11.5kCI/CII!2で
あった。また、固化体表面や内部にクラック発生は認め
られなかった。
Compressive strength of solidified sample in the center (JISK-720
8> was measured and it was 11.5kCI/CII! It was 2. Moreover, no cracks were observed on the surface or inside the solidified body.

丈鬼璽λ− 固化処理剤のPVC粉末、吸湿剤および弾性ポリマーの
使用割合を下表に示すようにし、廃溶媒/固化処理剤の
混合比を37/63とした以外は、実施例1と同様にし
て固化処理を行なった。なお、約1時間撹拌、混合した
ときの混合液粘度は約800cpsまで上昇した。
Joukisei λ- The same procedure as Example 1 was carried out, except that the proportions of PVC powder, moisture absorbent and elastic polymer in the solidifying agent were as shown in the table below, and the mixture ratio of waste solvent/solidifying agent was 37/63. Solidification treatment was performed in the same manner. Note that the viscosity of the mixed liquid increased to about 800 cps after stirring and mixing for about 1 hour.

得られた固化体の表面および内部のショアA硬度は全体
に均質で80〜85の硬度を示した。
The Shore A hardness of the surface and interior of the obtained solidified body was uniform throughout and showed a hardness of 80 to 85.

中心部の固化体サンプルの圧縮強度は24.0KMc!
l!2であった。また、固化体表面に細かいクラックが
発生して゛いたが、内部にはクラックの発生は認められ
なかった。 。
The compressive strength of the solidified sample in the center is 24.0KMc!
l! It was 2. Further, although fine cracks were observed on the surface of the solidified body, no cracks were observed inside. .

比較例1゜ 吸湿剤と弾性ポリマーを用いずにPVC粉末のみを固化
処理剤として用いた以外は、実施例1と同様にして固化
処理を行なった。
Comparative Example 1 Solidification treatment was carried out in the same manner as in Example 1, except that only PVC powder was used as the solidification treatment agent without using a moisture absorbent or an elastic polymer.

1qら屯だ固化体表面のショアA硬度は25〜50を示
しているが、内部は殆んどO以下でありプディング状を
呈していた。また、固化体表面および内部に大きなりラ
ックが多数発生していた。
The Shore A hardness of the surface of the 1q ton solidified product was 25 to 50, but the inside was almost O or less and had a pudding-like appearance. In addition, many large racks were observed on the surface and inside of the solidified body.

毘校■l− 弾性ポリマーを用いずにPVC粉末と吸湿剤を固化処理
剤として用いた以外は、実施例1と同様にして固化処理
を行なった。
1 - Solidification treatment was carried out in the same manner as in Example 1, except that PVC powder and a moisture absorbent were used as the solidification treatment agent without using an elastic polymer.

得られた固化体の表面硬度はドラム周辺部で55、ドラ
ム中央部で10を示し、また固化体内部硬度は中央部中
心で30〜45、低部でO以下となりプディング状を呈
し、全体的に不均質な固化体となった。また、固化体表
面に大きなりラックが発生していた。
The surface hardness of the obtained solidified material was 55 at the periphery of the drum and 10 at the center of the drum, and the internal hardness of the solidified material was 30 to 45 at the center and below O at the bottom, giving it a pudding-like appearance. It became a heterogeneous solidified body. In addition, large racks were observed on the surface of the solidified material.

比較例3゜ PVCrゼオン135JJ  (日本ゼオン■製)10
0部 pvc rゼオン121J  (日本セオン(II製>
10部 吸湿剤(酸化カルシウムrc)IL  #31J )5
0部弾性ポリマー「ノーソレツクス」13部熱硬化性可
塑剤(アクリル酸エステル) 70部減粘剤1”W−2
12−J J  (勝山化工■製)  5部粘度調整剤
(n−パラフィン)13部 上記の成分をプラネタリ−ミキサー中で混合し、真空脱
泡することによってPVCプラスチゾルを調製した。
Comparative Example 3゜PVCr Zeon 135JJ (manufactured by Nippon Zeon ■) 10
0 parts pvc r Zeon 121J (made by Nippon Zeon (II)
10 parts moisture absorbent (calcium oxide rc) IL #31J) 5
0 parts Elastic polymer "Nosolex" 13 parts Thermosetting plasticizer (acrylic acid ester) 70 parts Thinning agent 1"W-2
12-J J (manufactured by Katsuyama Kako ■) 5 parts Viscosity modifier (n-paraffin) 13 parts The above components were mixed in a planetary mixer and vacuum defoamed to prepare a PVC plastisol.

次に実施例1で用いた非放射性模擬廃溶媒と上記PVC
プラスチゾルとを、廃溶媒/PVCプラスチゾルの混合
比が40/60 (重量比)となるように1001ドラ
ム缶内に投入し、インドラムミキサーにより室温にて約
40分間撹拌混合した。混合液の液温は約15℃上昇し
たものの、混合液の粘度は約40cpsと低かった。
Next, the non-radioactive simulated waste solvent used in Example 1 and the above PVC
Plastisol and PVC plastisol were put into a 1001 drum so that the mixing ratio of waste solvent/PVC plastisol was 40/60 (weight ratio), and the mixture was stirred and mixed at room temperature for about 40 minutes using an in-drum mixer. Although the liquid temperature of the mixed liquid increased by about 15°C, the viscosity of the mixed liquid was as low as about 40 cps.

次にドラム缶内の混合液を低周波誘導加熱器により約8
0℃で約7時間加熱処理して固化体とした。
Next, the mixed liquid in the drum was heated to about 800 ml using a low frequency induction heater.
The mixture was heat-treated at 0° C. for about 7 hours to form a solidified product.

得られた固化体の表面および内部のショアA硬度を測定
したところ、表面は5〜301内部は10〜15を示し
たが、低部はO〜3と軟らかく、全体的に不均質な固化
体となった。また、固化体表面にはクラックはなかった
が、内部には大きなりラックが発生していた。
When the Shore A hardness of the surface and inside of the obtained solidified body was measured, the surface showed 5 to 301, the inside showed 10 to 15, but the lower part was soft as O to 3, and the solidified body was overall heterogeneous. It became. Furthermore, although there were no cracks on the surface of the solidified product, large racks were found inside.

表 註) *1 表面平滑、クラックなし *2 表面に細かいクラック発生 *3 表面が膨張し大きなりランク発生*4 本文参照 *5 固化体中心部の圧縮強度 〈発明の効果〉 以上説明したように、この発明においてはP■C粉末粉
末性弾性ポリマーび吸湿剤を固化処理剤として用いたた
めに、80部程度の比較的低温の加熱固化処理によって
も外観2機械的強度、均質性といった物性がいずれも良
好な固化体を1qることができるのである。
Table note) *1 Smooth surface, no cracks *2 Fine cracks occur on the surface *3 The surface expands and a large rank occurs *4 See text *5 Compressive strength at the center of the solidified body (effect of the invention) As explained above In this invention, since the P■C powder powder elastomeric polymer and moisture absorbent are used as the solidifying agent, physical properties such as appearance, mechanical strength, and homogeneity do not change even after heating and solidifying at a relatively low temperature of about 80 parts. It is also possible to produce 1 q of good solidified material.

特にこの発明においてはドデカン吸収性を有する弾性ポ
リマーを使用したために、加熱停止後の固化体内部に発
生する熱応力に伴う引裂力に対する抗力を固化体に付与
し、クラックの発生を防止することができ、ざらには廃
溶媒中に含まれるドデカンに起因する固化体内部の機械
的強度低下現象を減少させ、固化体内部の機械的強度を
向上させるとともに、固化体からのブリードを防止し、
全体に均質な固化体を得ることができる。
In particular, in this invention, since an elastic polymer having dodecane absorption properties is used, it is possible to impart resistance to the tearing force accompanying the thermal stress generated inside the solidified body after heating is stopped, and to prevent the occurrence of cracks. In addition, it reduces the mechanical strength reduction phenomenon inside the solidified body caused by dodecane contained in the waste solvent, improves the mechanical strength inside the solidified body, and prevents bleeding from the solidified body.
A homogeneous solidified body can be obtained throughout.

Claims (1)

【特許請求の範囲】 1、リン酸系エステルを含有する放射性廃溶媒に、固化
処理剤として塩化ビニル樹脂粉末、弾性ポリマーおよび
吸湿剤を添加し撹拌混合したのち、この混合物を加熱し
て固化させることを特徴とする放射性廃溶媒の固化処理
方法。 2、前記固化処理剤各成分の使用割合は、塩化ビニル樹
脂粉末100重量部に対し、弾性ポリマー2〜10重量
部および吸湿剤5〜25重量部である特許請求の範囲第
1項記載の固化処理方法。
[Claims] 1. Add vinyl chloride resin powder, an elastic polymer, and a moisture absorbent as a solidifying agent to a radioactive waste solvent containing a phosphoric acid ester, stir and mix, and then heat and solidify the mixture. A method for solidifying radioactive waste solvent, characterized by: 2. The solidification treatment agent according to claim 1, wherein the proportions of each component of the solidification treatment agent are 2 to 10 parts by weight of the elastic polymer and 5 to 25 parts by weight of the moisture absorbent to 100 parts by weight of the vinyl chloride resin powder. Processing method.
JP20737185A 1985-09-19 1985-09-19 Method of solidifying and processing radioactive waste solvent Granted JPS6266198A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20737185A JPS6266198A (en) 1985-09-19 1985-09-19 Method of solidifying and processing radioactive waste solvent
FR8612979A FR2591513B1 (en) 1985-09-19 1986-09-17 METHOD FOR SOLIDIFYING A RESIDUAL RADIOACTIVE SOLVENT CONTAINING A PHOSPHORIC ESTER
DE19863631794 DE3631794A1 (en) 1985-09-19 1986-09-18 METHOD FOR SOLIDIFYING RADIOACTIVE WASTE SOLVENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20737185A JPS6266198A (en) 1985-09-19 1985-09-19 Method of solidifying and processing radioactive waste solvent

Publications (2)

Publication Number Publication Date
JPS6266198A true JPS6266198A (en) 1987-03-25
JPH0565039B2 JPH0565039B2 (en) 1993-09-16

Family

ID=16538615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20737185A Granted JPS6266198A (en) 1985-09-19 1985-09-19 Method of solidifying and processing radioactive waste solvent

Country Status (3)

Country Link
JP (1) JPS6266198A (en)
DE (1) DE3631794A1 (en)
FR (1) FR2591513B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9217594D0 (en) * 1992-08-19 1992-09-30 Reads Plc Process for the treatment of sludge
GB2477924A (en) * 2010-02-17 2011-08-24 Encapsuwaste Ltd A method of encapsulating waste material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2135328A1 (en) * 1971-07-15 1973-02-01 Kraftwerk Union Ag Radio-active waste disposal - esp for liquid concentrate which is mixed with plastic powder and dried
DE2330845C2 (en) * 1973-06-16 1982-09-23 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the solidification of radioactively contaminated phosphoric acid esters with a polymer
US4148745A (en) * 1973-06-16 1979-04-10 Gesellschaft Fur Kernforschung M.B.H. Method of preparing phosphoric acid esters for non-polluting storage by incorporation in polyvinyl chloride
DE2363474C3 (en) * 1973-12-20 1986-02-13 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for the solidification of waste liquids containing essentially organic, radioative or toxic substances
CH654436A5 (en) * 1983-04-29 1986-02-14 Syncrete Sa PROCESS FOR COATING RADIOACTIVE WASTE.
JPS60173499A (en) * 1984-02-20 1985-09-06 動力炉・核燃料開発事業団 Method of solidifying radioactive waste solvent

Also Published As

Publication number Publication date
FR2591513A1 (en) 1987-06-19
JPH0565039B2 (en) 1993-09-16
DE3631794A1 (en) 1987-07-30
FR2591513B1 (en) 1991-04-12
DE3631794C2 (en) 1990-05-10

Similar Documents

Publication Publication Date Title
CN109999675A (en) A kind of water body removes the preparation method of caesium blending and modifying film
JPS55105253A (en) Magnetic developer and its preparation
JPS6266198A (en) Method of solidifying and processing radioactive waste solvent
JPS5882200A (en) Method of finally processing radioactive or poisonous waste
JPS6218571A (en) Manufacture of 1-component toner powder
JPH0260157B2 (en)
JPS5933874B2 (en) Neutron shielding material
US3238148A (en) Shielding concrete and aggregates
JPS6131435A (en) Preparation of fine thermoplastic resin particle
JPS60110756A (en) Resin composition containing rare earth element and production thereof
JPS62167500A (en) Method of processing radioactive waste
JPS6253080B2 (en)
JPS55117734A (en) Binding agent for magnetic recording medium
JP3064059B2 (en) Transparent radiation shielding material and method of manufacturing the same
JP3833294B2 (en) Solidification method of radioactive waste
JPS6258200A (en) Radioactive waste container
JPS6040998A (en) Method of wrapping and receiving radioactive waste
JPH05271466A (en) Transparent radiation shielding material and preparation thereof
JPS62180294A (en) Shielding body to radioactivity
JPS595505A (en) Method of producing insulating powder for heat generator
JPS60105997A (en) Method of decomposing radioactive waste organic phosphoric acid esters
JP2501576B2 (en) Solidifying agent for radioactive waste
JPH04115198A (en) Solidifying method for radioactive waste
JPS62267699A (en) Method of solidifying and processing radioactive waste
JPS62124499A (en) Method of solidifying and processing radioactive waste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees