JPS5933874B2 - Neutron shielding material - Google Patents

Neutron shielding material

Info

Publication number
JPS5933874B2
JPS5933874B2 JP2731979A JP2731979A JPS5933874B2 JP S5933874 B2 JPS5933874 B2 JP S5933874B2 JP 2731979 A JP2731979 A JP 2731979A JP 2731979 A JP2731979 A JP 2731979A JP S5933874 B2 JPS5933874 B2 JP S5933874B2
Authority
JP
Japan
Prior art keywords
weight
shielding material
neutron shielding
present
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2731979A
Other languages
Japanese (ja)
Other versions
JPS55119099A (en
Inventor
重紀 鈴木
博 飯森
順三 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Mitsui Zosen KK
Original Assignee
Mitsui Toatsu Chemicals Inc
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc, Mitsui Zosen KK filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2731979A priority Critical patent/JPS5933874B2/en
Publication of JPS55119099A publication Critical patent/JPS55119099A/en
Publication of JPS5933874B2 publication Critical patent/JPS5933874B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、中性子の遮蔽材に関するものである。[Detailed description of the invention] The present invention relates to a neutron shielding material.

放射性物質から発生する放射線を遮蔽する箇所は、原子
炉やその他の放射上物質取扱い施設、更には放射性物質
の格納容器や輸送容器等にわたっており、これらに使用
する中性子の遮蔽には水素原子密度の大きい材料、例え
ば水、ポリエチレン、ポリブテン、パラフィンなどの比
較的水素原子密度の大きい炭化水素類が、単独であるい
は硼素化合物またはリチウム化合物等の無機化合物との
組合わせで用いられてきた。
The areas where radiation emitted from radioactive materials are shielded include nuclear reactors and other facilities that handle radioactive materials, as well as containment vessels and transportation containers for radioactive materials. Large materials, such as water, hydrocarbons with relatively high hydrogen atom densities such as polyethylene, polybutene, and paraffins, have been used alone or in combination with inorganic compounds such as boron or lithium compounds.

しかし、これら従来の材料に於て、施工性、耐久性或は
火災時を想定しての燃焼による自己消火性を兼ね備えて
いる材料は極めて少ない。
However, among these conventional materials, there are extremely few that have both workability, durability, and self-extinguishing properties by combustion in the event of a fire.

例えば、水は安価で比較的良好な中性子遮蔽材料である
が、常温、常圧で液体のため一定場所で遮蔽材として使
用するには封入容器が必要であり、複雑な構造物では使
用が困難であるばかりでなく、温度が上がれば圧力が上
昇し開放糸では使用できない欠点がある。
For example, water is a cheap and relatively good neutron shielding material, but since it is a liquid at room temperature and pressure, it requires an enclosed container to be used as a shielding material in a certain place, making it difficult to use in complex structures. Not only that, but the pressure also increases as the temperature rises, making it impossible to use open threads.

マタ、ポリエチレン、ポリプロピレン、ポリブテン等の
熱可塑性樹脂やパラフィン等の炭化水素類は、一般に水
素原子密度は大きいが加熱により軟化し流動する欠点を
有する。
Thermoplastic resins such as carbon fiber, polyethylene, polypropylene, and polybutene, and hydrocarbons such as paraffin generally have a high hydrogen atom density, but have the disadvantage that they soften and flow when heated.

更に、熱可塑性樹脂に代わって、加熱しても軟化しない
熱硬化性樹脂の使用が考えられるが、これは水素原子密
度が熱可塑性樹脂に比較して小さいので、単独では中性
子遮蔽材料として向かないし、また熱硬化性樹脂に水を
包陰させても、大気中では本が経時的に蒸発するため、
特定な場所にしか使用できない不都合がある。
Furthermore, instead of thermoplastic resins, it is possible to use thermosetting resins that do not soften even when heated, but since the hydrogen atom density of these resins is lower than that of thermoplastic resins, they are not suitable alone as neutron shielding materials. However, even if the thermosetting resin is encapsulated with water, the book evaporates over time in the atmosphere.
The disadvantage is that it can only be used in specific locations.

加えて、前述のような炭化水素類や樹j指自体は可燃性
であり、いわゆる自己消火性はないので火災時における
安全面に問題がある。
In addition, the above-mentioned hydrocarbons and trees themselves are flammable and do not have so-called self-extinguishing properties, which poses a safety problem in the event of a fire.

そこで、本発明はこれら従来の中性子遮蔽材の欠点を改
良し、特に耐熱、耐燃性にすぐれ汎用性のある中性子遮
蔽材の提供をその目的とする。
Therefore, the object of the present invention is to improve the shortcomings of these conventional neutron shielding materials, and to provide a neutron shielding material that has excellent heat resistance, flame resistance, and versatility.

本発明の他の目的は、成型が簡単でかつ施工性にすぐれ
、しかも良好な中性子遮蔽能を有する中性子遮蔽材を提
供することにある。
Another object of the present invention is to provide a neutron shielding material that is easy to mold, has excellent workability, and has good neutron shielding ability.

本発明は上記目的を達成せんとするものであって、本発
明の中性子遮蔽材料は、不飽和ポリエステル樹脂20〜
60重量%、ポリエチレン粉末10〜40重量%および
水酸化アルミニウム15〜55重量%を含む混合物を硬
化してなることを特徴とするものである。
The present invention aims to achieve the above object, and the neutron shielding material of the present invention has an unsaturated polyester resin of 20 to
60% by weight, 10 to 40% by weight of polyethylene powder, and 15 to 55% by weight of aluminum hydroxide.

また、硬化に際して硬化触媒が適宜添加される。Further, a curing catalyst is appropriately added during curing.

本発明の実施に於て用いる熱硬化性樹脂は、本発明遮蔽
材の主原料となるもので、不飽和ポリエステル樹脂、フ
ェノール樹脂、エポキシ樹脂ウレタン化ビニルエステル
樹脂などそれ自体公知のもので良いが、できるだけ水素
原子密度が高く耐熱性に優れているものが望ましく、不
飽和ポリエステル樹脂は本発明に於て最も好ましQ)熱
硬化性樹脂の一つである。
The thermosetting resin used in the implementation of the present invention is the main raw material of the shielding material of the present invention, and may be any one known per se, such as unsaturated polyester resin, phenol resin, epoxy resin, urethanized vinyl ester resin, etc. It is desirable to have a hydrogen atom density as high as possible and excellent heat resistance, and unsaturated polyester resin is one of the most preferred thermosetting resins in the present invention.

また、ポリエチレン粉末は、ポリプロピレンなどと共に
最も水素原子密度の大きい樹脂の一つであり、遮蔽材の
水素原子密度を上昇せしめ中性子遮蔽効果を増加するた
めに配合される。
Further, polyethylene powder is one of the resins with the highest hydrogen atom density, along with polypropylene, and is blended in order to increase the hydrogen atom density of the shielding material and increase the neutron shielding effect.

ポリエチレン粉末は、高圧法、中圧法、低圧法のいずれ
によって製造されたものでも艮い。
The polyethylene powder may be manufactured by any of the high-pressure method, medium-pressure method, and low-pressure method.

また、その分子量は1,000〜60,000のものが
用いられ粒径は80メツシユ以下のものが好ましく用い
られる。
Moreover, those having a molecular weight of 1,000 to 60,000 are used, and those having a particle size of 80 mesh or less are preferably used.

更に、本発明では水酸化アルミニウムを使用する。Furthermore, the present invention uses aluminum hydroxide.

この水酸化アルミニウムAl(OH)3は、遮蔽材に有
毒ガスを生じさせずに難燃性を付与し、自己消火能を促
進させるものである。
This aluminum hydroxide Al(OH)3 imparts flame retardancy to the shielding material without producing toxic gas, and promotes self-extinguishing ability.

本発明に於て使用するこれらの各物質については、具体
的には実施例に示されるように、中性子遮蔽材としての
性能を維持しつつ耐熱性等本発明の目的達成のために、
個々にバランスする最適な配合割合がある。
For each of these substances used in the present invention, as specifically shown in the examples, in order to achieve the objectives of the present invention such as heat resistance while maintaining performance as a neutron shielding material,
There is an optimal blending ratio that balances each individual.

即ち、本発明においては、不飽和ポリエステル樹脂20
〜60重量%の範囲で用いられる。
That is, in the present invention, unsaturated polyester resin 20
It is used in a range of 60% by weight.

これは、本発明の耐熱性遮蔽材としての機能を発揮させ
るための主材料となるからであり、20重量%より少な
いときは耐熱性遮蔽材の機能の低下を惹起する傾向を示
す。
This is because it is the main material for exhibiting the function of the heat-resistant shielding material of the present invention, and when it is less than 20% by weight, it tends to cause a decrease in the function of the heat-resistant shielding material.

また60重量%以上の場合は水素原子密度が小さく、中
性子遮蔽能が低下する。
Moreover, when it is 60% by weight or more, the hydrogen atom density is small and the neutron shielding ability is reduced.

また、ポリエチレン粉末は、10〜40重量%の範囲で
用いられる。
Further, polyethylene powder is used in a range of 10 to 40% by weight.

これは、10重量%より少ないと、水素原子密度が小さ
く中性子遮蔽能に劣り、多すぎると耐熱性の面で不都合
を生ずるからである。
This is because if it is less than 10% by weight, the hydrogen atom density will be low and the neutron shielding ability will be poor, and if it is too much, problems will occur in terms of heat resistance.

また、40重量%以上では不飽和ポリエステル樹脂との
均一混合が不可能になり、遮蔽効果が不均一になり好ま
しくない。
Moreover, if it exceeds 40% by weight, uniform mixing with the unsaturated polyester resin becomes impossible, and the shielding effect becomes uneven, which is not preferable.

更に、水酸イヒアルミニウムは、15〜55重量%の範
囲で用いられる。
Further, ichalium hydroxide is used in a range of 15 to 55% by weight.

水酸化アルミニウムが115重量%より少ないと、遮蔽
材の自己消火性に於て劣り、また55重量%より多すぎ
ると中性子遮蔽能の低下をきたしかつ重くなりすぎるの
で施工性、扱いの点で問題が残る。
If the aluminum hydroxide content is less than 115% by weight, the self-extinguishing property of the shielding material will be poor, and if it is more than 55% by weight, the neutron shielding ability will decrease and it will become too heavy, causing problems in terms of workability and handling. remains.

本発明の中性子遮蔽材は、不飽和ポリエステル樹脂(液
状)に、ポリエチレン粉末および水酸化アルミニウム(
粉末状)を加えて混合物とし、この混合物を十分攪拌し
て成型硬化することによって得ることができる。
The neutron shielding material of the present invention consists of unsaturated polyester resin (liquid), polyethylene powder and aluminum hydroxide (
(in powder form) to form a mixture, and this mixture is thoroughly stirred and molded and hardened.

この場合、混合物には硬化触媒を配合するのが良く、そ
の硬化触媒の添加量は熱硬化性樹脂100重丁I部に対
して0.5〜5.0重量%程度で好ましく用いられる。
In this case, a curing catalyst is preferably added to the mixture, and the amount of the curing catalyst added is preferably about 0.5 to 5.0% by weight based on 100 parts of thermosetting resin.

硬化触媒および硬化条件は、熱硬化性樹脂の種類にあわ
せて適宜選択でき、公知の触媒と硬化条件で良い。
The curing catalyst and curing conditions can be appropriately selected depending on the type of thermosetting resin, and known catalysts and curing conditions may be used.

また、成型法としては、一般の熱硬化性樹脂に用いられ
ている各種の成型法が使用でき、注型法の場合には、型
枠を変えることによって種々の形状の遮蔽材が成型可能
である。
In addition, as a molding method, various molding methods used for general thermosetting resins can be used, and in the case of the casting method, shielding materials of various shapes can be molded by changing the mold. be.

更に、複雑な構造物への施工を要するときには、直接遮
蔽体部に注入すると良い。
Furthermore, when construction on a complex structure is required, it is preferable to inject directly into the shield part.

したがって、本発明に於ける硬化は、混合物を型枠に流
し硬化させても良いし、直接注入して硬化させても良い
Therefore, curing in the present invention may be carried out by pouring the mixture into a mold or by directly injecting it and curing it.

本発明の中性子遮蔽材は、上述のように特定成分を特定
量用いたところに特徴があり、しかして次のような効果
を奏する。
The neutron shielding material of the present invention is characterized by the use of specific components in specific amounts as described above, and has the following effects.

(1)遮蔽材を構成する樹脂中の水素原子密度は大きく
、即ちポリエチレンや水のそれと大差がなく、良好な中
性子遮蔽能を有する。
(1) The hydrogen atom density in the resin constituting the shielding material is high, that is, it is not much different from that of polyethylene or water, and has good neutron shielding ability.

これは、中性子が水素との散乱によりそのエネルギーを
失なうからであり、本発明の遮蔽材の水素原子密度は少
なくともs、 5 X 1022atms/iである。
This is because neutrons lose their energy due to scattering with hydrogen, and the hydrogen atom density of the shielding material of the present invention is at least s, 5 x 1022 atms/i.

(2)常用耐熱温度が少なくとも150℃であり、ポリ
エチレン、ポリプロピレンの約80℃以下、開放系にお
ける水、パラフィンの常温より高く、耐熱性に優れてい
る。
(2) It has excellent heat resistance, with a normal heat resistance temperature of at least 150°C, which is higher than about 80°C or less for polyethylene and polypropylene, and higher than the room temperature of water and paraffin in an open system.

(3)耐熱性であり、即ち自己消火性に優れているため
、ポリエチレン、ポリプロピレン、パラフィン、その地
熱硬化性樹脂のように燃え広がることがなく、しかも有
毒ガスを発生せず、火災時に於ける安全度が一段と高い
(3) It is heat resistant, that is, it has excellent self-extinguishing properties, so it does not spread like polyethylene, polypropylene, paraffin, and their geothermally curable resins, and does not emit toxic gas, so it can be used in the event of a fire. The level of safety is even higher.

(4)成型および成型樹脂の機械加工が容易であり、ま
た複雑な構造物への適用も可能であるため、施工性に優
れており、しかも汎用性と耐久性もある。
(4) It is easy to mold and machine the molded resin, and can be applied to complex structures, so it has excellent workability, and is also versatile and durable.

実施例 1 不飽和ポリエステル樹脂ニスターGA l 47(三井
東圧化学株式会社製)44.5重量%、ポリエチレン粉
末(分子量平均20,000.粒径平均32μ22.2
重量%および水酸化アルミニウム(昭和電工株式会社製
ハイジライ1−H−30)33.3重量%から成る混合
物にナイバーB(日本油脂株式会社製過酸化ベンゾイル
)を樹脂に対して1.0重量%添加して攪拌し、成型硬
化した。
Example 1 Unsaturated polyester resin Nister GA l 47 (manufactured by Mitsui Toatsu Chemical Co., Ltd.) 44.5% by weight, polyethylene powder (molecular weight average 20,000, particle size average 32μ22.2)
% by weight and 33.3% by weight of aluminum hydroxide (Hijirai 1-H-30, manufactured by Showa Denko Co., Ltd.), and 1.0% by weight of Niver B (benzoyl peroxide, manufactured by NOF Corporation) based on the resin. The mixture was added, stirred, and molded and cured.

得られた樹脂の性能は第1表のおおりであった。The performance of the obtained resin was as shown in Table 1.

なお、第1表には比較のために、ポリエチレン、水およ
び不飽和ポリエステル樹脂(ニスターGA147)をそ
れぞれ単独に用いた場合の性能も併記した。
For comparison, Table 1 also shows the performance when polyethylene, water and unsaturated polyester resin (Nister GA147) were used individually.

この結果から、本発明の遮蔽材の水素原子密度は、ポリ
エチレンや水に比較してもそん色なく、また耐熱性と自
己消火性にすぐれていることがわかる。
These results show that the hydrogen atom density of the shielding material of the present invention is comparable to that of polyethylene or water, and that it has excellent heat resistance and self-extinguishing properties.

実施例 2 不飽和ポリエステル樹脂ニスターD172(三井東圧化
学株式会社製)50重量%、ポリエチレン粉末(分子量
平均20,000)と水酸化アルミニウム(実施例1と
同じ)の割合を変えて、各々成型硬化し、中性子遮蔽性
能に関与する水素原子密度を調べたところ、第1図の結
果を得た。
Example 2 50% by weight of unsaturated polyester resin Nystar D172 (manufactured by Mitsui Toatsu Chemical Co., Ltd.), different proportions of polyethylene powder (molecular weight average 20,000) and aluminum hydroxide (same as Example 1) were molded. After curing, the hydrogen atom density, which is involved in neutron shielding performance, was investigated and the results shown in Figure 1 were obtained.

なお触媒として実施例1(!:同じ過酸化ベンゾイルを
樹脂に対して1.5重量%用いた。
As a catalyst, the same benzoyl peroxide as in Example 1 (!) was used in an amount of 1.5% by weight based on the resin.

実施例 3 不飽和ポリエステル樹脂ニスターR280(三井東圧化
学株式会社製):ポリエチレン粉末(分子量平均20,
000)=2:1の混合物に水酸化アルミニウム(実施
例1と同じ)を種々の割合で添加し、実施例2と同様に
実施して成型樹脂をつくり、ASTM D635−6
8Tにしたがって耐熱性試験をしたところ、第2表の結
果を得た。
Example 3 Unsaturated polyester resin Nister R280 (manufactured by Mitsui Toatsu Chemical Co., Ltd.): polyethylene powder (molecular weight average 20,
000) = 2:1 mixture in various proportions with aluminum hydroxide (same as in Example 1) and carried out in the same manner as in Example 2 to make molding resins, and ASTM D635-6
When a heat resistance test was conducted according to 8T, the results shown in Table 2 were obtained.

また、第2衣のうち本発明遮蔽材の結果をプロットする
と第2図の吉おりである。
Moreover, when the results of the shielding material of the present invention are plotted in the second layer, the results are as shown in FIG.

上述の第1図から理解されるように、水酸化アルミニウ
ムの割合を増加すると、樹脂の水酸原子密度は下がり、
中性子遮蔽材としての性能は低下するが、第2図に示さ
れるように、水酸化アルミニウムの添加量によって自己
消化時間が短かくなり耐燃性が増加する関係にある。
As understood from Figure 1 above, increasing the proportion of aluminum hydroxide decreases the hydroxyl atom density of the resin.
Although the performance as a neutron shielding material decreases, as shown in FIG. 2, the self-extinguishing time is shortened and the flame resistance is increased depending on the amount of aluminum hydroxide added.

従って、中性子遮蔽材としての性能を高度に維持しつつ
、耐熱性等の本発明で意図する遮蔽材とするには、既述
の各成分のバランスした割合が必要である。
Therefore, in order to obtain a shielding material intended by the present invention, such as heat resistance, while maintaining a high level of performance as a neutron shielding material, a balanced ratio of each of the above-mentioned components is required.

実施例 4 スチレンで希釈したウレタン化ビニルエステル樹脂(ニ
スターH7000三井東圧化学社製)35重量%、ポリ
エチレン粉末(平均分子量30.000平均粒径30μ
)35重量%及び水酸化アルミニウム(実施例1に同じ
)30重量%からなる混合物に、硬化剤(パーキュアに
日本油脂社製)を上記混合物に対して1,0重量%添加
後、攪拌し、成型硬化した。
Example 4 Urethane vinyl ester resin diluted with styrene (Nister H7000 manufactured by Mitsui Toatsu Chemical Co., Ltd.) 35% by weight, polyethylene powder (average molecular weight 30.000, average particle size 30μ)
) to a mixture consisting of 35% by weight of aluminum hydroxide (same as in Example 1) and 30% by weight of aluminum hydroxide (same as in Example 1), after adding 1.0% by weight of a curing agent (Percure, manufactured by NOF Corporation) to the above mixture, stirring; Molded and hardened.

得られた成型硬化相の性能を第3表に示す。The performance of the obtained molded hardened phase is shown in Table 3.

なお、第3衣には比較のために、上記ウレタン化ビニル
エステル樹脂を単独で用いた成型硬化した場合の性能も
併記した。
For comparison, the third coating also includes the performance when molded and cured using the above urethanized vinyl ester resin alone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリエチレン粉末と水酸化アルミニウムの割合
に対する水素原子密度および比重の関係を示す図、第2
図は水酸化アルミニウムの割合と自己消化時間との関係
を示す図である。
Figure 1 is a diagram showing the relationship between hydrogen atom density and specific gravity with respect to the ratio of polyethylene powder and aluminum hydroxide.
The figure shows the relationship between the proportion of aluminum hydroxide and the autolysis time.

Claims (1)

【特許請求の範囲】[Claims] 1 不飽和ポリエステル樹脂20〜60重量%、ポリエ
チレン粉末10〜40重量%および水酸化アルミニウム
15〜55重量%を含む混合物を硬化してなる中性子遮
蔽材。
1. A neutron shielding material obtained by curing a mixture containing 20 to 60% by weight of unsaturated polyester resin, 10 to 40% by weight of polyethylene powder, and 15 to 55% by weight of aluminum hydroxide.
JP2731979A 1979-03-09 1979-03-09 Neutron shielding material Expired JPS5933874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2731979A JPS5933874B2 (en) 1979-03-09 1979-03-09 Neutron shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2731979A JPS5933874B2 (en) 1979-03-09 1979-03-09 Neutron shielding material

Publications (2)

Publication Number Publication Date
JPS55119099A JPS55119099A (en) 1980-09-12
JPS5933874B2 true JPS5933874B2 (en) 1984-08-18

Family

ID=12217753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2731979A Expired JPS5933874B2 (en) 1979-03-09 1979-03-09 Neutron shielding material

Country Status (1)

Country Link
JP (1) JPS5933874B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378358B2 (en) * 1984-01-11 1991-12-13 Mitsubishi Electric Corp
US11517343B2 (en) 2016-10-14 2022-12-06 Olympus Corporation Vibration transmitter, ultrasonic transducer structure, and medical device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183399A (en) * 1983-04-04 1984-10-18 佐藤 昌 Radiation shielding plate
JPS6469997A (en) * 1987-09-11 1989-03-15 Ask Corp Induced radioactivity suppressing concrete structure
JPH01253696A (en) * 1988-04-01 1989-10-09 Ask Corp Shielding material for thermal neutron
FR2830367B1 (en) * 2001-10-01 2003-12-19 Transnucleaire NEUTRONIC SHIELDING AND SUB-CRITICITY MAINTAINING MATERIAL BASED ON UNSATURATED POLYESTER
FR2833402B1 (en) 2001-12-12 2004-03-12 Transnucleaire NEUTRONIC SHIELDING AND SUB-CRITICITY MAINTAINING MATERIAL BASED ON VINYLESTER RESIN
FR2846467B1 (en) * 2002-10-25 2005-01-28 Cogema Logistics NEUTRONIC SHIELDING AND DE-CRITICITE MAINTAINING MATERIAL, PREPARATION METHOD AND APPLICATIONS THEREOF
CN108148351B (en) * 2017-12-26 2020-06-16 中广核研究院有限公司 Radiation protection material
JP7450365B2 (en) * 2019-02-04 2024-03-15 株式会社安藤・間 Activation suppression structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378358B2 (en) * 1984-01-11 1991-12-13 Mitsubishi Electric Corp
US11517343B2 (en) 2016-10-14 2022-12-06 Olympus Corporation Vibration transmitter, ultrasonic transducer structure, and medical device

Also Published As

Publication number Publication date
JPS55119099A (en) 1980-09-12

Similar Documents

Publication Publication Date Title
JP3951685B2 (en) Neutron shielding material and spent fuel container
US4123392A (en) Non-combustible nuclear radiation shields with high hydrogen content
JPS5933874B2 (en) Neutron shielding material
US4115499A (en) Large void-free polyethylene castings
US3142649A (en) Neutron radiation shielding material
JP2005521859A (en) Unsaturated polyester materials for neutron shielding and subcritical maintenance
US3057791A (en) Radiation curing of polymers
JP4401738B2 (en) Neutron shielding and subcritical materials, their preparation and use
KR100947528B1 (en) Material for neutron shielding and for maintaining sub-criticality based on vinylester resin
JP3643798B2 (en) Neutron shielding material composition, shielding material and container
US3929939A (en) Large void-free polyethylene castings comprising high density polyethylene in a low density polyethylene matrix
JP4592232B2 (en) Neutron shielding material composition, shielding material and container
US3238148A (en) Shielding concrete and aggregates
JPS6253080B2 (en)
WO2021252112A1 (en) Neutron shielding and radiation absorbing compositions
KR100843807B1 (en) Composition for neutron shield material, shield material and container
JPH0244295A (en) Neutron shielding material
KR100298037B1 (en) Epoxy resin system neutron shield composition
JPS6249305B2 (en)
US3247131A (en) Neutron shielding composition having good high temperature strength
US3152093A (en) Neutron absorbing asphaltic composition
JPH0467640B2 (en)
KR100298036B1 (en) Silicon rubber system neutron shield composition
JPS61290400A (en) Neutron shielding material
JPS61213694A (en) Neutron shielding material