JPS626616B2 - - Google Patents

Info

Publication number
JPS626616B2
JPS626616B2 JP16956282A JP16956282A JPS626616B2 JP S626616 B2 JPS626616 B2 JP S626616B2 JP 16956282 A JP16956282 A JP 16956282A JP 16956282 A JP16956282 A JP 16956282A JP S626616 B2 JPS626616 B2 JP S626616B2
Authority
JP
Japan
Prior art keywords
stainless steel
hot
duplex stainless
steel material
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16956282A
Other languages
Japanese (ja)
Other versions
JPS5959826A (en
Inventor
Kensai Shitani
Yukio Onoyama
Kenichi Haramura
Tadayuki Okinaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16956282A priority Critical patent/JPS5959826A/en
Publication of JPS5959826A publication Critical patent/JPS5959826A/en
Publication of JPS626616B2 publication Critical patent/JPS626616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエライト―オーステナイト二相ス
テンレス鋼(以下単に二相ステンレス鋼と称す
る)の連続鋳造材を素材として、管、丸棒、形材
等の鋼材を熱間押出加工によつて製造する方法に
関するものである。 熱間押出加工に供する素材は、一般には溶製―
造塊―熱間分塊圧延工程により円形断面に仕上げ
られている。しかし、連続鋳造技術が発達し、現
在では円形断面の連続鋳造片の製造が可能になつ
ている(以下、この工程による素材を連鋳素材と
称する。)。 連鋳鋳造技術の発達は二相ステンレス鋼におい
ても、上記、工程省略の利点を享受できる段階に
達しており、連鋳素材を熱間押出加工に適用する
ことで大幅な歩留向上が期待される。しかし、二
相ステンレス鋼の連鋳素材を熱間押出加工した場
合に押出製品表面に熱間加工割れおよび押出方向
のスジ状欠陥が多発する。 本発明は、二相ステンレス鋼を熱間分塊圧延せ
ず、連鋳素材を熱間加工割れを生ずることなく直
接熱間押出加工し、かつ、熱間押出後スジ状欠陥
の発生を抑制することを目的とする。 本発明は、二相ステンレス鋼の成分を限定し、
特に鋼中のS,O量を低減することにより、二相
組織を維持し強度および耐応力腐食割れ性を損じ
ることなく熱間加工性の改善を達成し、さらに連
鋳鋳造時の鋳込温度を限定することにより、スジ
状欠陥の発生を抑制したものである。 本発明の対象とする二相ステンレス鋼の成分
は、第1発明においては、重量%にて、C≦0.08
%,Si≦3.0%,S≦0.005%,Cr:20〜35%,
Ni:3〜15%,Mo:0.5〜8%,Cu≦3.0%,
N:0.03〜0.35%,Al:0.001〜0.20%,O≦
0.005%,残部Feおよび不可避不純物からなり、
第2発明においては、さらに、Ca:0.001〜0.10
%,Mg:0.001〜0.10%,Y:0.001〜0.10%,
REM:0.005〜0.10%の単独又は任意の組合せで
合計0.001〜0.10%を含み、第3発明において
は、さらに、Sn:0.01〜0.30%,Sb:0.01〜0.30
%,As:0.01〜0.30%の単独又は任意の組合せで
合計0.01〜0.30%を含む。 発明は、このような成分の二相ステンレス鋼を
溶製し、液相線+10〜60℃の温度範囲で連鋳鋳造
して連鋳素材となし、該連鋳素材を分塊圧延等の
熱間圧延をすることなく直接熱間押出加工するこ
とを特徴とする。 以下に鋼成分の限定理由を詳述する。Crは鋼
の耐食性を向上させる重要な元素であり厳しい腐
食環境(例えば、H2S―Cl-―H2O環境)に耐え
るため20%以上の添加が必要であるが35%を超え
ると熱間および低温での延靭性が低下する。ま
た、Cr添加量が増すとフエライト―オーステナ
イト二相組織を得るのにNi,Nなどオーステナ
イト生成元素を増すことが必要となりコストが高
くなるのでCr量を20〜35%とした。 Niは、Crと同様に耐食性を向上させるととも
に低温での延靭性を向上させる重要な元素であ
る。Crが20〜35%の範囲でフエライト―オース
テナイト二相組織を得るには3%以上のNiが必
要となるが、15%を超える添加では耐食性向上効
果が飽和に近くなり、コスト高となるので3〜15
%とした。 MoはCr―Ni―Mo系での耐食性への効果が最も
大きい元素である。耐食性向上には、0.5%以上
の添加が必要であるが、8%を超えると後述の対
策を行つても熱間加工性が著しく劣化し、さらに
シグマ脆化が著じるしくなるので、0.5〜8%と
した。 Cは耐粒界腐食性の点からできるだけ低い方が
望ましく、0.08%を超えると耐粒界腐食性が急激
に劣化するので0.08%以下に限定した。 Nはオーステナイト生成元素であり、また耐食
性向上効果を有する。しかし、0.03%未満では耐
食性向上効果は小さく、0.35%を超える添加は連
鋳素材にブローホールを発生させるので0.03〜
0.35%に限定した。 Alは脱酸剤として有効な元素である。後述す
るCa,MgおよびYなどによる脱酸、脱硫によつ
て熱間加工性を向上させる場合にも、溶鋼中の酸
素を予め充分に低下させておくことが必要であ
る。このため、0.001%以上添加するが鋼中のAl
量が0.20%を超えると非金属介在物が増加し耐食
性を劣化させるので、0.001〜0.20%とした。 Siは鋼の脱酸に有効な元素であるが本発明にお
いては、Alなどで脱酸するので特に添加しなく
てもよい。しかし、強度、耐酸化性および塩化物
環境における耐応力腐食割れ性の1つ以上をさら
に向上させる場合は添加するが過剰に添加すると
延性および靭性を低下させるので3%を上限とし
た。 Cuは非酸化性の酸に対する耐食性の向上が必
要な場合に添加するが、過剰に添加すると熱間加
工性を低下させるので3%を上限とした。 Sn,SbおよびAsはいずれも全面腐食および応
力腐食割れなどの耐食性を向上させる元素であ
り、必要に応じて添加する。添加量が0.01%未満
では効果が小さいが、0.30%を超えると逆に耐食
性が低下し、さらに熱間加工性も劣化するので夫
夫0.01〜0.30%とした。 Sn,SbおよびAsの2種以上の添加においても
同様の効果を示す。2種以上組合せて添加する場
合は合計量で0.01〜0.30%とする。 二相ステンレス鋼に熱間加工割れが発生しやす
いのは、フエライトおよびオーステナイト相境界
に不純物(S,Oなど)が偏析しやすく、さら
に、変形抵抗変形能の異なる相が隣接して存在す
ることにより、相境界に応力が集中しやすく、容
易に割れに至るためと考えられる。したがつて、
本発明においてはSおよびOを次のように限定す
る。 Sは熱間加工性のほか冷間加工性および耐食性
などを著じるしく低下させる。特に、フエライト
―オーステナイト二相ステンレス鋼の場合Sが
0.005%を超えると熱間加工性が著じるしく劣化
するので、0.005%以下に限定した。 Oは熱間加工性を著じるしく低下させる。特に
フエライト―オーステナイト二相組織のように熱
間加工性の低い成分系ではOが0.005%を超える
と熱間加工性が顕著に低下する。したがつて、O
は0.005%以下とした。 最近、ステンレス鋼の精練技術は著しく進歩
し、AOD法などの採用によりS,Oを著しく低
減した高純度鋼の製造が可能となつたので、上述
の限定を行つて、工業的規模の生産をすることは
十分可能である。 なお、前述のごとく二相ステンレス鋼は、耐食
性の向上を図る意味から、Cu,Sn,SbおよびAs
などを添加することがあるが、これら元素の添加
によつて熱間加工性が劣化した場合でも、鋼中
S,O量を前記のように低減すれば熱間加工性は
問題ない。さらにCa,Mg,Y,REMを添加して
強脱硫、強脱酸を行うことにより、鋼中のS,O
量は一層低減され熱間加工性がより改善される。
したがつて、これら元素を必要に応じて添加す
る。 Ca,MgおよびYは0.001%以上の添加で脱硫、
脱酸の効果が大きいが、0.10%を超えると非金属
介在物が増加し、材質を劣化させるので夫々
0.001〜0.10%と限定した。 REMはCa,MgおよびYと同様の効果があり、
0.005%以上の添加で効果が大きいが、0.10%を
超えて過剰に添加すると連鋳鋳造時にノズル絞り
が起り、また連鋳素材に表面疵が発生するので、
0.005〜0.10%とした。望ましくは0.010〜0.050%
がよい。 なお、Ca,Mg,YおよびREMの2種以上を複
合添加しても同様の効果が得られる。その場合は
合計で0.001〜0.10%とする。 本発明は以上の成分の二相ステンレス鋼を対象
とするが、目的、用途によつて成分系を選択す
る。 次に、連鋳素材を熱間押出した場合に生ずるス
ジ状欠陥の改善について述べる。 フエライト単相、オーステナイト単相およびフ
エライト―オーステナイト二相ステンレス鋼の連
鋳鋳造素材を熱間押出すると長手方向にスジ状欠
陥が著じるしく発生することはよく知られてい
る。 本発明者らは、このスジ状欠陥の発生機構を明
らかにするために種々の実験・研究を行つた結
果、スジ状欠陥が結晶粒自体の凹凸によるもので
あり、結晶粒の大きさに依存していることをつき
とめた。すなわち、スジ状欠陥は連鋳鋳造鋳片の
結晶粒の大きさに比例して深くなる。この事に注
目し、フエライト―オーステナイト二相ステンレ
ス鋼の鋳造組織を微細化するために種々の実験を
した結果、熱間押出製品のスジ状欠陥を著じるし
く軽減するには連鋳鋳造温度を液相線+60℃以下
にすることが最も有効であることを明らかにし
た。しかし、液相線+10℃未満の鋳造温度では、
連鋳鋳造時にノズル絞りが発生するので連鋳鋳造
温度を液相線+10〜60℃に限定した。 また凝固組織の細粒化には成分の効果も大き
く、例えば、高Ni化、高Mo化および高N化によ
り達成できるが、コスト高となるので鋳造温度を
制御する方が望ましい。 本発明は、このような連鋳素材を分塊圧延等の
熱間圧延をすることなく直接熱間押出加工する。
なお、直接熱間押出加工するとは、連鋳素材を熱
間圧延工程を経ることなく熱間押出加工すること
を意味し、熱間押出加工は従来行われている通常
の加工である。 以下、本発明の実施例について説明する。 表1に示す成分の本発明例1〜12および比較鋼
13〜15の鋼を溶製し、連鋳鋳造により鋳造温度を
表1中の液相線+ΔT(℃)に制御して外径175
mmのブルームとした。これを皮削し、切断し、穿
孔して外径170mm、内径58mm、長さ600mmの中空ビ
レツトとした後、1200℃に加熱して、熱間押出加
工により外径70.3mm、肉厚7mmの鋼管を製造し、
鋼管の熱間加工割れ、およびスジ状欠陥を調査し
た。 表1に結果を示す。熱間加工割れ性は、目視観
察により割れ発生の有無で評価した。スジ状欠陥
は鋼管内外面周測定し、最も深いものから10ケ選
びその平均値で評価した。 本発明例には熱間加工割れはみられず、スジ状
欠陥深さも比較材に比べて1/10以下になり著しく
改善されている。一方、比較例には熱間加工割れ
が多発し、スジ状欠陥深さも340〜450μと深い。 以上、説明した如く、本発明の二相ステンレス
鋼の製造法は良好な耐食性・表面性状および熱間
加工性が確保され、しかも連鋳素材を圧延するこ
となく、直接熱間押出加工することによつて、熱
間加工工程の省略および歩留り向上に大きく寄与
するものである。
The present invention is a method for producing steel products such as pipes, round bars, and shapes by hot extrusion using continuously cast materials of ferrite-austenite duplex stainless steel (hereinafter simply referred to as duplex stainless steel). It is related to. Materials subjected to hot extrusion are generally melt-produced.
Ingot-forming - A circular cross-section is achieved through the hot blooming and rolling process. However, with the development of continuous casting technology, it is now possible to manufacture continuously cast pieces with a circular cross section (hereinafter, the material produced by this process will be referred to as a continuous cast material). The development of continuous casting technology has reached a stage where even duplex stainless steel can benefit from the above-mentioned advantages of omitting the process, and by applying continuous casting materials to hot extrusion processing, a significant improvement in yield is expected. Ru. However, when continuously cast duplex stainless steel material is hot extruded, hot processing cracks and streak defects in the extrusion direction frequently occur on the surface of the extruded product. The present invention directly hot extrudes a continuously cast material without hot blooming rolling duplex stainless steel without causing hot work cracks, and suppresses the occurrence of streak defects after hot extrusion. The purpose is to The present invention limits the components of duplex stainless steel,
In particular, by reducing the amount of S and O in the steel, it is possible to maintain a two-phase structure and improve hot workability without compromising strength and stress corrosion cracking resistance. By limiting this, the occurrence of streak-like defects is suppressed. In the first invention, the components of the duplex stainless steel targeted by the present invention are C≦0.08 in weight%.
%, Si≦3.0%, S≦0.005%, Cr:20-35%,
Ni: 3-15%, Mo: 0.5-8%, Cu≦3.0%,
N: 0.03~0.35%, Al: 0.001~0.20%, O≦
0.005%, balance consisting of Fe and unavoidable impurities,
In the second invention, further, Ca: 0.001 to 0.10
%, Mg: 0.001-0.10%, Y: 0.001-0.10%,
REM: 0.005 to 0.10% alone or in any combination, including a total of 0.001 to 0.10%, and in the third invention, further includes Sn: 0.01 to 0.30%, Sb: 0.01 to 0.30
%, As: 0.01 to 0.30% alone or in any combination, including a total of 0.01 to 0.30%. The invention involves melting duplex stainless steel with such components, continuously casting it at a temperature range of +10 to 60°C above the liquidus line to obtain a continuous cast material, and subjecting the continuous cast material to heat treatment such as blooming. It is characterized by direct hot extrusion processing without rolling. The reasons for limiting the steel components are detailed below. Cr is an important element that improves the corrosion resistance of steel, and it is necessary to add 20% or more in order to withstand severe corrosive environments (for example, H 2 S――Cl - -H 2 O environment), but if it exceeds 35%, it will cause heat damage. The ductility and toughness at high temperatures and low temperatures decrease. Further, as the amount of Cr added increases, it becomes necessary to increase the amount of austenite-forming elements such as Ni and N in order to obtain a ferrite-austenite two-phase structure, which increases the cost, so the amount of Cr was set at 20 to 35%. Like Cr, Ni is an important element that improves corrosion resistance and ductility at low temperatures. In order to obtain a ferrite-austenite dual-phase structure when Cr is in the range of 20 to 35%, 3% or more Ni is required, but if the addition exceeds 15%, the corrosion resistance improvement effect approaches saturation, resulting in high costs. 3-15
%. Mo is the element that has the greatest effect on corrosion resistance in the Cr-Ni-Mo system. To improve corrosion resistance, it is necessary to add 0.5% or more, but if it exceeds 8%, hot workability will deteriorate significantly even if the measures described below are taken, and sigma embrittlement will become significant. ~8%. From the viewpoint of intergranular corrosion resistance, it is desirable that C be as low as possible, and if it exceeds 0.08%, the intergranular corrosion resistance will deteriorate rapidly, so it is limited to 0.08% or less. N is an austenite-forming element and also has the effect of improving corrosion resistance. However, if it is less than 0.03%, the effect of improving corrosion resistance is small, and if it exceeds 0.35%, blowholes will occur in the continuously cast material, so 0.03~
Limited to 0.35%. Al is an effective element as a deoxidizing agent. Even when improving hot workability by deoxidizing and desulfurizing with Ca, Mg, Y, etc., which will be described later, it is necessary to sufficiently lower the oxygen in the molten steel in advance. For this reason, although adding 0.001% or more of Al
If the amount exceeds 0.20%, nonmetallic inclusions will increase and corrosion resistance will deteriorate, so it was set to 0.001 to 0.20%. Si is an effective element for deoxidizing steel, but in the present invention, since deoxidation is performed with Al or the like, it does not need to be added. However, if one or more of strength, oxidation resistance, and resistance to stress corrosion cracking in a chloride environment is to be further improved, it may be added, but adding excessively reduces ductility and toughness, so the upper limit was set at 3%. Cu is added when it is necessary to improve corrosion resistance against non-oxidizing acids, but since excessive addition reduces hot workability, the upper limit was set at 3%. Sn, Sb, and As are all elements that improve corrosion resistance such as general corrosion and stress corrosion cracking, and are added as necessary. If the amount added is less than 0.01%, the effect will be small, but if it exceeds 0.30%, corrosion resistance will decrease and hot workability will also deteriorate, so it was set at 0.01 to 0.30%. A similar effect is also shown when two or more of Sn, Sb and As are added. When adding two or more kinds in combination, the total amount should be 0.01 to 0.30%. The reason why hot work cracking is likely to occur in duplex stainless steel is that impurities (S, O, etc.) tend to segregate at the ferrite and austenite phase boundaries, and furthermore, phases with different deformation resistance and deformability exist adjacent to each other. This is thought to be because stress tends to concentrate at the phase boundaries, easily leading to cracking. Therefore,
In the present invention, S and O are limited as follows. S significantly reduces not only hot workability but also cold workability and corrosion resistance. In particular, in the case of ferritic-austenitic duplex stainless steel, S is
If it exceeds 0.005%, hot workability will be significantly deteriorated, so it was limited to 0.005% or less. O significantly reduces hot workability. Particularly in component systems with low hot workability, such as a ferrite-austenite dual-phase structure, when O exceeds 0.005%, hot workability is significantly reduced. Therefore, O
was set at 0.005% or less. Recently, the refining technology of stainless steel has made remarkable progress, and it has become possible to manufacture high-purity steel with significantly reduced S and O content by adopting methods such as the AOD method. It is quite possible to do so. As mentioned above, duplex stainless steel is made of Cu, Sn, Sb, and As in order to improve corrosion resistance.
Even if hot workability deteriorates due to the addition of these elements, there is no problem with hot workability if the amounts of S and O in the steel are reduced as described above. Furthermore, by adding Ca, Mg, Y, and REM to perform strong desulfurization and strong deoxidation, S, O
The amount is further reduced and hot workability is further improved.
Therefore, these elements are added as necessary. Ca, Mg and Y can be desulfurized by adding 0.001% or more.
The deoxidizing effect is great, but if it exceeds 0.10%, nonmetallic inclusions will increase and the material will deteriorate.
It was limited to 0.001-0.10%. REM has similar effects to Ca, Mg and Y;
Addition of 0.005% or more will have a great effect, but if added in excess of 0.10%, nozzle throttling will occur during continuous casting, and surface defects will occur on the continuous casting material.
It was set at 0.005 to 0.10%. Preferably 0.010-0.050%
Good. Note that the same effect can be obtained by adding two or more of Ca, Mg, Y, and REM in combination. In that case, the total amount should be 0.001 to 0.10%. Although the present invention is directed to duplex stainless steel having the above-mentioned components, the component system is selected depending on the purpose and use. Next, we will discuss how to improve the streak-like defects that occur when continuously cast materials are hot extruded. It is well known that when continuously cast cast materials of ferrite single phase, austenite single phase, and ferrite-austenite duplex stainless steel are hot extruded, streak-like defects occur significantly in the longitudinal direction. The present inventors conducted various experiments and research to clarify the generation mechanism of this streak-like defect, and found that the streak-like defect is caused by the unevenness of the crystal grain itself, and that it depends on the size of the crystal grain. I figured out what he was doing. That is, the depth of the streak-like defects increases in proportion to the size of the crystal grains of the continuously cast slab. Focusing on this, we conducted various experiments to refine the casting structure of ferrite-austenitic duplex stainless steel, and found that the continuous casting temperature is the key to significantly reducing the streak defects in hot extruded products. It has been revealed that the most effective method is to keep the temperature below the liquidus line +60°C. However, at casting temperatures below the liquidus line +10℃,
Since nozzle throttling occurs during continuous casting, the continuous casting temperature was limited to liquidus +10 to 60°C. In addition, fine graining of the solidified structure can be achieved by increasing the Ni content, Mo content, and N content, but it is preferable to control the casting temperature since this increases the cost. In the present invention, such a continuously cast material is directly hot extruded without performing hot rolling such as blooming.
Note that "direct hot extrusion processing" means that the continuously cast material is hot extruded without going through a hot rolling process, and hot extrusion processing is a conventional processing. Examples of the present invention will be described below. Invention examples 1 to 12 and comparative steel with the components shown in Table 1
Steel No. 13 to 15 was melted, and by continuous casting, the casting temperature was controlled to the liquidus line + ΔT (℃) in Table 1, and the outer diameter was 175.
mm bloom. After skinning, cutting, and perforating this into a hollow billet with an outer diameter of 170 mm, an inner diameter of 58 mm, and a length of 600 mm, it was heated to 1200°C and hot extruded into a hollow billet with an outer diameter of 70.3 mm and a wall thickness of 7 mm. manufactures steel pipes,
We investigated hot working cracks and streak defects in steel pipes. Table 1 shows the results. Hot work crackability was evaluated based on the presence or absence of cracking by visual observation. For streak defects, the inner and outer circumferences of the steel pipe were measured, and the 10 deepest defects were selected and evaluated based on the average value. No hot working cracks were observed in the examples of the present invention, and the depth of streak defects was 1/10 or less compared to the comparative materials, which was a significant improvement. On the other hand, in the comparative example, hot working cracks occurred frequently and the depth of the streak-like defects was as deep as 340 to 450μ. As explained above, the method for manufacturing duplex stainless steel of the present invention ensures good corrosion resistance, surface texture, and hot workability, and also enables direct hot extrusion processing without rolling the continuously cast material. Therefore, it greatly contributes to omitting hot working steps and improving yield.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%にて、C≦0.08%,Si≦3.0%,S≦
0.005%,Cr:20〜35%,Ni:3〜15%,Mo:
0.5〜8%,Cu≦3.0%,N:0.03〜0.35%,Al:
0.001〜0.20%,O≦0.005%,残部Feおよび不可
避不純物からなり、溶鋼を液相線+10〜60℃の温
度範囲で連続鋳造した二相ステンレス鋼連鋳素材
を熱間圧延することなく直接熱間押出加工するこ
とを特徴とする二相ステンレス鋼材の製造法。 2 重量%にて、C≦0.08%,Si≦3.0%,S≦
0.005%,Cr:20〜35%,Ni:3〜15%,Mo:
0.5〜8%,Cu≦3.0%,N:0.03〜0.35%,Al:
0.001〜0.20%,O≦0.005%,さらにCa:0.001〜
0.10%,Mg:0.001〜0.10%,Y:0.001〜0.10
%,REM:0.005〜0.10%の単独又は任意の組合
せで合計0.001〜0.10%を含み、残部Feおよび不
可避不純物からなり、溶鋼を液相線+10〜60℃の
温度範囲で連続鋳造した二相ステンレス鋼連鋳素
材を熱間圧延することなく直接熱間押出加工する
ことを特徴とする二相ステンレス鋼材の製造法。 3 重量%にて、C≦0.08%,Si≦3.0%,S≦
0.005%,Cr:20〜35%,Ni:3〜15%,Mo:
0.5〜8%,Cu≦3.0%,N:0.03〜0.35%,Al:
0.001〜0.20%,O≦0.005%,さらにCa:0.001〜
0.10%,Mg:0.001〜0.10%,Y:0.001〜0.10
%,REM:0.005〜0.10%の単独又は任意の組合
せで合計0.001〜0.10%と、Sn:0.01〜0.30%,
Sb:0.01〜0.30%,As:0.01〜0.30%の単独又は
任意の組合せで合計0.01〜0.30%とを含み、残部
Feおよび不可避不純物からなり、溶鋼を液相線
+10〜60℃の温度範囲で連続鋳造した二相ステン
レス鋼連鋳素材を熱間圧延することなく直接熱間
押出加工することを特徴とする二相ステンレス鋼
材の製造法。
[Claims] 1% by weight: C≦0.08%, Si≦3.0%, S≦
0.005%, Cr: 20-35%, Ni: 3-15%, Mo:
0.5-8%, Cu≦3.0%, N: 0.03-0.35%, Al:
0.001~0.20%, O≦0.005%, balance Fe and unavoidable impurities, and the continuous cast duplex stainless steel material is made by continuously casting molten steel in the temperature range of +10~60℃ above the liquidus line, and is directly heated without hot rolling. A method for producing duplex stainless steel material characterized by inter-extrusion processing. 2 In weight%, C≦0.08%, Si≦3.0%, S≦
0.005%, Cr: 20-35%, Ni: 3-15%, Mo:
0.5-8%, Cu≦3.0%, N: 0.03-0.35%, Al:
0.001~0.20%, O≦0.005%, and Ca: 0.001~
0.10%, Mg: 0.001~0.10%, Y: 0.001~0.10
%, REM: 0.005 to 0.10% alone or in any combination, containing a total of 0.001 to 0.10%, the balance consisting of Fe and unavoidable impurities, duplex stainless steel made by continuously casting molten steel at a temperature range of +10 to 60℃ above the liquidus line. A method for producing duplex stainless steel material, which is characterized by directly hot extruding a continuously cast steel material without hot rolling. 3 In weight%, C≦0.08%, Si≦3.0%, S≦
0.005%, Cr: 20-35%, Ni: 3-15%, Mo:
0.5-8%, Cu≦3.0%, N: 0.03-0.35%, Al:
0.001~0.20%, O≦0.005%, and Ca: 0.001~
0.10%, Mg: 0.001~0.10%, Y: 0.001~0.10
%, REM: 0.005-0.10% alone or in any combination for a total of 0.001-0.10%, Sn: 0.01-0.30%,
Contains Sb: 0.01~0.30%, As: 0.01~0.30% alone or in any combination, totaling 0.01~0.30%, the balance
A two-phase continuous cast stainless steel material consisting of Fe and inevitable impurities, which is produced by continuously casting molten steel at a temperature range of +10 to 60°C above the liquidus line, and is directly hot extruded without hot rolling. Manufacturing method for stainless steel materials.
JP16956282A 1982-09-30 1982-09-30 Production of binary phase stainless steel Granted JPS5959826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16956282A JPS5959826A (en) 1982-09-30 1982-09-30 Production of binary phase stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16956282A JPS5959826A (en) 1982-09-30 1982-09-30 Production of binary phase stainless steel

Publications (2)

Publication Number Publication Date
JPS5959826A JPS5959826A (en) 1984-04-05
JPS626616B2 true JPS626616B2 (en) 1987-02-12

Family

ID=15888761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16956282A Granted JPS5959826A (en) 1982-09-30 1982-09-30 Production of binary phase stainless steel

Country Status (1)

Country Link
JP (1) JPS5959826A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224632A (en) * 1986-03-26 1987-10-02 Sumitomo Metal Ind Ltd Method for hot forging high-si two-phase stainless steel
WO2012102330A1 (en) 2011-01-27 2012-08-02 新日鐵住金ステンレス株式会社 Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
KR101632516B1 (en) * 2011-10-21 2016-06-21 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material

Also Published As

Publication number Publication date
JPS5959826A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US8043446B2 (en) High manganese duplex stainless steel having superior hot workabilities and method manufacturing thereof
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP4462452B1 (en) Manufacturing method of high alloy pipe
JP5217277B2 (en) Manufacturing method of high alloy pipe
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
EP0641867A1 (en) Thin cast piece of ordinary carbon steel containing large quantities of copper and tin, thin steel sheet, and method of production thereof
JP3508715B2 (en) High Cr steel slab and seamless steel pipe
JP2000034538A (en) Steel for machine structure excellent in machinability
JPS626616B2 (en)
JPS626635B2 (en)
JPH01228603A (en) Manufacture of two-phase stainless steel seamless tube
JP6179609B2 (en) Manufacturing method of thick high-strength steel sheet with excellent cold workability
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JP3399780B2 (en) Manufacturing method of steel bars for hot forging
JP3417275B2 (en) Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPH09291344A (en) Low hardness martensitic stainless steel
JPH09111345A (en) Production of martensitic stainless steel oil well pipe
JPH022925B2 (en)
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP3456468B2 (en) Martensitic stainless steel seamless steel pipe with excellent machinability and hot workability
JP3350343B2 (en) Method for producing ferritic stainless steel to prevent surface flaws from occurring during hot rolling
JPH029088B2 (en)
JPH0713252B2 (en) Method for producing high strength austenitic stainless steel with excellent seawater resistance
JP3775178B2 (en) Thin steel plate and manufacturing method thereof