JPS6265940A - Method for desiliconizing aqueous acid iron chloride - Google Patents
Method for desiliconizing aqueous acid iron chlorideInfo
- Publication number
- JPS6265940A JPS6265940A JP20525785A JP20525785A JPS6265940A JP S6265940 A JPS6265940 A JP S6265940A JP 20525785 A JP20525785 A JP 20525785A JP 20525785 A JP20525785 A JP 20525785A JP S6265940 A JPS6265940 A JP S6265940A
- Authority
- JP
- Japan
- Prior art keywords
- soln
- iron chloride
- acid iron
- silicon
- components
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/36—Regeneration of waste pickling liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明り鋼材酸洗廃液中の珪素分を除去する方法に関し
、特に鋼材の塩酸による酸洗廃液中に含有される拙々の
溶存t18態をもつ珪素分を除去し、フェライト酸化鉄
などの高純度製品の製造に利用しうる塩化鉄を主成分と
する溶成を得る方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing silicon content from a steel pickling waste solution, and in particular to a method for removing silicon content from a steel pickling waste solution, in particular a method for removing the unsatisfactory dissolved T18 state contained in a steel pickling waste solution. The present invention relates to a method for removing silicon content containing iron chloride and obtaining a melt containing iron chloride as a main component, which can be used for manufacturing high-purity products such as ferrite iron oxide.
〔従来の技術]
鋼材の塩酸酸洗廃液中に含有される@童の珪素分の脱珪
方法として、高分子凝集剤あるいは限外−過流が試みら
れたが、抵出領域(PH<1)の廃液から珪素の脱離性
は低く、珪素含有量を20、Oppm以下に低下させる
ことは不可能であった。[Prior Art] As a method for removing silicon contained in the waste solution from hydrochloric acid pickling of steel materials, attempts have been made to use polymer flocculants or ultra-superfluid flow, but these methods have failed in the reaction region (PH < 1). ) The ability to remove silicon from the waste liquid was low, and it was impossible to reduce the silicon content to less than 20.0 ppm.
鋼材の塩酸酸洗廃液中に含有される珪素は、珪酸、珪酸
二量体、コロイド状珪酸と徨々のm存状態をとるため、
限外濾過法等の粒子怪の相違で分離する手法には限界が
おる。Silicon contained in the waste solution from hydrochloric acid pickling of steel materials exists in various states such as silicic acid, silicic acid dimer, and colloidal silicic acid.
There are limits to methods such as ultrafiltration that separate particles based on differences in particle size.
また廃酸中のシリカ化合物をカチオン性ポリアクリルア
ミド系高分子凝集剤を添加して、凝集・濾過分離する既
存の方法においては、(1)濾過操作が必要であること
、(2) f!I!度の強い廃酸(lfl=−1〜0.
5)条件下では脱珪効率が5〜10%と低い。(3)前
記凝集剤t−310□ 換算量に対して重重比で0.0
4へ0.2以上添加しても″培焼製品酸化鉄中の510
□は180へ250ppm程度までしかならなかった。In addition, in the existing method of adding a cationic polyacrylamide-based polymer flocculant to flocculate and separate silica compounds in waste acid by filtration, (1) a filtration operation is required; (2) f! I! strong waste acid (lfl=-1~0.
5) Under these conditions, the desiliconization efficiency is as low as 5 to 10%. (3) The above flocculant t-310□ The weight ratio is 0.0 with respect to the converted amount.
Even if 0.2 or more is added to 4, 510
□ only increased to about 180 to 250 ppm.
などの欠点がある。There are drawbacks such as.
しかるにフェライト用酸化鉄(1) 1 種晶のSiO
□含有率は100 ppm以下(JIS K 1462
に規定)でめシ、既存の前記方法では安定した品質の酸
化鉄を得ること社困難であることから安価でかつ効率の
良い珪素除去方法の確立を必要とした。However, iron oxide for ferrite (1) 1 Seed crystal SiO
□Content is 100 ppm or less (JIS K 1462
However, since it is difficult to obtain iron oxide of stable quality using the existing methods mentioned above, it was necessary to establish an inexpensive and efficient method for removing silicon.
本発明は上記要望に答えた鋼材酸洗廃液の脱珪法を提供
しようとするものである。The present invention aims to provide a desiliconization method for steel material pickling waste fluid that meets the above-mentioned needs.
溶液中のイオン、分子、コロイド、沈殿など全多数の気
泡で液面に浮上分離する気泡分離法は、浮遊選鉱法や水
中の微量金属分析のための濃縮分離法として一般に良く
知られている。本発明はこの方法を廃酸中のシリカ化合
物の除去に適用すべく、界面活性剤の種類、吸着助剤の
効果等について検討し九結果、完成されたものである。The bubble separation method, in which all the ions, molecules, colloids, and precipitates in a solution float to the liquid surface using bubbles, is generally well known as a flotation method and a concentration separation method for analyzing trace metals in water. The present invention was completed after studying the types of surfactants, the effects of adsorption aids, etc. in order to apply this method to the removal of silica compounds from waste acids.
すなわち本発明は酸性塩化鉄水溶液に界面活性剤とアル
ミナ粉粒体全添加し空気を送入して気泡を形成させ、該
水Fjff1.中に含有される檎々のm存状態をもつ珪
素分を浮上分離することを特徴とする酸性塩化鉄水溶液
の脱珪方法である。That is, in the present invention, a surfactant and alumina powder are completely added to an acidic iron chloride aqueous solution, air is introduced to form bubbles, and the water Fjff1. This is a method for desiliconizing an acidic iron chloride aqueous solution, which is characterized by flotation-separation of the silicon content in the atomic state contained therein.
廃酸中のシリカの形態は明らかでないが、文献や廃酸中
での挙動からSi(OH)4やH2S1205゜H25
1,O,・聞・H2SiO3等、イオン性単量体や非イ
オン性多童体、ヒドロシル等として存在するものと考え
られる。The form of silica in waste acid is not clear, but based on literature and its behavior in waste acid, Si(OH)4 and H2S1205°H25
It is thought that it exists as ionic monomers, nonionic monomers, hydrosils, etc. such as 1, O, ·H2SiO3.
またこれらのシリカ化合物は溶解あるいは極微細な粒子
として存在すると考えられ、孔径0.45ミクロンのミ
リポアフィルタ−や分子量分画5000の市販限外フィ
ルター等ではテ過・分離することはで@ない。Furthermore, these silica compounds are thought to exist in solution or as ultrafine particles, and cannot be filtered or separated using a Millipore filter with a pore size of 0.45 microns or a commercially available ultrafilter with a molecular weight fraction of 5,000.
しかし、これらの溶存状シリカは廃酸中で経時的に漸次
減少することから、重合あるいは器壁や懸濁物質への付
着等による不溶解化が進んでいるものと考えられる。However, since these dissolved silicas gradually decrease over time in the waste acid, it is thought that insolubilization is progressing due to polymerization or adhesion to vessel walls or suspended substances.
上記現象及び推定メカニズムからシリカ化合物と反対電
荷の界面活性剤や吸着助剤を添加して、ガスを吹き込み
、多数の気泡全発生させて浮上・分離する方法が考えら
れる。Based on the above phenomenon and the presumed mechanism, a method can be considered in which a surfactant or adsorption aid having an opposite charge to the silica compound is added, gas is blown into the silica compound, and a large number of bubbles are generated to float and separate the silica compound.
この場合分離効率は溶液の声、界面活性剤や吸着助剤の
有無、種類、添加方法、気泡の状態などに左右されると
考えられる。In this case, the separation efficiency is considered to be influenced by the voice of the solution, the presence or absence of surfactants and adsorption aids, their type, addition method, bubble condition, etc.
しかし、廃酸は通常0.1〜1Kmoz/m の遊離
酸及び1 % 2.8 K no、1p / m の
I?eC12を含むため、pHを上昇、調整するには多
量のアルカリを必要とし、さらにアルカリぶ加による回
収塩酸の減収や品質低下の原因にもなりやすい。However, the waste acid usually contains 0.1-1 Kmoz/m of free acid and 1% 2.8 K no, 1 p/m of I? Since it contains eC12, a large amount of alkali is required to raise and adjust the pH, and addition of alkali tends to cause a decrease in yield and quality of recovered hydrochloric acid.
そこで、少量の第三物質添加によシ高い脱珪効率t−i
るべくドデシルアミン、スルホコハク酸2−エチルへキ
シルナトリウム、ドデシル硫酸ナトリウム等のアニオン
系界面活性剤、アルキルピリジウムクロライド、アルキ
ルアンモニウムクロライド等のカチオン系界面活性剤、
ポリオキシエチレンアルキルエーテルやアルキルフェニ
ルエーテル等の非イオン系界面活性剤又はドデシルベタ
インのような両性界面活性剤をそれぞれ単独並びに前記
アニオン系、カチオン系、ノニオン系、両性界面活性剤
の種々組合せ、又吸着助剤としてTiO2,α−A/2
03.γ−A/203゜Aj O+ZrO2,AI!I
20.+TiO2,Ti上等全添加した場合等について
テストした。Therefore, by adding a small amount of third substance, high desiliconization efficiency ti
Anionic surfactants such as dodecylamine, 2-ethylhexyl sodium sulfosuccinate, and sodium dodecyl sulfate; cationic surfactants such as alkylpyridium chloride and alkylammonium chloride;
Nonionic surfactants such as polyoxyethylene alkyl ethers and alkylphenyl ethers, or amphoteric surfactants such as dodecyl betaine, each alone, and various combinations of the above anionic, cationic, nonionic, and amphoteric surfactants, or TiO2, α-A/2 as adsorption aid
03. γ-A/203°Aj O+ZrO2, AI! I
20. +TiO2, Ti, etc. were all added and tested.
その結果、界面活性剤単独の場合の脱珪効率はカチオン
系〉ノニオン系〉両性〉アニオン系の順に良く、溶存状
510246〜57ppmのときそれぞれ最高81%、
80%、74%、56%であった。又前記の異種界面活
性剤を2種混合した場合には、単独使用の場合に比べて
、脱珪効率はいずれも若干向上した。As a result, the desiliconization efficiency in the case of using surfactant alone is better in the order of cationic, nonionic, amphoteric, and anionic, with a maximum of 81% when the dissolved state is 510,246 to 57 ppm, respectively.
They were 80%, 74%, and 56%. In addition, when two of the above-mentioned different types of surfactants were mixed, the desiliconization efficiency was slightly improved in both cases compared to when they were used alone.
また吸着助剤として上記物質につき夫々笑験の結果、前
記界面活性剤と組合せて使用した際、最も効果のおるも
のはアルミナ粉末でおることをつきとめ念、アルミナ粉
としてはα−アルミナ、r−アルミナが通常吸着助剤と
して使われるが、Aj(OH)、 (ベーマイトなど)
の低温(500〜550℃)熱分解によって生じる準安
定なアルミナがγ−アルミナで、これは活性かつ比表面
積大で吸着性に富むが耐酸性が劣り廃酸中にA t 3
+がm出する。廃酸中のAt はンフトフエライトの
不純物となり製品品質全低下させるため好ましくない。In addition, as a result of experiments with each of the above substances as adsorption aids, we have found that alumina powder is the most effective when used in combination with the above surfactant. Alumina is usually used as an adsorption aid, but Aj(OH), (such as boehmite)
γ-alumina is a metastable alumina produced by the low-temperature (500-550°C) thermal decomposition of
+ produces m. At in the waste acid is not preferable because it becomes an impurity in the nftoferite and completely reduces the quality of the product.
一方、a−アルミナはγ−アルばす等全さらに高温(1
000〜1100℃:で焼成・安定化したもので、活性
性及び比表面積はr−アルミナよりも劣るが、 A/
の溶出がないので回収フェライトの品質低下を来
たさない、したがって本発明においてはアルミナ粉とし
てa−アルミナを使用することを推奨するものである。On the other hand, a-alumina, such as γ-alumina, has a higher temperature (1
Calcined and stabilized at 000 to 1100°C, its activity and specific surface area are inferior to r-alumina, but A/
Since there is no elution of alumina, the quality of the recovered ferrite does not deteriorate.Therefore, in the present invention, it is recommended to use a-alumina as the alumina powder.
ところが廃酸に予め前記吸着助剤を添加、攪拌後、前記
界面活性剤を添加して泡沫分離全行った場合には、脱珪
効率が飛躍的に向上した。However, when the adsorption aid was added to the waste acid in advance, the surfactant was added after stirring, and all foam separation was carried out, the desiliconization efficiency was dramatically improved.
なお、空気吹込み条件は、一般的に5〜5001 /
min、時間60分〜1時間程度である。In addition, air blowing conditions are generally 5 to 5001 /
min, time is about 60 minutes to 1 hour.
以下にいくつかの実施例金量す。Below are some example measurements.
下記の実施例では空気吹込み条件は100に/min、
で界面活性剤単独使用の場合30分間、アルミナ粉末併
用の場合には粉末象加後10分間窒気吹込みによる攪拌
後、界面活性剤音訓えて更に50分間同じ流速で通気し
友。In the following examples, the air blowing conditions were 100/min,
When the surfactant was used alone, the mixture was stirred for 30 minutes, and when the alumina powder was used in combination with the powder, the mixture was stirred for 10 minutes by blowing in nitrogen gas, and then aerated at the same flow rate for an additional 50 minutes after adding the surfactant.
実施例1
α〜アルミナ粉末(20ppm添刀0)十カチオン性界
面活性剤
実施例2
α−アルミナ粉末(20ppm )十ノニオン性界面活
性剤
実施例3
α−アルiす粉末(20ppm )+アニオン性界面活
性剤
」
実施例4
α−アルミナ粉末(20ppm )千両性界面活性剤
」
〔発明の効果〕
鋼材酸洗廃液中の不純物、特にSiO□ をアルミナ粉
体と界面活性剤とを添加して気泡分離することにより2
0 ppfll以下に低減することが可能となり、本廃
酸を焼塊することにより高品質の酸化鉄を回収すること
ができる。Example 1 α~Alumina powder (20ppm 0) Ten-cationic surfactant Example 2 α-Alumina powder (20ppm) Ten Nonionic surfactant Example 3 α-Alumina powder (20ppm) + Anionic "Surfactant" Example 4 α-Alumina powder (20 ppm) Ampholytic surfactant By separating 2
It becomes possible to reduce the amount to 0 ppfll or less, and high-quality iron oxide can be recovered by calcining this waste acid.
復代理人 内 1) 明 復代理人 萩 原 亮 − 復代理人 安 西 篤 夫Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara - Sub-agent Atsuo Yasunishi
Claims (1)
し空気を送入して気泡を形成させ、該水溶液中に含有さ
れる種々の溶存状態をもつ珪素分を浮上分離することを
特徴とする酸性塩化鉄水溶液の脱珪方法。The method is characterized in that a surfactant and alumina powder are added to an acidic iron chloride aqueous solution, air is introduced to form bubbles, and silicon components in various dissolved states contained in the aqueous solution are floated and separated. A method for desiliconizing an acidic iron chloride aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20525785A JPS6265940A (en) | 1985-09-19 | 1985-09-19 | Method for desiliconizing aqueous acid iron chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20525785A JPS6265940A (en) | 1985-09-19 | 1985-09-19 | Method for desiliconizing aqueous acid iron chloride |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6265940A true JPS6265940A (en) | 1987-03-25 |
Family
ID=16503990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20525785A Pending JPS6265940A (en) | 1985-09-19 | 1985-09-19 | Method for desiliconizing aqueous acid iron chloride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6265940A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1002199A3 (en) * | 1987-12-10 | 1990-10-09 | Nippon Kokan Kk | PROCESS FOR REFINING AN ACID SOLUTION CONTAINING FERROUS IONS. |
KR100280262B1 (en) * | 1996-12-18 | 2001-03-02 | 이구택 | Manufacturing method of high purity ferric chloride solution |
KR100345730B1 (en) * | 1997-12-19 | 2002-09-18 | 주식회사 포스코 | Fabrication method of high grade iron oxide |
JP2012024729A (en) * | 2010-07-27 | 2012-02-09 | Kyoto Univ | Plating wastewater treatment method using microbubble, and chemical liquid for plating wastewater treatment used for the method |
-
1985
- 1985-09-19 JP JP20525785A patent/JPS6265940A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1002199A3 (en) * | 1987-12-10 | 1990-10-09 | Nippon Kokan Kk | PROCESS FOR REFINING AN ACID SOLUTION CONTAINING FERROUS IONS. |
KR100280262B1 (en) * | 1996-12-18 | 2001-03-02 | 이구택 | Manufacturing method of high purity ferric chloride solution |
KR100345730B1 (en) * | 1997-12-19 | 2002-09-18 | 주식회사 포스코 | Fabrication method of high grade iron oxide |
JP2012024729A (en) * | 2010-07-27 | 2012-02-09 | Kyoto Univ | Plating wastewater treatment method using microbubble, and chemical liquid for plating wastewater treatment used for the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3369714B1 (en) | Method of treating silicon-containing wastewater and method of utilizing silicon-containing wastewater, and molecular sieve manufacturing method | |
KR20190100921A (en) | Silica Particle Dispersions and Manufacturing Methods Thereof | |
TWI382962B (en) | Wastewater treatment with silicon powder | |
JP3837754B2 (en) | Method for producing crystalline ceric oxide | |
CN102126764A (en) | Etching waste water processing method of silicon wafer and processing device | |
JPH0454617B2 (en) | ||
JPS6265940A (en) | Method for desiliconizing aqueous acid iron chloride | |
EP3909661A1 (en) | Chemical comprising fluorine-containing polyaluminum chloride | |
CN117046615A (en) | Composite flocculant for foam concentrate pulp and preparation method thereof | |
JP4000205B2 (en) | Method for separating cutting powder from silicon waste liquid | |
EP1044925A2 (en) | Process and apparatus for the production of high-purity magnesium hydroxide | |
JP2969182B1 (en) | Method for producing high-purity amorphous silicic acid | |
JP2927255B2 (en) | Treatment method for wastewater containing fluorine | |
JP3362793B2 (en) | Method for producing silica sol | |
JP3741269B2 (en) | Waste water treatment agent, waste water treatment method and apparatus | |
US3535259A (en) | Process and flocculating agent produced thereby of the reaction products of sulfuric acid and allophane | |
JP2004189534A (en) | Method of manufacturing low alkali metal-containing aqueous silica sol | |
US7988866B2 (en) | Method of treating fumed silica-containing drainage water | |
CN109850929A (en) | A kind of seed precipitation tank dilution crude ore pulp prepares aluminium hydroxide micro powder method | |
NO173687B (en) | PROCEDURE FOR CLEANING CALCONIUM CARBONATE ORE | |
JPS627632A (en) | Removing method for silicic acid incorporated in acidic aqueous solution | |
CN113087106B (en) | Method for removing silicon from acid liquor | |
KR0128123B1 (en) | Refining method of wasting acid | |
JP3035621B2 (en) | Method for producing acid-resistant siliceous filtration aid | |
JP3206851B2 (en) | Removal of iron from aqueous solutions containing alkaline earth metal chlorides. |