JPS626574B2 - - Google Patents

Info

Publication number
JPS626574B2
JPS626574B2 JP12905179A JP12905179A JPS626574B2 JP S626574 B2 JPS626574 B2 JP S626574B2 JP 12905179 A JP12905179 A JP 12905179A JP 12905179 A JP12905179 A JP 12905179A JP S626574 B2 JPS626574 B2 JP S626574B2
Authority
JP
Japan
Prior art keywords
reaction
acid
vinylphenol
weight
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12905179A
Other languages
Japanese (ja)
Other versions
JPS5653131A (en
Inventor
Hideo Okado
Akio Takahashi
Kinya Tawara
Hiroaki Taniguchi
Hiroshi Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSUMO SEKYU KK
Original Assignee
KOSUMO SEKYU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSUMO SEKYU KK filed Critical KOSUMO SEKYU KK
Priority to JP12905179A priority Critical patent/JPS5653131A/en
Publication of JPS5653131A publication Critical patent/JPS5653131A/en
Publication of JPS626574B2 publication Critical patent/JPS626574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリ−ビニルフエノール類の製造方法
に関する。 ポリ−(p−ビニルフエノール)をエポキシ樹
脂の硬化剤として用いたとき、得られる硬化物
は、寸法安定性、ガラス転移温度、加熱減量等に
優れた性能を示すことが知られている。しかしビ
ニルフエノールモノマーは不安定で取扱いが困難
であり、その製造は難しい。 コルソンら(B.B.Corsonら)は、p−ビニル
フエノールの製造法として、p−ヒドロキシアセ
トフエノン()をアセチル化し、得られるp−
アセトキシアセトフエノン()を水素添加して
p−アセトキシフエニルメチルカルビノール
()とした後、脱水してp−アセトキシスチレ
ン()とし、さらに加水分解して目的とするp
−ビニルフエノール()を得る方法について検
討している(“Journal of Organic Chemistry”
誌、23巻544頁、1958年)。この方法でアセチル化
は副反応をさけ反応を易しくするために行なわれ
ているが、アセチル化するとその後加水分解とい
う工程が必要となる。この方法ではアセチル化、
水素添加、脱水、加水分解という多くの工程が必
要であり、ポリ−ビニルフエノールを得るために
はさらに重合工程も必要であり、この方法は操作
が煩雑である。特に脱水工程の収率は43〜71%に
とどまり、全工程を通じてのポリ−ビニルフエノ
ールの収率は低くなつてしまう。 また米国特許第2276138号によれば、p−ヒド
ロキシアセトフエノン()を水素添加してp−
ヒドロキシフエニルメチルカルビノール()を
得て、これをアセチル化し、得られるジアセテー
ト()を分解してp−アセトキシスチレン
()とし、これを重合した後加水分解してポリ
(p−ビニルフエノール)()を製造する方法が
知られている。この方法もアセチル化、分解、重
合、加水分解という多くの工程を必要とし、操作
が複雑となるばかりか全工程を通じての目的物の
収率も低くなつてしまう。 本発明者等はヒドロキシフエニルメチルカルビ
ノールの脱水反応、およびヒドロキシスチレンの
重合反応について詳細な検討を行なう過程で、ヒ
ドロキシフエニルメチルカルビノールから一段の
反応操作でポリ−ビニルフエノールを高収率で得
る方法を見出し、本発明を完成するに到つた。 すなわち本発明の要旨は、ヒドロキシフエニル
メチルカルビノールを酸の存在下もしくは不存在
下に加熱して脱水・重合させることを特徴とする
ポリ−ビニルフエノールの製造方法に存する。 原料として用いるヒドロキシフエニルメチルカ
ルビノール(1−(ヒドロキシフエニル)エタノ
ールということもできる。)としてはp−ヒドロ
キシフエニルメチルカルビノールが最も好ましい
が、m−ヒドロキシフエニルメチルカルビノー
ル、o−ヒドロキシフエニルメチルカルビノール
(これらバラ体、メタ体、オルソ体はそれぞれ1
−(p−ヒドロキシフエニル)エタノール、1−
(m−ヒドロキシフエニル)エタノール、1−(o
−ヒドロキシフエニル)エタノールということも
できる。)でもよく、それぞれ対応した異性体の
ビニルフエノールのポリマーが得られる。またメ
タ体、オルソ体をそれぞれ約10モル%以下含むp
−ヒドロキシフエニルメチルカルビノールを脱
水・重合させる場合、反応条件をゆるやかにした
り苛酷にしたりして、オルソ体、メタ体をo−ビ
ニルフエノール、m−ビニルフエノールのまま回
収することも、これらをp−ビニルフエノールと
の共重合体としてポリマー連鎖中にとりこむこと
も可能である。原料のヒドロキシフエニルメチル
カルビノールはヒドロキシアセトフエノンの水素
添加等により得ることができる。 本発明によればヒドロキシフエニルメチルカル
ビノールを加熱処理する際、酸の存在下に行なう
ことも不存在下に行なうこともできる。酸として
は硫酸、塩酸、硝酸、リン酸、過塩素酸のような
無機酸、ぎ酸、しゆう酸、酢酸、プロピオン酸、
酪酸、クロル酢酸、トリクロル酢酸、こはく酸、
ピクリン酸、フエノール、クレゾール、カテコー
ル、サリチル酸、安息香酸、フタル酸、ベンゼン
スルホン酸、p−トルエンスルホン酸のような有
機酸、ふつ化ほう素、ふつ化ほう素エーテラー
ト、ふつ化ほう素とフエノールとの鎖体、ふつ化
ほう素と水との錯体、塩化ほう素、臭化アルミニ
ウム、塩化アルミニウム、塩化すず、塩化チタ
ン、塩化亜鉛、塩化第二鉄のようなフリーデルク
ラフトタイプの酸等をあげることができる。酸を
添加して反応を行なうと反応速度が速くなり、反
応を低温で行なうことができる。酸の添加量は必
要に応じて、原料のヒドロキシフエニルメチルカ
ルビノール100重量部に対して、0〜100重量部特
に0.001〜1重量部の範囲で任意に選択できる
が、生成ポリマーの分子量を調節する目的でその
添加量を調節することができる。 生成ポリマーをエポキシ樹脂の硬化剤等として
用いる場合は酸の混在は硬化反応に影響を及ぼす
ことがあるため、生成ポリマーを例えば熱水で抽
出処理に付すなどして酸を除去し、精製する必要
がある。このように酸の混在が好ましくない場合
には、本発明による反応は酸を添加せず、単に熱
のみによる脱水・重合反応を行なわせることもで
きる。 ヒドロキシフエニルメチルカルビノールを加熱
処理する反応温度としては通常約50〜300℃が採
用される。酸の存在下で行なう場合は約100〜250
℃が好ましく、酸の不存在下で行なう場合は約
100〜300℃、特に約150〜300℃が好ましい。生成
ポリマーはゆう点が約150〜220℃であるから、生
成物がメルト状になるよう前記温度範囲内で反応
温度を徐々に上昇させることが好ましい。反応温
度が低すぎると反応速度が遅く、また高温すぎる
と副反応が起り好ましくない。 反応時間は必要に応じ適当に決定できるが、通
常約0.1時間以上、特に約1〜5時間が好まし
い。反応温度が高いと反応時間は短かくてすみ、
反応温度が低いと反応時間は長くなる。反応の進
行は反応生成物を検査しても、水が留出するよう
にしてその留出量を検査して知ることもできる。 反応圧力も特に規制されるものではなく、減圧
下、常圧下、加圧下のいずれでも行なうことがで
きるが、ビニルフエノールモノマーが留出するよ
うな強い減圧下で行なうと、目的とするポリマー
の収率が低下し、また配管等の閉塞の危険がある
ので、通常約0.1Kg/cm2以上、特に約0.5〜5Kg/
cm2の範囲内で行なうことが好ましい。 反応の際、酸素ガスや空気は重合を阻害したり
生成ポリマーの着色を起し好ましくないので、窒
素ガス、アルゴンガス等の不活性ガス雰囲気下
で、あるいは原料や溶媒の蒸気の雰囲気下で行な
うのが好ましい。反応開始時に反応器中にある程
度の少量の酸素ガスは許容できる。反応はまた必
要に応じ溶媒の存在下に行なつてもよい。溶媒の
例としては、メタノール、エタノール、オクタノ
ール等のアルコール、酢酸エチル、酢酸ブチル等
のエステル、n−ヘプタン、軽油、潤滑油のよう
な炭化水素類、トリクロルエタン、トリクロルエ
チレン、四塩化炭素のようなハロゲン化炭化水素
類等がある。反応条件下で重合を阻止するものは
使用に適しない。 反応を行なう際原料、酸、不活性ガス、溶媒は
反応器へ反応開始時に全量仕込んで行なつても、
少量ずつ供給してもよい。生成ポリマーは生成に
つれ反応器から抜き出しても、反応終了後に取出
してもよく、脱水により生成する水を含む軽質物
は反応につれ系外へ留出するようにしても、ある
いは留出させないで反応を行なうこともできる。 本発明によるとヒドロキシフエニルメチルカル
ビノールから一段でポリ−ビニルフエノールが得
られ、しかもその収率も高い。従つて従来方法に
みられるような多工程は必要でなく、反応に先立
ち活性基をアセチル基で保護するといつたような
アセチル化も必要ではない。本発明方法により得
られるポリマーの構造はIRスペクトルによれば
p−ビニルフエノールのラジカル重合、カチオン
重合により得られるポリ(p−ビニルフエノー
ル)の標準ポリマーのIRスペクトルと等しい。
また得られるポリマーをエポキシ樹脂と反応させ
て得られる熱硬化性樹脂は、すぐれた耐熱性を示
す。 以下実施例により本発明をさらに説明する。 参考例 1 p−ヒドロキシアセトフエノンの水素添化 容積100mlのオートクレーブに、p−ヒドロキ
シアセトフエノン(東京化成株式会社製)10gを
エタノール50mlに溶かし、パラジウム−炭素触媒
(パラジウム含有量5重量%)0.5gと共に加え
た。内部を水素ガスで完全に置換したのちゲージ
圧力10Kg/cm2の水素圧力下、内容物を攪拌しなが
ら25℃で6時間反応させた。 生成物の分析はガスクロマトグラフイーによつ
て行なつた。分析中に目的生成物のカルビノール
が脱水等の反応を起すことを避けるため、生成物
はあらかじめアセチル化して分析に供した。分析
の結果生成物の組成はp−ヒドロキシフエニルメ
チルカルビノール90重量%、p−エチルフエノー
ル5重量%、p−ヒドロキシアセトフエノン5重
量%であつた。 実施例 1 p−ヒドロキシフエニルメチルカルビノール90
%を含む参考例1の生成物5gをフラスコにと
り、添加物を加えることなく窒素雰囲気下に、
250℃で3時間加熱攪拌を行なつた。加熱時に発
生する軽質物は留出管を通つて系外へ留出させ、
捕集した。反応終了後室温に冷却した。フラスコ
内残留物の収量は4.3g、留出物の収量は0.6gで
あつた。 残留物は容易に粉砕可能な赤紫色の固形物で、
メタノール、アセトン、テトラヒドロフランに容
易に完全に溶解した。残留物のテトラヒドロフラ
ン溶液の30℃での極限粘度は0.04、ポリスチレン
を標準物質とするゲルパーミエーシヨンクロマト
グラフイーにより求めた重量平均分子量は1500で
あつた。残留物中に未反応カルビノールの残存は
認められなかつた。残留物すなわち生成ポリマー
のIRスペクトルを図1に、比較のためコルソン
らの方法(“Journal of Organic Chemistry”
誌、23巻、544頁、1958年)により別途合成した
ポリ(p−ビニルフエノール)のIRスペクトル
を図2に示す。図1および図2から、生成ポリマ
ーはポリ(p−ビニルフエノール)であることを
確認した。 また留出物についてはガスクロマトグラフイー
により分析を行なつた。留出物の組成は水95重量
%およびp−エチルフエノール5重量%の混合物
であつた。 実施例 2 実施例1と同じ原料5gをフラスコにとり、
0.01gの濃塩酸(37重量%水溶液)を加えて窒素
雰囲気下80℃で5時間加熱攪拌を行なつた。反応
終了後、室温に冷却して残留物の生成ポリマー
4.2gを得た。 残留物すなわち生成ポリマーはメタノール、ア
セトン、テトラヒドロフランに容易に溶けた。テ
トラヒドロフラン溶液の30℃での極限粘度は0.10
であつた。またゲルパーミエーシヨンクロマトグ
ラフイーにより求めた生成ポリマーの重量平均分
子量は約1万であつた。IRスペクトルによると
生成ポリマーはポリ(p−ビニルフエノール)で
あり、未反応カルビノールは検出されなかつた。 実施例 3 反応温度を275℃とした以外実施例1と全く同
様にして反応を行なつた。得られたポリ(p−ビ
ニルフエノール)の重量平均分子量は2700であつ
た。 実施例 4 p−ヒドロキシフエニルメチルカルビノール90
%およびm−ヒドロキシフエニルメチルカルビノ
ール10%よりなる混合物5gをフラスコにとり、
170℃で3時間加熱した。 得られたフラスコ内残留物をガスクロマトグラ
フイー、IRスペクトルおよびゲルパーミエーシ
ヨンクロマトグラフイーにより分析したところ、
残留物の組成はm−ビニルフエノールモノマー約
10重量%とポリ(p−ビニルフエノール)90重量
%との混合物であり、ポリ(p−ビニルフエノー
ル)の重量平均分子量は3500であつた。 実施例 5 p−ヒドロキシフエニルメチルカルビノール90
%およびo−ヒドロキシフエニルメチルカルビノ
ール10%よりなる混合物5gに塩酸(37重量%水
溶液)0.1gを加えてアンプル中で150℃で2時間
加熱した。 得られた樹脂状生成物はメタノール、アセト
ン、テトラヒドロフランに可溶であつた。またガ
スクロマトグラフイーおよびIRスペクトルによ
るとこの生成物にはp−ビニルフエノールモノマ
ーおよびo−ビニルフエノールモノマーは検出さ
れず、p−ビニルフエノールとo−ビニルフエノ
ールとの共重合体であつた。この生成ポリマーの
テトラヒドロフラン溶液の30℃で測定した極限粘
度は0.03であつた。 実施例 6〜17 触媒として第1表の酸0.01gを使用し、かつ反
応温度を150℃とした以外実施例1と全く同様に
してフラスコ中にてp−ヒドロキシフエニルメチ
ルカルビノール(純度90重量%)を窒素雰囲気下
に3時間加熱攪拌した。これら実施例において得
られたフラスコ内残留物はポリ(p−ビニルフエ
ノール)であり、その収率および重量平均分子量
は第1表の通りであつた。
The present invention relates to a method for producing poly-vinylphenols. It is known that when poly-(p-vinylphenol) is used as a curing agent for epoxy resins, the resulting cured product exhibits excellent performance in terms of dimensional stability, glass transition temperature, heat loss, etc. However, vinylphenol monomers are unstable and difficult to handle, making their production difficult. BBCorson et al., as a method for producing p-vinylphenol, acetylated p-hydroxyacetophenone () and obtained p-vinylphenol.
Acetoxyacetophenone () is hydrogenated to form p-acetoxyphenylmethylcarbinol (), then dehydrated to form p-acetoxystyrene (), and further hydrolyzed to obtain the desired p-acetoxystyrene ().
-We are investigating a method to obtain vinylphenol () (“Journal of Organic Chemistry”)
Magazine, vol. 23, p. 544, 1958). In this method, acetylation is performed to avoid side reactions and facilitate the reaction, but acetylation requires a subsequent step of hydrolysis. In this method, acetylation,
This method requires many steps such as hydrogenation, dehydration, and hydrolysis, and a polymerization step is also required to obtain polyvinylphenol, making this method complicated to operate. In particular, the yield in the dehydration step is only 43 to 71%, and the yield of polyvinylphenol throughout the entire process is low. Also, according to US Pat. No. 2,276,138, p-hydroxyacetophenone () is hydrogenated to produce p-
Hydroxyphenylmethyl carbinol () is obtained, this is acetylated, the resulting diacetate () is decomposed to p-acetoxystyrene (), which is polymerized and then hydrolyzed to form poly(p-vinylphenol). )() is known. This method also requires many steps such as acetylation, decomposition, polymerization, and hydrolysis, which not only complicates the operation but also reduces the yield of the target product throughout the entire process. In the process of conducting detailed studies on the dehydration reaction of hydroxyphenylmethylcarbinol and the polymerization reaction of hydroxystyrene, the present inventors discovered that polyvinylphenol can be produced from hydroxyphenylmethylcarbinol in a high yield through a single reaction operation. The present invention was completed by discovering a method for obtaining the same. That is, the gist of the present invention resides in a method for producing polyvinylphenol, which is characterized by heating hydroxyphenylmethyl carbinol in the presence or absence of an acid to dehydrate and polymerize it. The most preferred hydroxyphenylmethylcarbinol (also referred to as 1-(hydroxyphenyl)ethanol) used as a raw material is p-hydroxyphenylmethylcarbinol, but m-hydroxyphenylmethylcarbinol, o- Hydroxyphenylmethylcarbinol (these bulk, meta, and ortho forms each have 1
-(p-hydroxyphenyl)ethanol, 1-
(m-hydroxyphenyl)ethanol, 1-(o
-Hydroxyphenyl)ethanol. ), resulting in polymers of vinylphenol of the corresponding isomers. Also, p contains about 10 mol% or less of the meta-isomer and ortho-isomer, respectively.
- When dehydrating and polymerizing hydroxyphenylmethyl carbinol, it is also possible to recover the ortho form and meta form as o-vinylphenol and m-vinylphenol by making the reaction conditions mild or severe. It is also possible to incorporate it into the polymer chain as a copolymer with p-vinylphenol. The raw material hydroxyphenylmethyl carbinol can be obtained by hydrogenating hydroxyacetophenone. According to the present invention, the heat treatment of hydroxyphenylmethyl carbinol can be carried out in the presence or absence of an acid. Acids include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, perchloric acid, formic acid, oxalic acid, acetic acid, propionic acid,
Butyric acid, chloroacetic acid, trichloroacetic acid, succinic acid,
Organic acids such as picric acid, phenol, cresol, catechol, salicylic acid, benzoic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, boron fluoride, boron fluoride etherate, boron fluoride and phenols. complexes of boron fluoride and water, Friedel-Crafts type acids such as boron chloride, aluminum bromide, aluminum chloride, tin chloride, titanium chloride, zinc chloride, and ferric chloride. be able to. When the reaction is carried out by adding an acid, the reaction rate becomes faster and the reaction can be carried out at a lower temperature. The amount of acid added can be arbitrarily selected in the range of 0 to 100 parts by weight, particularly 0.001 to 1 part by weight, based on 100 parts by weight of the raw material hydroxyphenylmethyl carbinol, but the The amount added can be adjusted for control purposes. When using the produced polymer as a curing agent for epoxy resin, the presence of acid may affect the curing reaction, so it is necessary to remove the acid and purify the produced polymer, for example by subjecting it to an extraction process with hot water. There is. In cases where the presence of acid is undesirable, the reaction according to the present invention may be carried out without adding any acid and by simply performing the dehydration/polymerization reaction using heat alone. The reaction temperature for heat-treating hydroxyphenylmethyl carbinol is usually about 50 to 300°C. Approximately 100 to 250 when carried out in the presence of acid
°C is preferred, and when carried out in the absence of acid, approximately
100-300°C, especially about 150-300°C is preferred. Since the resulting polymer has a melt point of about 150 DEG to 220 DEG C., it is preferable to gradually increase the reaction temperature within this temperature range so that the product becomes melt-like. If the reaction temperature is too low, the reaction rate will be slow, and if the reaction temperature is too high, side reactions will occur, which is undesirable. The reaction time can be appropriately determined as necessary, but is usually about 0.1 hour or more, preferably about 1 to 5 hours. The higher the reaction temperature, the shorter the reaction time;
The lower the reaction temperature, the longer the reaction time. The progress of the reaction can be determined by inspecting the reaction product or by checking the amount of water distilled out. The reaction pressure is also not particularly restricted, and can be carried out under reduced pressure, normal pressure, or increased pressure. However, if carried out under strong reduced pressure that would distill off the vinylphenol monomer, the yield of the desired polymer may be impaired. Generally, it is about 0.1Kg/cm2 or more , especially about 0.5 to 5Kg/cm2, because the rate decreases and there is a risk of clogging pipes, etc.
It is preferable to carry out within the range of cm 2 . During the reaction, oxygen gas or air is undesirable as it inhibits polymerization or causes coloration of the produced polymer, so the reaction should be carried out in an atmosphere of inert gas such as nitrogen gas or argon gas, or in an atmosphere of vapor of raw materials or solvent. is preferable. Some small amount of oxygen gas in the reactor at the beginning of the reaction is acceptable. The reaction may also be carried out in the presence of a solvent if necessary. Examples of solvents include alcohols such as methanol, ethanol, and octanol, esters such as ethyl acetate and butyl acetate, hydrocarbons such as n-heptane, light oil, and lubricating oil, trichloroethane, trichloroethylene, and carbon tetrachloride. There are halogenated hydrocarbons, etc. Those that inhibit polymerization under the reaction conditions are not suitable for use. Even if all raw materials, acid, inert gas, and solvent are charged into the reactor at the start of the reaction,
It may be supplied in small quantities. The produced polymer may be taken out from the reactor as it is being formed or after the reaction is completed, and the light substances containing water produced by dehydration may be distilled out of the system as the reaction progresses, or the reaction may be carried out without being distilled out. You can also do it. According to the present invention, poly-vinylphenol can be obtained from hydroxyphenylmethyl carbinol in one step, and the yield is also high. Therefore, multiple steps as seen in conventional methods are not necessary, and acetylation, such as protecting an active group with an acetyl group prior to the reaction, is not necessary. According to the IR spectrum, the structure of the polymer obtained by the method of the present invention is equivalent to that of a standard polymer of poly(p-vinylphenol) obtained by radical polymerization or cationic polymerization of p-vinylphenol.
Furthermore, a thermosetting resin obtained by reacting the resulting polymer with an epoxy resin exhibits excellent heat resistance. The present invention will be further explained below with reference to Examples. Reference Example 1 Hydrogenation of p-hydroxyacetophenone In an autoclave with a volume of 100 ml, 10 g of p-hydroxy acetophenone (manufactured by Tokyo Kasei Co., Ltd.) was dissolved in 50 ml of ethanol, and a palladium-carbon catalyst (palladium content: 5% by weight) was dissolved in 50 ml of ethanol. ) was added along with 0.5g. After the interior was completely replaced with hydrogen gas, the contents were reacted at 25° C. for 6 hours with stirring under hydrogen pressure of 10 kg/cm 2 gauge pressure. Analysis of the product was performed by gas chromatography. In order to prevent the target product carbinol from undergoing reactions such as dehydration during analysis, the product was acetylated in advance before being subjected to analysis. As a result of analysis, the composition of the product was 90% by weight of p-hydroxyphenylmethylcarbinol, 5% by weight of p-ethylphenol, and 5% by weight of p-hydroxyacetophenone. Example 1 p-hydroxyphenylmethyl carbinol 90
% of the product of Reference Example 1 was placed in a flask and placed under a nitrogen atmosphere without adding any additives.
The mixture was heated and stirred at 250°C for 3 hours. Light substances generated during heating are distilled out of the system through a distillation pipe.
Collected. After the reaction was completed, it was cooled to room temperature. The yield of residue in the flask was 4.3 g, and the yield of distillate was 0.6 g. The residue is a reddish-purple solid that is easily crushed.
Easily and completely dissolved in methanol, acetone, and tetrahydrofuran. The intrinsic viscosity of a solution of the residue in tetrahydrofuran at 30° C. was 0.04, and the weight average molecular weight determined by gel permeation chromatography using polystyrene as a standard material was 1500. No unreacted carbinol was observed in the residue. The IR spectrum of the residue, that is, the produced polymer, is shown in Figure 1, using the method of Colson et al. (“Journal of Organic Chemistry”) for comparison.
Fig. 2 shows the IR spectrum of poly(p-vinylphenol), which was separately synthesized by J.D., Vol. 23, p. 544, 1958). From FIGS. 1 and 2, it was confirmed that the produced polymer was poly(p-vinylphenol). The distillate was also analyzed by gas chromatography. The composition of the distillate was a mixture of 95% by weight water and 5% by weight p-ethylphenol. Example 2 5 g of the same raw material as in Example 1 was placed in a flask,
0.01 g of concentrated hydrochloric acid (37% by weight aqueous solution) was added, and the mixture was heated and stirred at 80° C. for 5 hours under a nitrogen atmosphere. After the reaction is complete, cool to room temperature to remove the residual polymer.
4.2g was obtained. The residue or produced polymer was easily soluble in methanol, acetone, and tetrahydrofuran. The intrinsic viscosity of tetrahydrofuran solution at 30℃ is 0.10
It was hot. The weight average molecular weight of the resulting polymer determined by gel permeation chromatography was approximately 10,000. According to the IR spectrum, the produced polymer was poly(p-vinylphenol), and no unreacted carbinol was detected. Example 3 A reaction was carried out in exactly the same manner as in Example 1 except that the reaction temperature was 275°C. The weight average molecular weight of the obtained poly(p-vinylphenol) was 2,700. Example 4 p-hydroxyphenylmethylcarbinol 90
% and m-hydroxyphenylmethyl carbinol 10% in a flask,
Heated at 170°C for 3 hours. The resulting residue in the flask was analyzed by gas chromatography, IR spectrum, and gel permeation chromatography.
The composition of the residue is m-vinylphenol monomer approx.
It was a mixture of 10% by weight and 90% by weight of poly(p-vinylphenol), and the weight average molecular weight of the poly(p-vinylphenol) was 3,500. Example 5 p-hydroxyphenylmethyl carbinol 90
% and o-hydroxyphenylmethylcarbinol (10%) was added with 0.1 g of hydrochloric acid (37% by weight aqueous solution) and heated in an ampoule at 150° C. for 2 hours. The resulting resinous product was soluble in methanol, acetone, and tetrahydrofuran. According to gas chromatography and IR spectroscopy, p-vinylphenol monomer and o-vinylphenol monomer were not detected in this product, indicating that it was a copolymer of p-vinylphenol and o-vinylphenol. The intrinsic viscosity of a tetrahydrofuran solution of this produced polymer measured at 30°C was 0.03. Examples 6 to 17 p-Hydroxyphenylmethyl carbinol (purity 90 % by weight) was heated and stirred for 3 hours under a nitrogen atmosphere. The residue in the flask obtained in these Examples was poly(p-vinylphenol), and its yield and weight average molecular weight were as shown in Table 1.

【表】 実施例 18 原料に対して4重量倍の2−エチルヘキサノー
ルを溶媒として用い、反応時間を3時間とした以
外実施例2と同様にして反応を行なつた。得れた
ポリ(p−ビニルフエノール)の収率は95%、重
量平均分子量は8000であつた。
[Table] Example 18 A reaction was carried out in the same manner as in Example 2, except that 2-ethylhexanol was used as a solvent in an amount of 4 times the weight of the raw materials, and the reaction time was changed to 3 hours. The yield of the obtained poly(p-vinylphenol) was 95%, and the weight average molecular weight was 8,000.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1により得られた生成ポリマー
のIRスペクトル、第2図は従来法により得られ
たポリ(p−ビニルフエノール)のIRスペクト
ルを示す。
FIG. 1 shows the IR spectrum of the produced polymer obtained in Example 1, and FIG. 2 shows the IR spectrum of poly(p-vinylphenol) obtained by the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 ヒドロキシフエニルメチルカルビノールを酸
の存在下もしくは不存在下に加熱して脱水・重合
させることを特徴とするポリ−ビニルフエノール
の製造方法。
1. A method for producing poly-vinylphenol, which comprises heating hydroxyphenylmethyl carbinol in the presence or absence of an acid to dehydrate and polymerize it.
JP12905179A 1979-10-05 1979-10-05 Preparation of poly-vinylphenol Granted JPS5653131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12905179A JPS5653131A (en) 1979-10-05 1979-10-05 Preparation of poly-vinylphenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12905179A JPS5653131A (en) 1979-10-05 1979-10-05 Preparation of poly-vinylphenol

Publications (2)

Publication Number Publication Date
JPS5653131A JPS5653131A (en) 1981-05-12
JPS626574B2 true JPS626574B2 (en) 1987-02-12

Family

ID=14999863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12905179A Granted JPS5653131A (en) 1979-10-05 1979-10-05 Preparation of poly-vinylphenol

Country Status (1)

Country Link
JP (1) JPS5653131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689029B2 (en) 2018-04-12 2020-06-23 Cnh Industrial America Llc Four-wheel steering with front/rear matching geometries

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181132U (en) * 1985-04-30 1986-11-12
US5453481A (en) * 1995-03-01 1995-09-26 Hoechst Celanese Corporation Process for preparing vinylphenol polymers and copolymers
US5453483A (en) * 1995-03-17 1995-09-26 Hoechst Celanese Corporation Process for preparing poly(4-hydroxystyrene)
WO2005113634A1 (en) * 2004-05-05 2005-12-01 Dupont Electronic Polymers L.P. Derivatized polyhydroxystyrenes with a novolak type structure and processes for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689029B2 (en) 2018-04-12 2020-06-23 Cnh Industrial America Llc Four-wheel steering with front/rear matching geometries

Also Published As

Publication number Publication date
JPS5653131A (en) 1981-05-12

Similar Documents

Publication Publication Date Title
Gin et al. Stereoregular precursors to poly (p-phenylene) via transition-metal-catalyzed polymerization. 1. Precursor design and synthesis
CN107188802B (en) Method for catalyzing alcohol to depolymerize 3-hydroxybutyrate by using double-acid ionic liquid
JP4736254B2 (en) Bifunctional phenylene ether oligomer and its production method
JPS626574B2 (en)
JPH07278216A (en) Production of butyl rubber having double-humped molecular weight distribution
JPS5984908A (en) Production of p-vinylphenol polymer
Moriguchi et al. Possibility of carboxylic acid esters as thermally latent initiators
Kandola et al. Novel flame retardant thermoset resin blends derived from a free-radically cured vinylbenzylated phenolic novolac and an unsaturated polyester for marine composites
EP0353898B1 (en) Neat (solventless) hydrogenation of 4-acetoxyacetophenone in the production of 4-acetoxystyrene and its polymers and hydrolysis products
EP0355983B1 (en) A process for the low residence time dehydration of p-acetoxyphenyl methylcarbinol
Mani et al. Poly (aryl ether ketone) synthesis via competing SNAR and SRN1 reactions: 1. Polymers derived from 1, 3-bis (p-chlorobenzoyl) benzene and 1, 3-bis (p-fluorobenzoyl) benzene with hydroquinone and 4, 4′-isopropylidenediphenol
US5151546A (en) Process for the production of 4-acetoxystyrene, its polymers and hydrolysis products
McNeish et al. Halogenated poly (isobutylene-co-isoprene): influence of halogen leaving-group and polymer microstructure on chemical reactivity
JPH07109331A (en) Production of high molecular weight epoxy resin
US5453483A (en) Process for preparing poly(4-hydroxystyrene)
US5245074A (en) Process for the production of 4-acetoxystyrene, its polymers and hydrolysis products
Otake et al. Anionic polymerization of divinylbenzenes possessing methoxy group
US10364322B2 (en) Naphthalene-containing polymers and methods of making the same
US5274173A (en) Process for the production of poly(4-acetoxystyrene)
Durham et al. Polymerization of aromatic nuclei. XVIII. Polymerization of benzene to poly‐p‐phenylene by aluminum chloride–air–water
Butler et al. Two Stage Polymerizations. I. Preparation and Polymerization of Substituted Allyl Phenyl Ethers1, 2
JPH0458487B2 (en)
WO2001009197A9 (en) Reduction of alkyl-aryl polymeric ketones using a metal alkoxide
Smith Jr et al. cis-and trans-Polyesters Formed by Condensation of Geometric Isomers of 2-Butene-1, 4-diols and Ethene-1, 2-dicarboxylic Acids
CN111848930A (en) Soluble polybenzfuran, preparation method thereof and application thereof in synthesizing 5-substituted benzofuran