JP4736254B2 - Bifunctional phenylene ether oligomer and its production method - Google Patents

Bifunctional phenylene ether oligomer and its production method Download PDF

Info

Publication number
JP4736254B2
JP4736254B2 JP2001196569A JP2001196569A JP4736254B2 JP 4736254 B2 JP4736254 B2 JP 4736254B2 JP 2001196569 A JP2001196569 A JP 2001196569A JP 2001196569 A JP2001196569 A JP 2001196569A JP 4736254 B2 JP4736254 B2 JP 4736254B2
Authority
JP
Japan
Prior art keywords
oligomer
structural formula
phenylene ether
bifunctional phenylene
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001196569A
Other languages
Japanese (ja)
Other versions
JP2003012796A (en
Inventor
章一 雨谷
賢治 石井
聖生 平松
真 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001196569A priority Critical patent/JP4736254B2/en
Priority to TW91114155A priority patent/TW591054B/en
Priority to US10/180,507 priority patent/US6794481B2/en
Priority to KR1020020037051A priority patent/KR100874723B1/en
Publication of JP2003012796A publication Critical patent/JP2003012796A/en
Priority to US10/851,290 priority patent/US6962744B2/en
Priority to US11/110,917 priority patent/US7247682B2/en
Priority to US11/812,892 priority patent/US7388057B2/en
Priority to US12/068,925 priority patent/US7446154B2/en
Priority to KR1020080055418A priority patent/KR100919943B1/en
Application granted granted Critical
Publication of JP4736254B2 publication Critical patent/JP4736254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、両末端にフェノール性水酸基を有する2官能性フェニレンエーテルのオリゴマー体に関するもので、低誘電率、低誘電正接、高タフネスが要求される電子材料及びその中間体に関するものである。
【0002】
【従来の技術】
電気・電子用途の材料には、高度情報化社会での大量データを高速で処理するための低誘電特性、熱衝撃等でマイクロクラックが発生しないための強靭性が必要とされている。これに対し、ポリフェニレンエーテル(PPE)などのエンジニアリングプラスチィクスの利用が提案されている。しかし、PPEは優れた高周波特性を有する反面、エポキシ樹脂やシアネート樹脂等の熱硬化性樹脂との相溶性が悪いこと、溶融粘度が高く成形加工性が悪いこと、溶解する溶媒がトルエン、ベンゼン、キシレン等の芳香族炭化水素系あるいはメチレンクロライド、クロロホルム等のハロゲン化炭化水素系に限定され作業性が悪いこと等の問題点をもつことが知られている。
【0003】
相溶性改善のためには、相溶化剤として他の樹脂とのブレンドにより改善する方法やPPEとシアネート樹脂の擬似IPN構造化の検討(特開平11-21452等)等がなされているが、成形加工性・耐熱性までは解決されていない。また、成形性改善のためには、高分子PPEを低分子にする方法等の検討がなされている。例えば、高分子PPEと2価のフェノールをラジカル触媒下で再分配させる方法(特開平9-291148等)、あるいは2価のフェノールと1価のフェノールを酸化重合する方法(特公平8-011747)等が知られている。いずれも高分子体が存在し、効率良く2官能性低分子オリゴマー体を得ることができない。
【0004】
【発明が解決しようとする課題】
本発明は、PPEの優れた電気特性・強靭性を有し、他樹脂との相溶性、成形加工性を改善した樹脂であり、加えて汎用ケトン系溶媒に溶解し末端フェノール性水酸基の修飾が容易であるPPE構造を有する2官能性フェニレンエーテルオリゴマーを提供することである。
【0005】
【課題を解決するための手段】
本発明者等は、2官能性フェニレンエーテルについて鋭意研究を重ねた結果、構造式(1)で示される2官能性フェニレンエーテルを構造式(2)の2価のフェノールと構造式(3)の1価のフェノールをケトン系溶剤中で酸化重合することで、効率よく構造式(1)が製造できる事を発見し、本発明を完成するに至った。以下に、本発明を詳細に説明する。
【0006】
本発明の2価のフェノールとは、下記の構造式(2)に示す様にR1,R2は同一または異なってもよく、炭素数6以下のアルキル基である。R3は同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基であり、R1,R2が水素原子でないことが必須の剛直なビフェニル骨格を有する2価のフェノールである。
【化4】

Figure 0004736254
【0007】
構造式(2)において、特に、2,2’,3,3’,5,5’-ヘキサメチル-[1,1’-ビフェニル]-4,4’-ジオールが好ましい。2位(構造式(2)のR2)に置換基を有さない2価のフェノールを原料に用いた場合、2価のフェノール自身の酸化速度が非常に高いため、2価のフェノールがジフェノキノンとなり反応溶液から析出する。その結果として、構造式(3)で示した1価のフェノールの単独重合が優先され、片末端にのみフェノール性水酸基を有するフェニレンエーテルの生長が反応液から析出するまで進む。したがって、メチルエチルケトンに可溶な2官能性フェニレンエーテルを効率よく合成することができない。例えば、2位に置換基を有さない2価のフェノールとして、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオールが挙げられるが、これを用いて合成した場合、析出物のGPCスペクトルは(図1)のようになり、高分子量体の生成が確認できる。一方、2位(構造式(2)のR2)に置換基を有する2価のフェノールとして、2,2’,3,3’,5,5’-ヘキサメチル-[1,1’-ビフェニル]-4,4’-ジオールが挙げられるが、この2価のフェノールを用いた場合の反応中のGPCスペクトル変化(図2)、平均分子量の推移(図3)より、得られる2官能性フェニレンエーテルの分子量分布は反応の終始でほとんど同じであり、高分子量体の生成は認められない。したがって、効率良く目的の2官能性フェニレンエーテルのオリゴマー体を得ることができる。
【0008】
このように2,3,5位に置換基を入れた2価のフェノールを使うと、従来の3,5位に置換基を入れた原料では予想もつかなかった、分子量分布の生成物ができた。したがって、本発明の課題を解決する為には、2価のフェノール自身の酸化速度を緩和にすることが必要であり、2位(構造式(2)のR2)に置換基を有することが必須である。
【0009】
本発明の1価のフェノールとは、構造式(3)で示した1価のフェノールである。
【化5】
Figure 0004736254
構造式(3)において、R1は同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R3は同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。特に、2, 6位に置換基を有するもの単独、又はこれと3位あるいは3,5位に置換基を有するものが併用されることが好ましい。更に好ましくは、単独では2,6-ジメチルフェノールがよく、併用では2,6-ジメチルフェノールと2,3,6-トリメチルフェノールがよい。3位あるいは3,5位に置換基を有する1価のフェノールを併用する場合の割合は、1価のフェノール全体の70mol%以下が好ましい。3位あるいは3,5位に置換基を有する1価のフェノールを併用する場合の割合が、1価のフェノール全体の70mol%より多い場合、結晶性の化合物となり平均分子量1000程度でもメチルエチルケトンに不溶となる。なお、2,6-ジメチルフェノール単独のときよりも2,6-ジメチルフェノールと2,3,6-トリメチルフェノールを混合した時に、より低分子のオリゴマー体が得られる。これは2,3,6-トリメチルフェノールの3位のメチル基が重合を抑制し、高分子量体の生成を抑えるためである。
【0010】
次に、本発明の製造法について説明する。本発明の構造式(1)で示される2官能性フェニレンエーテルのオリゴマー体は、構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールを酸化重合することによって得られる。酸化の方法については直接酸素ガスあるいは空気を使用する方法がある。又、電極酸化の方法もある。いずれの方法でも良く、特には限定されない。安全性および設備投資が安価である事から空気酸化が好ましい。空気で酸化する場合は、圧力は通常大気圧から20kg/cm2までの圧力が選ばれる。
【0011】
酸素ガスあるいは、空気を用いて酸化重合をする場合の触媒としては、CuCl、CuBr、Cu2SO4、CuCl2、CuBr2、CuSO4、CuI等の銅塩等の一種または二種以上が用いられ、上記触媒に加えて、モノ-及びジメチルアミン、モノ-及びジエチルアミン、モノ-及びジプロピルアミン、モノ-及びジ-n-ブチルアミン、モノ-及び-sec-ジプロピルアミン、モノ-及びジベンジルアミン、モノ-及びジシクロヘキシルアミン、モノ-及びジエタノールアミン、エチルメチルアミン、メチルプロピルアミン、アリルエチルアミン、メチルシクロヘキシルアミン、モルホリン、メチル-n-ブチルアミン、エチルイソプロピルアミン、ベンジルメチルアミン、オクチルベンジルアミン、オクチル−クロロベンジルアミン、メチル(フェニルエチル)アミン、ベンジルエチルアミン、ジ(クロロフェニルエチル)アミン、1-メチルアミノ‐4‐ペンテン、ピリジン、メチルピリジン、4-ジメチルアミノピリジン、ピペリジン等を一種または二種以上のアミンが併用される。銅塩及びアミンであれば、特にこれらに限定されるものではない。特に、アミンとしては、ジ-n-ブチルアミンが好ましい。ジ-n-ブチルアミンを用いる事で、構造式(3)で示した1価のフェノールの単独重合が抑制され、高分子量体が生成しづらく、シャープな分子量分布をもつ2官能性フェニレンエーテルのオリゴマー体となる。
【0012】
次に、本発明に使用される溶媒について説明する。酸化重合において貧溶媒と考えられていて、従来のPPEの酸化重合において使用できる割合が限られていたケトン系溶媒及びアルコール系溶媒を本発明では用いることができる。従来この種の反応は、有機溶媒に溶けずらいポリマーが生成するため、用いる反応溶媒のケトンやアルコールの割合を多くすることができなかったが、本発明の生成物は、上記チャート(図2)に示す如く低分子オリゴマーのみであることから、ケトン及びアルコールにも容易に溶解し、使用できる溶媒の範囲が大きく広がった。それらを単独、あるいは従来の溶媒であるトルエン、ベンゼン、キシレン等の芳香族炭化水素系溶剤、エチレンクロライド、クロロホルム、四塩化炭素等のハロゲン化炭化水素系溶剤等と併用することができる。ケトン系溶剤としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルブチルケトン、メチルイソブチルケトン等が挙げられ、アルコール系溶剤としては、メタノール、エタノール、ブタノール、プロパノール、メチルプロピレンジグリコール、ジエチレングリコールエチルエーテル、ブチルプロピレングリコール、プロピルプロピレングリコール等が挙げられるが、これらに限定されるものではない。本発明の目的である比較的低分子量でしかも分子量分布が鋭いピークを示すオリゴマーの生成は、特にケトン溶媒を使用した際にその効果が顕著に現れる。さらに原料である2価のフェノールの溶解性から、使用溶剤はメチルエチルケトン単独又はメチルエチルケトンを含んだ混合溶剤が最も好ましい。
【0013】
本発明の製造法における反応温度については、用いる溶媒の爆発限界に入らなければ、特には限定されないが、25〜50℃が好ましい。酸化重合が発熱反応のため、50℃以上では温度制御が困難で分子量制御がしづらい。25℃以下では爆発限界の範囲に入り、安定な製造ができない。
【0014】
次に、本発明の製造法におけるフェノール濃度について説明する。構造式(2)に示した2価のフェノールの濃度は、滴下する溶媒に対して2〜20wt%が好ましい。20wt%以上の場合、2価のフェノールが完全に溶媒に溶解しない場合がある。一方、2wt%未満の場合、重合の反応速度が低下する。又、構造式(3)で示した1価のフェノールの濃度は、溶媒に対して6〜50 wt%が好ましい。濃度が50wt%以上の場合、1価のフェノールが完全に溶媒に溶解しない場合がある。一方、6wt%未満の場合、重合の反応速度が低下する。
【0015】
本発明の製造法における構造式(2)で示した2価のフェノールと構造式(3)で示した1価のフェノールのモル比率は、1:1から1:10までの範囲が好ましい。特に、1:2〜1:8が好ましい。この範囲では1価のフェノールの単独重合が生じにくく、分子量制御を行うことが可能である。構造式(2)で示した2価のフェノールと構造式(3)で示した1価のフェノールの比率を1:2より少なくすると構造式(2)で示した2価のフェノールの残留が多くなる。又、比率を1:10より多くすると構造式(3)で示した1価のフェノールの単独重合が生じ、分子量が大きくなり過ぎて、メチルエチルケトンに不溶なオリゴマーとなってしまう。
【0016】
本発明の製造装置および製造方法について説明する。攪拌装置、温度計、空気導入管、じゃま板のついた縦長反応器に銅触媒、アミン、溶媒を仕込み、40℃にて攪拌を行い、あらかじめ溶媒に溶解させた2価のフェノールと1価のフェノールの混合溶液を空気のバブリングを行いながら滴下する。滴下時間は50分から210分の範囲が好ましい。滴下時間がこの範囲にない場合、得られるオリゴマーの分子量分布の分散が大きくなる。さらに滴下終了後5分から5時間攪拌を行うことが好ましい。5時間以上攪拌を行っても、さらに分子量の増加は起こらないので反応を終了すべきである。
【0017】
【実施例】
次に、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。なお、数平均分子量及び重量平均分子量の測定にゲルパーミエーションクロマトグラフィー(GPC)法により求めた。試料のGPC曲線と分子量校正曲線よりデータ処理を行った。分子量校正曲線は、標準ポリスチレンの分子量と溶出時間の関係を次の式に近似して分子量校正曲線を得た。
LogM = A03+ A12 + A2 X+ A3+A4/X2
ここで、M:分子量、X:溶出時間−19、A:係数である。また、水酸基当量は2,6-ジメチルフェノールを標準物質としてIR分析(液セル法)を行い、3600cm-1の吸収強度より求めた。
【0018】
(実施例1)攪拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuBr2 2.7g(0.012 mol)、ジ-n-ブチルアミン70.7g(0.55 mol)、メチルエチルケトン 600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ600gのメチルエチルケトンに溶解させた2価のフェノール「2,2',3,3',5,5'-ヘキサメチル-[1,1'-ビフェニル]-4,4'-ジオール」「イ」55.7g(0.21mol)と2,6-ジメチルフェノール50.4g(0.41 mol)の混合溶液(構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールのモル比率1:2)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2 L/minの空気のバブリングを続けながら攪拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、100.3gを得た。このものの数平均分子量は650、重量平均分子量810、水酸基当量が310であり、メチルエチルケトンに可溶であった。(以下この樹脂を「ハ」と記す。)
【0019】
(実施例2)攪拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl 1.3g(0.013 mol)、ジ-n-ブチルアミン79.5g(0.62 mol)、メチルエチルケトン 600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ600gのメチルエチルケトンに溶解させた2価のフェノール「2,2',3,3',5,5'-ヘキサメチル-[1,1'-ビフェニル]-4,4'-ジオール」「イ」41.8g(0.16mol)と2,6-ジメチルフェノール75.6g(0.62mol)の混合溶液(構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールのモル比率1:4)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後30分間、2 L/minの空気のバブリングを続けながら攪拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、111.4gを得た。このものの数平均分子量は1110、重量平均分子量1450、水酸基当量が580であり、メチルエチルケトンに可溶であった。(以下この樹脂を「ニ」と記す。)
【0020】
(実施例3)攪拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl 1.1g(0.011 mol)、ジ-n-ブチルアミン66.3g(0.51 mol)、メチルエチルケトン 500gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ600gのメチルエチルケトンに溶解させた2価のフェノール「2,2',3,3',5,5'-ヘキサメチル-[1,1'-ビフェニル]-4,4'-ジオール」「イ」20.9g(0.077mol)と2,6-ジメチルフェノール75.6g(0.62 mol)の混合溶液(構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールのモル比率1:8)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後30分間、2 L/minの空気のバブリングを続けながら攪拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、91.4gを得た。このものの数平均分子量は1700、重量平均分子量2300、水酸基当量が820であり、メチルエチルケトンに可溶であった。(以下この樹脂を「ホ」と記す。)
【0021】
(実施例4)攪拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl 1.3g(0.013 mol)、ジ-n-ブチルアミン79.5g(0.62 mol)、メチルエチルケトン 600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ600gのメチルエチルケトンに溶解させた2価のフェノール「2,2',3,3',5,5'-ヘキサメチル-[1,1'-ビフェニル]-4,4'-ジオール」「イ」41.8g(0.15mol)と2,6-ジメチルフェノール56.7g(0.46 mol)と2,3,6-トリメチルフェノール21.1g(0.16mol)の混合溶液(構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールのモル比率1:4)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後30分間、2 L/minの空気のバブリングを続けながら攪拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、111.9gを得た。このものの数平均分子量は1000、重量平均分子量1350、水酸基当量が520であり、メチルエチルケトンに可溶であった。(以下この樹脂を「ヘ」と記す。)
【0022】
(比較例1)攪拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl 1.3g(0.013 mol)、ジ-n-ブチルアミン79.5g(0.62 mol)、メチルエチルケトン 600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ520gのメチルエチルケトンに溶解させた2価のフェノール「3,3',5,5'-テトラメチル-[1,1'-ビフェニル]-4,4'-ジオール」「ロ」37.4g(0.16mol)と2,6-ジメチルフェノール75.6g(0.62 mol)の混合溶液(構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールのモル比率1:4)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後30分間、2 L/minの空気のバブリングを続けながら攪拌を行ったところ、反応溶液に多量の沈殿物が得られた。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止し、固形物をろ過した。その後、得られた固形物をメタノールで3回洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、80.1gを得た。このものの数平均分子量は5300、重量平均分子量9000、水酸基当量が3800であり、メチルエチルケトンに不溶であった。以下この樹脂を「ト」と記す。)
【0023】
(実施例5)攪拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl 1.3g(0.013 mol)、ピリジン48.7g(0.62 mol)、メチルエチルケトン 600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ520gのメチルエチルケトンに溶解させた2価のフェノール「2,2’,3,3’,5,5’-ヘキサメチル-[1,1’-ビフェニル]-4,4’-ジオール」「イ」41.8g(0.16 mol)と2,6-ジメチルフェノール75.6g(0.62 mol)の混合溶液(構造式(2)で示される2価のフェノールと構造式(3)で示される1価のフェノールのモル比率1:4)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後30分間、2 L/minの空気のバブリングを続けながら攪拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、110.2gを得た。このものの数平均分子量は1100、重量平均分子量1820、水酸基当量が600であった。(以下この樹脂を「チ」と記す。)
【0024】
以上の結果を表1にまとめた。
実施例1、2、3から2価のフェノールのモル比を多くすることにより数平均分子量及び重量平均分子量が大きくなり、モル比を変えることにより望みの分子量分布を有する2官能オリゴマーを得ることができる。実施例2と比較例1の結果から2価のフェノールの3位に置換基を有さないビフェニルのフェノール「3,3',5,5'-テトラメチル-[1,1'-ビフェニル]-4,4'-ジオール」を原料に用いると平均分子量5000以上のオリゴマーが生成し、メチルエチルケトンに可溶な2官能性フェニレンエーテルを効率よく合成することができない。
【0025】
すなわち、2価のフェノールの位に置換基を有することがメチルエチルケトンに可溶な2官能性フェニレンエーテルを効率よく合成することに必須である。実施例2と実施例5の結果からアミンにジ-n-ブチルアミンを用いるとピリジンを用いた時よりシャープな分子量分布を有するオリゴマーが得られる。実施例2と実施例4の結果から1価のフェノールに2,6-ジメチルフェノール単独を用いた時よりも2,6-ジメチルフェノールと2,3,6-トリメチルフェノールを混合した時に、より低分子のオリゴマーが得られる。これは2,3,6-トリメチルフェノールの3位のメチル基が重合を抑制し、高分子体の生成を抑えているためである。
【0026】
【表1】
Figure 0004736254
【0027】
【発明の効果】
本発明の2官能性フェニレンエーテルのオリゴマー体は、ケトン系の溶媒に充分に可溶であり、熱硬化性樹脂との相溶性がよく、例えば、積層板用のワニスが容易に調整でき、成形加工性に優れる積層材料を製造する事ができる。基本骨格が低誘電特性・強靭性をあわせもつエンジニアプラスチィクスの一つポリフェニレンエーテルであるため、PPEポリマーと同様な特性を有する電気・電子材料となる。更には、ケトン系溶媒中で末端フェノール性水酸基の変性反応が容易に行う事ができる。
【図面の簡単な説明】
【図1】比較例1における生成物のGPCスペクトル。
【図2】実施例2における生成物のGPCスペクトル。
【図3】GPCスペクトルの反応時間変化(実施例2)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oligomer of a bifunctional phenylene ether having a phenolic hydroxyl group at both ends, and relates to an electronic material that requires low dielectric constant, low dielectric loss tangent, and high toughness, and an intermediate thereof.
[0002]
[Prior art]
Materials for electrical and electronic applications are required to have low dielectric properties for processing large amounts of data in an advanced information society at high speed and toughness to prevent microcracks from being generated due to thermal shock. On the other hand, the use of engineering plastics such as polyphenylene ether (PPE) has been proposed. However, PPE has excellent high-frequency characteristics, but has poor compatibility with thermosetting resins such as epoxy resins and cyanate resins, has high melt viscosity and poor moldability, and dissolves solvents such as toluene, benzene, It is known that it is limited to aromatic hydrocarbons such as xylene or halogenated hydrocarbons such as methylene chloride and chloroform and has problems such as poor workability.
[0003]
In order to improve the compatibility, a method of improving by blending with other resins as a compatibilizing agent, and examination of pseudo IPN structuring of PPE and cyanate resin (JP-A-11-21452, etc.) have been made. Processability and heat resistance are not solved. In order to improve moldability, methods such as making polymer PPE into low molecules have been studied. For example, a method of redistributing a polymer PPE and a divalent phenol under a radical catalyst (Japanese Patent Laid-Open No. 9-291148, etc.), or a method of oxidative polymerization of a divalent phenol and a monovalent phenol (Japanese Patent Publication No. 8-011747) Etc. are known. In either case, a polymer is present, and a bifunctional low-molecular oligomer cannot be obtained efficiently.
[0004]
[Problems to be solved by the invention]
The present invention is a resin having excellent electrical properties and toughness of PPE, improved compatibility with other resins and improved moldability, and in addition, it can be dissolved in a general-purpose ketone solvent and modified with a terminal phenolic hydroxyl group. It is to provide a bifunctional phenylene ether oligomer having a PPE structure that is easy.
[0005]
[Means for Solving the Problems]
As a result of intensive research on the bifunctional phenylene ether, the inventors of the present invention converted the bifunctional phenylene ether represented by the structural formula (1) into the divalent phenol of the structural formula (2) and the structural formula (3). It was discovered that structural formula (1) can be efficiently produced by oxidative polymerization of monovalent phenol in a ketone solvent, and the present invention has been completed. The present invention is described in detail below.
[0006]
The divalent phenol of the present invention, R1, as shown in the following structural formula (2) R2 is the same or may be different from carbon number 6 an alkyl group. R3 may be the same or different and is a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and R1, R2 is a divalent phenol having a rigid biphenyl skeleton that is not necessarily a hydrogen atom. is there.
[Formula 4]
Figure 0004736254
[0007]
In the structural formula (2), 2,2 ′, 3,3 ′, 5,5′-hexamethyl- [1,1′-biphenyl] -4,4′-diol is particularly preferable. When divalent phenol that does not have a substituent at the 2-position (R 2 in the structural formula (2)) is used as a raw material, the divalent phenol itself is diphenoquinone because the oxidation rate of the divalent phenol itself is very high. And precipitated from the reaction solution. As a result, the monopolymerization of monovalent phenol represented by the structural formula (3) is prioritized and proceeds until the growth of phenylene ether having a phenolic hydroxyl group at one end is precipitated from the reaction solution. Therefore, a bifunctional phenylene ether soluble in methyl ethyl ketone cannot be efficiently synthesized. For example, a divalent phenol having no substituent at the 2-position includes 3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4,4′-diol, When synthesized using this, the GPC spectrum of the precipitate is as shown in (FIG. 1), confirming the formation of a high molecular weight product. On the other hand, 2,2 ', 3,3', 5,5'-hexamethyl- [1,1'-biphenyl]-is a divalent phenol having a substituent at the 2-position (R2 in structural formula (2)). 4,4'-diol can be mentioned. From the change in GPC spectrum during the reaction (Fig. 2) and average molecular weight (Fig. 3) when this divalent phenol was used, the resulting bifunctional phenylene ether The molecular weight distribution is almost the same throughout the reaction, and no formation of high molecular weight is observed. Therefore, the target bifunctional phenylene ether oligomer can be obtained efficiently.
[0008]
In this way, using a divalent phenol with a substituent at the 2,3,5 position produces a product with a molecular weight distribution that would not have been expected with conventional raw materials with a substituent at the 3,5 position. It was. Therefore, in order to solve the problems of the present invention, it is necessary to moderate the oxidation rate of the divalent phenol itself, and it is essential to have a substituent at the 2-position (R2 in the structural formula (2)). It is.
[0009]
The monovalent phenol of the present invention is a monovalent phenol represented by the structural formula (3).
[Chemical formula 5]
Figure 0004736254
In the structural formula (3), R1 may be the same or different and is a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R3 may be the same or different and is a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. In particular, those having a substituent at the 2,6 position alone or those having a substituent at the 3 position or the 3,5 position are preferably used in combination. More preferably, 2,6-dimethylphenol is used alone, and 2,6-dimethylphenol and 2,3,6-trimethylphenol are used together. The ratio in the case of using a monovalent phenol having a substituent at the 3-position or 3,5-position is preferably 70 mol% or less of the entire monovalent phenol. When the ratio of monovalent phenol having a substituent at the 3-position or 3,5-position is more than 70 mol% of the monovalent phenol, it becomes a crystalline compound and is insoluble in methyl ethyl ketone even at an average molecular weight of about 1000. Become. When 2,6-dimethylphenol and 2,3,6-trimethylphenol are mixed with each other, a lower-molecular oligomer is obtained than when 2,6-dimethylphenol is used alone. This is because the methyl group at the 3-position of 2,3,6-trimethylphenol suppresses polymerization and suppresses the formation of a high molecular weight product.
[0010]
Next, the manufacturing method of this invention is demonstrated. The oligomer of the bifunctional phenylene ether represented by the structural formula (1) of the present invention oxidizes and polymerizes the divalent phenol represented by the structural formula (2) and the monovalent phenol represented by the structural formula (3). Can be obtained. As the oxidation method, there is a method of directly using oxygen gas or air. There is also an electrode oxidation method. Any method may be used and is not particularly limited. Air oxidation is preferred because of its low safety and capital investment. When oxidizing with air, the pressure is usually selected from atmospheric pressure to 20 kg / cm 2 .
[0011]
As a catalyst for oxidative polymerization using oxygen gas or air, one or more of copper salts such as CuCl, CuBr, Cu2SO4, CuCl2, CuBr2, CuSO4, CuI, etc. are used, in addition to the above catalyst. Mono- and dimethylamine, mono- and diethylamine, mono- and dipropylamine, mono- and di-n-butylamine, mono- and -sec-dipropylamine, mono- and dibenzylamine, mono- and dicyclohexyl Amine, mono- and diethanolamine, ethylmethylamine, methylpropylamine, allylethylamine, methylcyclohexylamine, morpholine, methyl-n-butylamine, ethylisopropylamine, benzylmethylamine, octylbenzylamine, octyl-chlorobenzylamine, methyl ( Phenylethyl) amine, benzylethylamine, di ( Chlorophenylethyl) amine, 1-methylamino-4-pentene, pyridine, methylpyridine, 4-dimethylaminopyridine, piperidine and the like are used in combination of one or more amines. If it is a copper salt and an amine, it will not specifically limit to these. In particular, di-n-butylamine is preferable as the amine. By using di-n-butylamine, homopolymerization of the monovalent phenol represented by the structural formula (3) is suppressed, it is difficult to produce a high molecular weight product, and a bifunctional phenylene ether oligomer having a sharp molecular weight distribution. Become a body.
[0012]
Next, the solvent used in the present invention will be described. In the present invention, a ketone solvent and an alcohol solvent, which are considered to be poor solvents in oxidative polymerization and have a limited ratio that can be used in oxidative polymerization of conventional PPE, can be used in the present invention. Conventionally, in this type of reaction, a polymer that is difficult to dissolve in an organic solvent is produced, so that the proportion of the ketone or alcohol of the reaction solvent to be used cannot be increased. ), Since it is only a low-molecular oligomer, it can be easily dissolved in ketone and alcohol, and the range of solvents that can be used is greatly expanded. They can be used alone or in combination with conventional solvents such as aromatic hydrocarbon solvents such as toluene, benzene and xylene, halogenated hydrocarbon solvents such as ethylene chloride, chloroform and carbon tetrachloride. Examples of the ketone solvent include acetone, methyl ethyl ketone, diethyl ketone, methyl butyl ketone, and methyl isobutyl ketone. Examples of the alcohol solvent include methanol, ethanol, butanol, propanol, methyl propylene diglycol, diethylene glycol ethyl ether, and butyl propylene. Examples thereof include, but are not limited to, glycol and propylpropylene glycol. The production of an oligomer having a relatively low molecular weight and a sharp peak in the molecular weight distribution, which is the object of the present invention, is particularly effective when a ketone solvent is used. Furthermore, from the solubility of the divalent phenol as a raw material, the solvent used is most preferably methyl ethyl ketone alone or a mixed solvent containing methyl ethyl ketone.
[0013]
The reaction temperature in the production method of the present invention is not particularly limited as long as it does not fall within the explosion limit of the solvent to be used, but is preferably 25 to 50 ° C. Since oxidative polymerization is an exothermic reaction, temperature control is difficult at 50 ° C or higher, and molecular weight control is difficult. Below 25 ° C, it falls within the explosive limit and cannot be manufactured stably.
[0014]
Next, the phenol concentration in the production method of the present invention will be described. The concentration of the divalent phenol represented by the structural formula (2) is preferably 2 to 20 wt% with respect to the solvent to be dropped. When it is 20 wt% or more, divalent phenol may not be completely dissolved in the solvent. On the other hand, when the amount is less than 2 wt%, the polymerization reaction rate decreases. Further, the concentration of the monovalent phenol represented by the structural formula (3) is preferably 6 to 50 wt% with respect to the solvent. When the concentration is 50 wt% or more, the monovalent phenol may not be completely dissolved in the solvent. On the other hand, when it is less than 6 wt%, the polymerization reaction rate decreases.
[0015]
In the production method of the present invention, the molar ratio of the divalent phenol represented by Structural Formula (2) to the monovalent phenol represented by Structural Formula (3) is preferably in the range of 1: 1 to 1:10. In particular, 1: 2 to 1: 8 is preferable. Within this range, homopolymerization of monovalent phenol is unlikely to occur and molecular weight control can be performed. If the ratio of the divalent phenol represented by structural formula (2) to the monovalent phenol represented by structural formula (3) is less than 1: 2, the residual divalent phenol represented by structural formula (2) will increase. Become. On the other hand, when the ratio is more than 1:10, homopolymerization of monovalent phenol represented by the structural formula (3) occurs, the molecular weight becomes too large, and the oligomer becomes insoluble in methyl ethyl ketone.
[0016]
The production apparatus and production method of the present invention will be described. A vertical reactor equipped with a stirrer, thermometer, air inlet tube, baffle plate was charged with copper catalyst, amine and solvent, stirred at 40 ° C, divalent phenol and monovalent phenol dissolved in advance in the solvent A mixed solution of phenol is added dropwise while bubbling air. The dropping time is preferably in the range of 50 minutes to 210 minutes. When the dropping time is not within this range, dispersion of the molecular weight distribution of the resulting oligomer becomes large. Furthermore, stirring is preferably performed for 5 minutes to 5 hours after the completion of the dropping. Even if stirring is performed for 5 hours or more, the molecular weight does not increase further, so the reaction should be terminated.
[0017]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not specifically limited by a following example. The number average molecular weight and the weight average molecular weight were determined by gel permeation chromatography (GPC). Data processing was performed from the GPC curve and molecular weight calibration curve of the sample. The molecular weight calibration curve was obtained by approximating the relationship between the molecular weight of standard polystyrene and the elution time to the following equation.
Log M = A 0 X 3 + A 1 X 2 + A 2 X + A 3 + A 4 / X 2
Here, M: molecular weight, X: elution time -19, A: coefficient. The hydroxyl group equivalent was determined from the absorption intensity at 3600 cm -1 by IR analysis (liquid cell method) using 2,6-dimethylphenol as a standard substance.
[0018]
(Example 1) A 2 L vertical reactor equipped with a stirrer, thermometer, air inlet tube and baffle plate was charged with 2.7 g (0.012 mol) of CuBr2, 70.7 g (0.55 mol) of di-n-butylamine, and 600 g of methyl ethyl ketone. The divalent phenol "2,2 ', 3,3', 5,5'-hexamethyl- [1,1'-biphenyl]-dissolved in 600 g of methyl ethyl ketone was stirred at a reaction temperature of 40 ° C. A mixed solution of 55.7 g (0.21 mol) of 4,4'-diol "" I "and 50.4 g (0.41 mol) of 2,6-dimethylphenol (divalent phenol represented by structural formula (2) and structural formula (3 ) The molar ratio of monohydric phenol represented by 1: 2) was added dropwise over 120 minutes while bubbling 2 L / min of air, and then bubbling 2 L / min of air for 60 minutes after completion of the dripping. Stirring was continued. Ethylenediaminetetraacetic acid dihydrogen disodium aqueous solution was added thereto to stop the reaction. Then, after washing 3 times with 1M hydrochloric acid aqueous solution, it was washed with ion-exchanged water. The resulting solution was concentrated with an evaporator and further dried under reduced pressure to obtain 100.3 g. This had a number average molecular weight of 650, a weight average molecular weight of 810, a hydroxyl group equivalent of 310, and was soluble in methyl ethyl ketone. (Hereinafter, this resin is referred to as “C”.)
[0019]
(Example 2) CuL 1.3 g (0.013 mol), di-n-butylamine 79.5 g (0.62 mol), and methyl ethyl ketone 600 g were charged in a 2 L vertical reactor equipped with a stirrer, thermometer, air inlet tube and baffle plate. The divalent phenol "2,2 ', 3,3', 5,5'-hexamethyl- [1,1'-biphenyl]-dissolved in 600 g of methyl ethyl ketone was stirred at a reaction temperature of 40 ° C. 4,4'-diol "" I "41.8g (0.16mol) and 2,6-dimethylphenol 75.6g (0.62mol) mixed solution (divalent phenol represented by structural formula (2) and structural formula (3 ) Is added dropwise over a period of 120 minutes while bubbling 2 L / min of air, followed by bubbling of 2 L / min of air for 30 minutes after completion of the dripping. Stirring was continued. Ethylenediaminetetraacetic acid dihydrogen disodium aqueous solution was added thereto to stop the reaction. Then, after washing 3 times with 1M hydrochloric acid aqueous solution, it was washed with ion-exchanged water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 111.4 g. This had a number average molecular weight of 1110, a weight average molecular weight of 1450, a hydroxyl group equivalent of 580, and was soluble in methyl ethyl ketone. (Hereinafter, this resin is referred to as “d”.)
[0020]
(Example 3) CuL 1.1 g (0.011 mol), di-n-butylamine 66.3 g (0.51 mol), and methyl ethyl ketone 500 g were charged in a 2 L vertical reactor equipped with a stirrer, thermometer, air inlet tube, and baffle plate. The divalent phenol "2,2 ', 3,3', 5,5'-hexamethyl- [1,1'-biphenyl]-dissolved in 600 g of methyl ethyl ketone was stirred at a reaction temperature of 40 ° C. A mixed solution of 20.9 g (0.077 mol) of 4,4'-diol "" I "and 75.6 g (0.62 mol) of 2,6-dimethylphenol (divalent phenol represented by structural formula (2) and structural formula (3 ) Is added dropwise over a period of 120 minutes while bubbling 2 L / min of air, followed by bubbling of 2 L / min of air for 30 minutes after completion of the dripping. Stirring was continued. Ethylenediaminetetraacetic acid dihydrogen disodium aqueous solution was added thereto to stop the reaction. Then, after washing 3 times with 1M hydrochloric acid aqueous solution, it was washed with ion-exchanged water. The resulting solution was concentrated with an evaporator and further dried under reduced pressure to obtain 91.4 g. This had a number average molecular weight of 1,700, a weight average molecular weight of 2,300, a hydroxyl group equivalent of 820, and was soluble in methyl ethyl ketone. (Hereinafter, this resin is referred to as “e”.)
[0021]
(Example 4) CuCl 1.3g (0.013 mol), di-n-butylamine 79.5g (0.62 mol), and methyl ethyl ketone 600g were charged in a 2L vertical reactor equipped with a stirrer, thermometer, air inlet tube and baffle plate. The divalent phenol "2,2 ', 3,3', 5,5'-hexamethyl- [1,1'-biphenyl]-dissolved in 600 g of methyl ethyl ketone was stirred at a reaction temperature of 40 ° C. 4,4'-diol "I" 41.8g (0.15mol), 2,6-dimethylphenol 56.7g (0.46mol) and 2,3,6-trimethylphenol 21.1g (0.16mol) mixed solution (structural formula The molar ratio of the divalent phenol represented by (2) and the monovalent phenol represented by the structural formula (3) 1: 4) was added dropwise over 120 minutes while bubbling 2 L / min of air, and Stirring was continued for 30 minutes after the completion of dropping while bubbling air at 2 L / min. Ethylenediaminetetraacetic acid dihydrogen disodium aqueous solution was added thereto to stop the reaction. Then, after washing 3 times with 1M hydrochloric acid aqueous solution, it was washed with ion-exchanged water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 111.9 g. This had a number average molecular weight of 1000, a weight average molecular weight of 1350, a hydroxyl group equivalent of 520, and was soluble in methyl ethyl ketone. (Hereinafter, this resin is referred to as “f”.)
[0022]
(Comparative Example 1) CuL 1.3 g (0.013 mol), di-n-butylamine 79.5 g (0.62 mol), and methyl ethyl ketone 600 g were charged in a 2 L vertical reactor equipped with a stirrer, thermometer, air inlet tube and baffle plate. The divalent phenol “3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl] -4,4 ′ previously stirred in a reaction temperature of 40 ° C. and dissolved in 520 g of methyl ethyl ketone was used. -Diol ”“ B ”37.4 g (0.16 mol) and 2,6-dimethylphenol 75.6 g (0.62 mol) mixed solution (divalent phenol represented by structural formula (2) and structural formula (3) Monohydric phenol molar ratio 1: 4) was added dropwise over a period of 120 minutes while bubbling 2 L / min of air, and stirring was continued for 30 minutes after the addition was completed while bubbling 2 L / min of air. As a result, a large amount of precipitate was obtained in the reaction solution. To this was added ethylenediaminetetraacetic acid disodium dihydrogen aqueous solution to stop the reaction, and the solid was filtered. Thereafter, the obtained solid was washed with methanol three times. The resulting solution was concentrated with an evaporator and further dried under reduced pressure to obtain 80.1 g. This had a number average molecular weight of 5,300, a weight average molecular weight of 9000, a hydroxyl group equivalent of 3,800, and was insoluble in methyl ethyl ketone. Hereinafter, this resin is referred to as “g”. )
[0023]
(Example 5) CuL 1.3 g (0.013 mol), pyridine 48.7 g (0.62 mol), and methyl ethyl ketone 600 g were charged in a 2 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle, and a reaction temperature of 40 Stir at ℃, divalent phenol "2,2 ', 3,3', 5,5'-hexamethyl- [1,1'-biphenyl] -4,4 'previously dissolved in 520 g of methyl ethyl ketone -Diol "" I "41.8 g (0.16 mol) and 2,6-dimethylphenol 75.6 g (0.62 mol) mixed solution (divalent phenol represented by structural formula (2) and structural formula (3) Monohydric phenol molar ratio 1: 4) was added dropwise over a period of 120 minutes while bubbling 2 L / min of air, and stirring was continued for 30 minutes after the addition was completed while bubbling 2 L / min of air. went. Ethylenediaminetetraacetic acid dihydrogen disodium aqueous solution was added thereto to stop the reaction. Then, after washing 3 times with 1M hydrochloric acid aqueous solution, it was washed with ion-exchanged water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 110.2 g. This had a number average molecular weight of 1100, a weight average molecular weight of 1820, and a hydroxyl group equivalent of 600. (Hereinafter, this resin is referred to as “Chi”.)
[0024]
The above results are summarized in Table 1.
By increasing the molar ratio of the divalent phenol from Examples 1, 2, and 3, the number average molecular weight and the weight average molecular weight are increased. By changing the molar ratio, a bifunctional oligomer having a desired molecular weight distribution can be obtained. it can. From the results of Example 2 and Comparative Example 1, biphenyl phenol “3,3 ′, 5,5′-tetramethyl- [1,1′-biphenyl]-having no substituent at the 3-position of divalent phenol— When “4,4′-diol” is used as a raw material, an oligomer having an average molecular weight of 5000 or more is generated, and bifunctional phenylene ether soluble in methyl ethyl ketone cannot be efficiently synthesized.
[0025]
That is, having a substituent at the 2- position of divalent phenol is essential for efficiently synthesizing a bifunctional phenylene ether soluble in methyl ethyl ketone. From the results of Example 2 and Example 5 , when di-n-butylamine is used as the amine, an oligomer having a sharper molecular weight distribution than when pyridine is used is obtained. From the results of Example 2 and Example 4, it is lower when 2,6-dimethylphenol and 2,3,6-trimethylphenol are mixed than when monovalent phenol is used with 2,6-dimethylphenol alone. Molecular oligomers are obtained. This is because the methyl group at the 3-position of 2,3,6-trimethylphenol suppresses polymerization and suppresses the formation of a polymer.
[0026]
[Table 1]
Figure 0004736254
[0027]
【The invention's effect】
The oligomer of the bifunctional phenylene ether of the present invention is sufficiently soluble in a ketone solvent and has good compatibility with a thermosetting resin. For example, a varnish for a laminate can be easily adjusted and molded. A laminated material having excellent processability can be produced. Since the basic skeleton is polyphenylene ether, which is one of the engineered plastics with both low dielectric properties and toughness, it becomes an electrical / electronic material with the same characteristics as PPE polymers. Further, the terminal phenolic hydroxyl group can be easily modified in a ketone solvent.
[Brief description of the drawings]
1 is a GPC spectrum of the product in Comparative Example 1. FIG.
2 is a GPC spectrum of the product in Example 2. FIG.
FIG. 3 shows reaction time change of GPC spectrum (Example 2).

Claims (8)

構造式(2)で示した2価のフェノールと、構造式(3)で示した1価のフェノールとの酸化重合で得られる以下の構造式(1)
Figure 0004736254
Figure 0004736254
Figure 0004736254
(式中、R1,R2は、同一または異なってもよく、炭素数6以下のアルキル基である。R3は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。m, nは、少なくともいずれか一方が0でない、0〜100の整数を示す。)で示したR1,R2が水素原子でないことが必須の2官能性フェニレンエーテルのオリゴマー体。
The following structural formula (1) obtained by oxidative polymerization of the divalent phenol represented by the structural formula (2) and the monovalent phenol represented by the structural formula (3)
Figure 0004736254
Figure 0004736254
Figure 0004736254
(Wherein, R1, R2 may be the same or different, carbon number 6 is an alkyl group .R3 are the same or different, a hydrogen atom, a halogen atom or an alkyl group having 6 or less carbon atoms And m and n each represents an integer of 0 to 100, at least one of which is not 0.) An oligomer of bifunctional phenylene ether in which R1 and R2 shown in the above are not hydrogen atoms.
上記構造式(1)で、R1,R2がメチル基である請求項1に記載の2官能性フェニレンエーテルのオリゴマー体。The oligomer of bifunctional phenylene ether according to claim 1 , wherein R1 and R2 in the structural formula (1) are methyl groups. 重量平均分子量が5000以下の請求項1に記載の2官能性フェニレンエーテルのオリゴマー体。 The oligomer of bifunctional phenylene ether according to claim 1, having a weight average molecular weight of 5,000 or less. 分子量分布の分散(Mw/Mn)が、1.6以下の請求項1に記載の2官能性フェニレンエーテルのオリゴマー体。The bifunctional phenylene ether oligomer according to claim 1, wherein the molecular weight distribution (Mw / Mn) is 1.6 or less. 請求項1に記載の2官能性フェニレンエーテルのオリゴマー体を製造する方法であって、上記構造式(2)で示される2価のフェノールが2,2’,3,3’,5,5’-ヘキサメチル-[1,1’-ビフェニル]-4,4’-ジオールであることを特徴とする2官能性フェニレンエーテルのオリゴマー体の製造法。 A method for producing an oligomer of a bifunctional phenylene ether according to claim 1, wherein the divalent phenol represented by the structural formula (2) is 2,2 ', 3,3', 5,5 '. -A process for producing an oligomer of bifunctional phenylene ether, characterized in that it is hexamethyl- [1,1'-biphenyl] -4,4'-diol. 請求項1に記載の2官能性フェニレンエーテルのオリゴマー体を製造する方法であって、上記構造式(3)で示される1価のフェノールが、2,6-ジメチルフェノール単独かこれと2,3,6-トリメチルフェノールの混合系で用いられ、2,3,6-トリメチルフェノールの割合が1価のフェノール(3)の70mol%以下の1価のフェノールであることを特徴とする2官能性フェニレンエーテルのオリゴマー体の製造法。 A method for producing an oligomer of a bifunctional phenylene ether according to claim 1, wherein the monovalent phenol represented by the structural formula (3) is 2,6-dimethylphenol alone or 2,3 Bifunctional phenylene, which is used in a mixed system of 2,6-trimethylphenol and is a monohydric phenol in which the proportion of 2,3,6-trimethylphenol is 70 mol% or less of monohydric phenol (3) A method for producing an oligomer of ether . 請求項1に記載の2官能性フェニレンエーテルのオリゴマー体を製造する方法であって、上記構造式(2)に示される2価のフェノールと構造式(3)に示される1価のフェノールのモル比率が1:1〜10であることを特徴とする2官能性フェニレンエーテルのオリゴマー体の製造法。 A method for producing an oligomer of the bifunctional phenylene ether according to claim 1, wherein the molar amount of the divalent phenol represented by the structural formula (2) and the monovalent phenol represented by the structural formula (3). ratio is 1: preparation of oligomer of bifunctional phenylene ether, which is a 1 to 10. 請求項1に記載の2官能性フェニレンエーテルのオリゴマー体を製造する方法であって、酸化重合において使用する溶媒がケトン系であることを特徴とする2官能性フェニレンエーテルのオリゴマー体の製造法。 A method of producing an oligomer of bifunctional phenylene ether according to claim 1, the preparation of the oligomer of the bifunctional phenylene ether, wherein the solvent used in the oxidation polymerization is ketone.
JP2001196569A 2001-06-28 2001-06-28 Bifunctional phenylene ether oligomer and its production method Expired - Fee Related JP4736254B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001196569A JP4736254B2 (en) 2001-06-28 2001-06-28 Bifunctional phenylene ether oligomer and its production method
TW91114155A TW591054B (en) 2001-06-28 2002-06-27 Bifunctional phenylene ether oligomer, derivatives and process for the production thereof
US10/180,507 US6794481B2 (en) 2001-06-28 2002-06-27 Bifunctional phenylene ether oligomer, its derivatives, its use and process for the production thereof
KR1020020037051A KR100874723B1 (en) 2001-06-28 2002-06-28 2 functional phenylene ether oligomer, derivatives thereof and preparation method thereof
US10/851,290 US6962744B2 (en) 2001-06-28 2004-05-24 Bifunctional phenylene ether oligomer, its derivatives, its use and process for the production thereof
US11/110,917 US7247682B2 (en) 2001-06-28 2005-04-21 Bifunctional phenylene ether oligomer, its derivatives, its use and process for the production thereof
US11/812,892 US7388057B2 (en) 2001-06-28 2007-06-22 Di(meth)acrylate of epoxy-terminated polyphenylene ether
US12/068,925 US7446154B2 (en) 2001-06-28 2008-02-13 Carboxylic acid-modified biphenyl epoxy diacrylate
KR1020080055418A KR100919943B1 (en) 2001-06-28 2008-06-12 Bifunctional phenylene ether oligomer, its derivatives, its use and process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196569A JP4736254B2 (en) 2001-06-28 2001-06-28 Bifunctional phenylene ether oligomer and its production method

Publications (2)

Publication Number Publication Date
JP2003012796A JP2003012796A (en) 2003-01-15
JP4736254B2 true JP4736254B2 (en) 2011-07-27

Family

ID=19034354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196569A Expired - Fee Related JP4736254B2 (en) 2001-06-28 2001-06-28 Bifunctional phenylene ether oligomer and its production method

Country Status (1)

Country Link
JP (1) JP4736254B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007828B2 (en) * 2002-03-08 2007-11-14 旭化成ケミカルズ株式会社 Method for producing low molecular weight polyphenylene ether
TW200416243A (en) * 2003-01-21 2004-09-01 Mitsubishi Gas Chemical Co Epoxy resin curing agent, curable epoxy resin composition and cured product
JP4635468B2 (en) * 2003-06-18 2011-02-23 三菱瓦斯化学株式会社 Novel acid anhydride and polyimide using the same
JP4471073B2 (en) * 2003-07-02 2010-06-02 三菱瓦斯化学株式会社 Method for producing bifunctional phenylene ether oligomer
JP4697415B2 (en) * 2004-09-09 2011-06-08 信越化学工業株式会社 Polyphenylene ether oligomer sulfonate and process for producing the same
TW200624509A (en) 2004-09-09 2006-07-16 Shinetsu Chemical Co Polyphenylene ether oligomer sulfonic acid salt, making method, flame retardant resin composition, and molded article
JP4697416B2 (en) * 2004-10-26 2011-06-08 信越化学工業株式会社 Flame retardant polycarbonate resin composition and molded product thereof
JP4697417B2 (en) * 2004-10-26 2011-06-08 信越化学工業株式会社 Flame retardant resin composition and molded product thereof
JP2006213876A (en) * 2005-02-07 2006-08-17 Arakawa Chem Ind Co Ltd Resin composition for printed wiring board, insulation material for printed wiring board and method for producing insulation material for printed wiring board
JP5446260B2 (en) 2006-05-25 2014-03-19 三菱瓦斯化学株式会社 Method for producing phenylene ether oligomer
CN102702680A (en) * 2006-09-15 2012-10-03 沙伯基础创新塑料知识产权有限公司 Poly(arylene ether) composition, method, and article
US20090076307A1 (en) * 2007-08-13 2009-03-19 . Aromatic diamine compound and aromatic dinitro compound
JP5540573B2 (en) * 2008-06-09 2014-07-02 三菱瓦斯化学株式会社 Bismaleamic acid, bismaleimide and cured products thereof
KR102047681B1 (en) 2012-11-06 2019-11-22 닛뽄 가야쿠 가부시키가이샤 Polyvalent phenylene ether novolac resin, epoxy resin composition, and cured product thereof
CN111909371B (en) * 2020-07-22 2022-12-27 广东省石油与精细化工研究院 Tetraalkenyl polyphenyl ether and preparation method thereof
CN111793203B (en) * 2020-07-22 2022-12-27 广东省石油与精细化工研究院 Polyphenyl ether and synthesis method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433594A (en) * 1977-05-26 1979-03-12 Gen Electric Quinone connecting polyphenylene oxide
JPS6241223A (en) * 1985-08-19 1987-02-23 Sumitomo Chem Co Ltd Epoxy resin
JPS63295632A (en) * 1987-03-23 1988-12-02 ゼネラル・エレクトリック・カンパニイ Melt termination block polyphenylene ether and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433594A (en) * 1977-05-26 1979-03-12 Gen Electric Quinone connecting polyphenylene oxide
JPS6241223A (en) * 1985-08-19 1987-02-23 Sumitomo Chem Co Ltd Epoxy resin
JPS63295632A (en) * 1987-03-23 1988-12-02 ゼネラル・エレクトリック・カンパニイ Melt termination block polyphenylene ether and manufacture

Also Published As

Publication number Publication date
JP2003012796A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP4736254B2 (en) Bifunctional phenylene ether oligomer and its production method
EP1642918B1 (en) Process for production of bifunctional phenylene ether oligomers
JPS5923332B2 (en) Method for producing polyphenylene ether
JPH01304121A (en) Method for capping polyphenylene ether
JPS6120575B2 (en)
JP2010090396A (en) Method for manufacturing poly(arylene ether), and poly(arylene ether) manufactured by the same method
US20090012331A1 (en) Process for the production of vinyl compound
JPS59168029A (en) Manufacture of bifunctional polyphenylene oxide
JP2004506078A (en) Method for producing high intrinsic viscosity poly (arylene ether) resin
JP2002537414A (en) Method for producing low molecular weight polyphenylene ether resin by redistribution
JPH08253578A (en) Solventless production of polyarylene ether
EP1526148B1 (en) Process for the production of vinyl compound
JPS6120576B2 (en)
JP4196164B2 (en) Method for producing bifunctional phenylene ether oligomer
JP5223193B2 (en) Polycarbosilane, method for producing the same, and insulating material
Mani et al. Poly (aryl ether ketone) synthesis via competing SNAR and SRN1 reactions: 1. Polymers derived from 1, 3-bis (p-chlorobenzoyl) benzene and 1, 3-bis (p-fluorobenzoyl) benzene with hydroquinone and 4, 4′-isopropylidenediphenol
JP4048362B2 (en) Method for producing bifunctional phenylene ether oligomer
JP4591665B2 (en) Production method of vinyl compounds
JPH0237365B2 (en)
JPH05331280A (en) Method for capping polyphenylene ether, polyphenylene resin obtained therewith, and composition containing it
JPS5974124A (en) Continuous manufacture of polyphenylene ether resin using high concentration bromide ion
JP5390128B2 (en) Method for producing low molecular weight poly (2,6-diarylphenylene ether)
JP4799015B2 (en) Method for increasing molecular weight of polyphenylene ether
JP2004315418A (en) Method for producing vinyl compound
JPH0340734B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4736254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

LAPS Cancellation because of no payment of annual fees