JP4196164B2 - Method for producing bifunctional phenylene ether oligomer - Google Patents

Method for producing bifunctional phenylene ether oligomer Download PDF

Info

Publication number
JP4196164B2
JP4196164B2 JP2002279389A JP2002279389A JP4196164B2 JP 4196164 B2 JP4196164 B2 JP 4196164B2 JP 2002279389 A JP2002279389 A JP 2002279389A JP 2002279389 A JP2002279389 A JP 2002279389A JP 4196164 B2 JP4196164 B2 JP 4196164B2
Authority
JP
Japan
Prior art keywords
structural formula
phenylene ether
ether oligomer
producing
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002279389A
Other languages
Japanese (ja)
Other versions
JP2004115619A (en
Inventor
賢治 石井
泰正 則末
克彦 柳田
真 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002279389A priority Critical patent/JP4196164B2/en
Publication of JP2004115619A publication Critical patent/JP2004115619A/en
Application granted granted Critical
Publication of JP4196164B2 publication Critical patent/JP4196164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、両末端にフェノール性水酸基を有する2官能性フェニレンエーテルオリゴマー体の製造法に関するもので、アミン付加体のない2官能性フェニレンエーテルオリゴマー体を製造する方法に関するものである。
【0002】
【従来の技術】
電気・電子用途の材料には、高度情報化社会での大量データを高速で処理するための低誘電特性、熱衝撃等でマイクロクラックが発生しないための強靭性が必要とされている。これに対し、ポリフェニレンエーテル(PPE)などのエンジニアリングプラスチックスの利用が提案されている。
【0003】
しかし、PPEは優れた高周波特性を有する反面、エポキシ樹脂やシアネート樹脂等の熱硬化性樹脂との相溶性が悪いこと、溶融粘度が高く成形加工性が悪いこと、溶解する溶媒がトルエン、ベンゼン、キシレン等の芳香族炭化水素系あるいはメチレンクロライド、クロロホルム等のハロゲン化炭化水素系に限定され作業性が悪いこと等の問題点をもつことが知られている。
【0004】
相溶性改善のためには、相溶化剤として他の樹脂とのブレンドにより改善する方法やPPEとシアネート樹脂の擬似IPN構造化の検討(例えば、特許文献1参照。)等がなされているが、成形加工性・耐熱性までは解決されていない。また、成形性改善のためには、高分子PPEを低分子にする方法等の検討がなされている。例えば、高分子PPEと2価のフェノールをラジカル触媒下で再分配させる方法(例えば、特許文献2参照。)、あるいは2価のフェノールと1価のフェノールを酸化重合する方法(例えば、特許文献3参照。)等が知られている。しかしながら、いずれの方法でも高分子体が存在し、所望する分子量を有する2官能性フェニレンエーテルオリゴマー体を効率良く得ることができなかった。
【0005】
またフェノール類の酸化重合で得られるポリフェニレンエーテル樹脂は、酸化重合反応の際に使用される脂肪族2級アミンが末端フェノールのオルト位のベンジル位に付加することが広く知られている(例えば、特許文献4参照。)。ポリフェニレンエーテル樹脂の末端フェノール性水酸基を他の官能基に誘導する際、この付加したアミンが反応を阻害したり、官能基の安定性を低下させたりする問題があった。アミン付加体の生成量を減らす方法として、特定のアミンを使用する方法が提案されている(例えば、特許文献5参照。)が、その効果は不十分であった。更に、ポリフェニレンエーテル樹脂に付加したアミンをアルコール類で置換する方法が提案(例えば、特許文献6参照。)されているが、工程が増える等の問題点があった。
【0006】
【特許文献1】
特開平11-21452号公報(第1−6頁)
【特許文献2】
特開平9-291148号公報(第1−3頁)
【特許文献3】
特公平8-011747号公報(第1−3頁)
【特許文献4】
特開昭52-897号公報(第1−7頁)
【特許文献5】
特開昭62-131022号公報(第1−4頁)
【特許文献6】
特開平5-148357号公報(第1−5頁)
【0007】
【発明が解決しようとする課題】
本発明は、上述の事実に鑑みてなされたもので、その目的とするところは、PPEの優れた電気特性・強靭性を有し、熱硬化性樹脂との相溶性、成形加工性を改善し、更には汎用ケトン系溶媒に溶解し、末端フェノール性水酸基の修飾が容易であるアミン付加体のない2官能性フェニレンエーテルオリゴマー体を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、2官能性フェニレンエーテルオリゴマー体の製造法について鋭意研究を重ねた結果、銅系触媒および、3級アミンまたは2級アルキル基、3級アルキル基あるいはアリール基を有する2級アミンまたは両者の混合系を用いて、下記構造式(2)で表される2価のフェノール体と下記構造式(3)で表される1価のフェノール体との酸化重合反応を行うことで、アミン付加体のない下記構造式(1)で表される2官能性フェニレンエーテルオリゴマー体を安定的に効率よく製造できる事を発見し、本発明を完成するに至った。以下に、本発明を詳細に説明する。
【0009】
【化2】

Figure 0004196164
【0010】
(上記式中、R1、R2、R3、R7、R8、R9、R10は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基を示す。R4、R5、R6、R11、R12は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基を示す。m、nは、少なくともいずれか一方が0でない0〜25の整数を示す。)
【0011】
本発明の2価のフェノール体とは、下記構造式(2)で表される2価のフェノールである。
【化3】
Figure 0004196164
【0012】
ここで、構造式(2)の2価のフェノール体とは、R1、R2、R3、R7、R8は同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R4、R5、R6は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基であり、R1、R2、R3、R7、R8が水素原子でないことが必須の2価のフェノールであり、2,3,3',5,5'-ペンタメチル-(1,1'-ビフェニル)-4,4'-ジオール、2,2',3,3',5,5'-ヘキサメチル-(1,1'-ビフェニル)-4,4'-ジオールなどが好ましい。
【0013】
本発明の1価のフェノール体とは、下記構造式(3)で表される1価のフェノールである。
【化4】
Figure 0004196164
【0014】
構造式(3)において、R9、R10は同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R11、R12は同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。特に、2,6位に置換基を有するもの単独、またはこれと2,3,6位あるいは2,3,5,6位に置換基を有するものが併用されることが好ましい。更には、単独では2,6-ジメチルフェノールが好ましく、併用では2,6-ジメチルフェノールと2,3,6-トリメチルフェノールが好ましい。
【0015】
本発明の構造式(1)で示される2官能性フェニレンエーテルオリゴマー体は、構造式(2)で表される2価のフェノール体と、構造式(3)で表される1価のフェノール体とを酸化重合することによって得られる。酸化の方法については直接酸素ガス、空気を使用する方法がある。また電極酸化の方法もある。いずれの方法でも良く、特には限定されない。設備投資が安価である事から空気酸化が好ましいが、安全性から反応器中の酸素濃度を爆発限界の限界酸素濃度以下で酸化重合反応を実施することが更に好ましい。限界酸素濃度以下での酸化重合反応方法としては、気相中に不活性ガスを供給しながら空気で酸化重合反応を行う方法、または不活性ガス等と空気を混合して酸素濃度を3〜15%に調整した混合ガスで酸化重合反応を行う方法がある。酸化重合反応を実施するには、圧力は通常大気圧から20kg/cm2までの圧力が選ばれる。
【0016】
酸化重合反応を実施する場合の触媒としては、CuCl、CuBr、Cu2SO4、CuCl2、CuBr2、CuSO4、CuI等の銅塩等の一種または二種以上が用いられるが、特にこれらに限定されるものではない。上記触媒に加えて、ジイソプロピルアミン、ジ-sec-ブチルアミン、ジ-t-ブチルアミン、ジ-t-アミルアミン、ジシクロペンチルアミン、ジシクロヘキシルアミン、ジフェニルアミン、p,p'-ジトリルアミン、m,m'-ジトリルアミン、エチル-t-ブチルアミン、N,N'-ジ-t-ブチルエチレンジアミン、メチルシクロヘキシルアミン、メチルフェニルアミン、トリエチルアミン、メチルジエチルアミン、n-ブチルジメチルアミン、ベンジルジメチルアミン、フェニルジメチルアミン、N,N-ジメチル-p-トルイジン、トリフェニルアミン、N,N'-ジメチルピペラジン、2,6-ジメチルピリジン等から一種または二種以上が併用される。3級アミン及び2級アルキル基、3級アルキル基あるいはアリール基を有する2級アミンであれば、特にこれらに限定されるものではない。上記のアミンを使用することで、アミン付加体のない2官能性フェニレンエーテルオリゴマー体を得ることができる。このアミン付加体のない2官能性フェニレンエーテルオリゴマー体は、付加したアミンに官能基変換を阻害されることがないので、フェノール性水酸基を他の官能基へ容易かつ効率的に変換することができる。
【0017】
本発明では、構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体とを一定のモル比で供給して反応させることで、所望する数平均分子量を有する構造式(1)で表される2官能性フェニレンエーテルオリゴマー体を効率的に製造することが出来る。例えば、2価のフェノールとして2,2',3,3',5,5'-ヘキサメチル-(1,1'-ビフェニル)-4,4'-ジオール、1価のフェノールとして2,6-ジメチルフェノールを選び、1:3のモル比とした場合には数平均分子量が600〜700、1:5のモル比とした場合には数平均分子量が850〜950、1:10のモル比とした場合には数平均分子量が1,450〜1,550の2官能性フェニレンエーテルオリゴマー体をそれぞれ得ることができる。
【0018】
本発明では、原料フェノールの供給終了後も未反応のフェノールが残存している間は、酸化重合反応を継続することは可能である。但し、原料フェノールが全て反応した後も酸化重合反応を継続することは、反応時間が長くなり経済的でない。
【0019】
次に、本発明に使用される溶媒について説明する。酸化重合において貧溶媒と考えられていて、従来のPPEの酸化重合において使用が限られていたケトン系溶媒及びアルコール系溶媒を本発明では用いることができる。従来この種の反応は、有機溶媒に溶け難いポリマーが生成するため、反応溶媒としてケトンやアルコールを用いることができなかったが、本発明の生成物は、ケトン及びアルコールにも容易に溶解し、使用できる溶媒の範囲が大きく広がった。それらを単独、あるいは従来の溶媒であるトルエン、ベンゼン、キシレン等の芳香族炭化水素系溶剤、メチレンクロライド、クロロホルム等のハロゲン化炭化水素系溶剤等と併用することができる。ケトン系溶剤としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルブチルケトン、メチルイソブチルケトン等が挙げられ、アルコール系溶剤としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等が挙げられるが、これらに限定されるものではない。
【0020】
本発明の製造法における反応温度については、用いる溶媒の爆発限界に入らなければ、特には限定されないが、30〜50℃が好ましい。酸化重合が発熱反応のため、50℃以上では温度制御が難しくなり、分子量制御が困難となる。30℃以下では使用する溶媒によっては爆発限界の範囲に入り、安全な製造ができない。
【0021】
【実施例】
次に、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。なお、数平均分子量及び重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)法により求めた。試料のGPC曲線と分子量校正曲線よりデータ処理を行った。分子量校正曲線は、標準ポリスチレンの分子量と溶出時間の関係を次の式に近似して分子量校正曲線を得た。
LogM = A0X3+ A1X2 + A2X + A3 + A4/X2
ここで、M:分子量、X:溶出時間−19(分)、A:係数である。また、水酸基当量は2,6-ジメチルフェノールを標準物質としてIR分析(液セル法;セル長=1mm)を行い、3,600cm-1の吸収強度より求めた。
【0022】
(実施例1) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr2 2.77g(12.5mmol)、N,N'-ジ-t-ブチルエチレンジアミン0.54g(3.1mmol)、n-ブチルジメチルアミン20.03g(198.3mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させた2,2',3,3',5,5'-ヘキサメチル-(1,1'-ビフェニル)-4,4'-ジオール(以下HMBPと記す) 129.32g(0.48mol)、2,6-ジメチルフェノール175.31g(1.44mol)、N,N'-ジ-t-ブチルエチレンジアミン0.36g(2.1mmol)、n-ブチルジメチルアミン7.79g(77.1mmol)、の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノールのモル比率1:3)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム14.20g(37.4mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体295.6gを得た。このものの数平均分子量は650、重量平均分子量は1,040、水酸基当量が325であった。尚、1H-NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0023】
(実施例2) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr2 3.88g(17.4mmol)、N,N'-ジ-t-ブチルエチレンジアミン0.75g(4.4mmol)、n-ブチルジメチルアミン28.04g(277.6mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP 129.32g(0.48mol)、2,6-ジメチルフェノール292.19g(2.40mol)、N,N'-ジ-t-ブチルエチレンジアミン0.51g(2.9mmol)、n-ブチルジメチルアミン10.90g(108.0mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.89g(52.3mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体414.2gを得た。このものの数平均分子量は930、重量平均分子量は1,460、水酸基当量が465であった。尚、1H-NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0024】
(実施例3) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr2 6.64g(29.9mmol)、N,N'-ジ-t-ブチルエチレンジアミン1.29g(7.5mmol)、n-ブチルジメチルアミン48.07g(475.9mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP 129.32g(0.48mol)、2,6-ジメチルフェノール584.38g(4.79mol)、N,N'-ジ-t-ブチルエチレンジアミン0.87g(5.1mmol)、n-ブチルジメチルアミン18.69g(185.1mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:10)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム34.09g(89.7mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体702.2gを得た。このものの数平均分子量は1,490、重量平均分子量は2,320、水酸基当量が750であった。尚、1H-NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0025】
(実施例4) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr2 3.88g(17.4mmol)、N,N'-ジ-t-ブチルエチレンジアミン0.75g(4.4mmol)、n-ブチルジメチルアミン28.04g(277.6mmol)、メチルエチルケトン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメチルエチルケトンに溶解させたHMBP 129.32g(0.48mol)、2,6-ジメチルフェノール292.19g(2.40mol)、N,N'-ジ-t-ブチルエチレンジアミン0.51g(2.9mmol)、n-ブチルジメチルアミン10.90g(108.0mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を3.5 L/minの空気のバブリングを行いながら95分かけて滴下し、攪拌を行った。この際、気相中に3.5L/minの窒素ガスを流通させた。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.89g(52.3mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、フェニレンエーテルオリゴマー体413.1gを得た。このものの数平均分子量は920、重量平均分子量は1,440、水酸基当量が460であった。尚、1H-NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0026】
(比較例1) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr2 3.88g(17.4mmol)、N,N'-ジ-t-ブチルエチレンジアミン0.85g(4.9mmol)、n-ブチルジメチルアミン10.40g(102.8mmol)、ジ-n-ブチルアミン8.21g(63.5mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP 129.32g(0.48mol)、2,6-ジメチルフェノール292.19g(2.40mol)、N,N'-ジ-t-ブチルエチレンジアミン1.70g(9.9mmol)、n-ブチルジメチルアミン20.80g(205.6mmol)、ジ-n-ブチルアミン16.43g(127.1mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.84g(52.2mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体408.4gを得た。このものの数平均分子量は930、重量平均分子量は1,370、水酸基当量が470であった。尚、H1-NMRを測定したところ、ジ-n-ブチルアミンに相当するピークが検出され、そのメチル基のピーク(0.89ppm)の積分比からアミン付加体が22%存在することが確認された。
【0027】
(比較例2) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr2 10.85g(48.8mmol)、ジ-n-ブチルアミン286.83g(2.22mol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP 129.32g(0.48mol)、2,6-ジメチルフェノール292.19g(2.40mol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム55.68g(146.5mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体404.6gを得た。このものの数平均分子量は910、重量平均分子量は1,310、水酸基当量が455であった。尚、H1-NMRを測定したところ、ジ-n-ブチルアミンに相当するピークが検出され、そのメチル基のピーク(0.89ppm)の積分比からアミン付加体が15%存在することが確認された。
【0028】
【表1】
Figure 0004196164
【0029】
【発明の効果】
本発明の製造法により、所望する分子量を有し、アミン付加体のない2官能性フェニレンエーテルのオリゴマー体を効率的に製造することが可能となる。本発明で得られる2官能性フェニレンエーテルのオリゴマー体は、アミンが付加していないので、末端フェノール性水酸基を容易に他の官能基に誘導できる。更に基本骨格がポリフェニレンエーテル構造であるので、耐熱性、誘電特性等に優れ、電気・電子材料に応用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a bifunctional phenylene ether oligomer having a phenolic hydroxyl group at both ends, and to a method for producing a bifunctional phenylene ether oligomer having no amine adduct.
[0002]
[Prior art]
Materials for electrical and electronic applications are required to have low dielectric properties for processing large amounts of data in an advanced information society at high speed and toughness to prevent microcracks from being generated due to thermal shock. On the other hand, the use of engineering plastics such as polyphenylene ether (PPE) has been proposed.
[0003]
However, PPE has excellent high-frequency characteristics, but has poor compatibility with thermosetting resins such as epoxy resins and cyanate resins, has high melt viscosity and poor moldability, and dissolves solvents such as toluene, benzene, It is known that it is limited to aromatic hydrocarbons such as xylene or halogenated hydrocarbons such as methylene chloride and chloroform and has problems such as poor workability.
[0004]
In order to improve the compatibility, a method of improving the compatibility by blending with other resins as a compatibilizing agent, and examination of pseudo-IPN structuring of PPE and cyanate resin (for example, see Patent Document 1) have been made. Molding processability and heat resistance have not been solved. In order to improve moldability, methods such as making polymer PPE into low molecules have been studied. For example, polymer PPE and divalent phenol are redistributed under a radical catalyst (for example, see Patent Document 2), or divalent phenol and monovalent phenol are oxidatively polymerized (for example, Patent Document 3). Etc.) are known. However, in any of the methods, a polymer was present, and a bifunctional phenylene ether oligomer having a desired molecular weight could not be obtained efficiently.
[0005]
In addition, polyphenylene ether resins obtained by oxidative polymerization of phenols are widely known to add an aliphatic secondary amine used in the oxidative polymerization reaction to the benzyl position at the ortho position of the terminal phenol (for example, (See Patent Document 4). When the terminal phenolic hydroxyl group of the polyphenylene ether resin is derived to another functional group, there is a problem that the added amine inhibits the reaction or decreases the stability of the functional group. As a method for reducing the amount of amine adduct produced, a method using a specific amine has been proposed (for example, see Patent Document 5), but the effect was insufficient. Furthermore, although a method for replacing the amine added to the polyphenylene ether resin with an alcohol has been proposed (see, for example, Patent Document 6), there are problems such as an increase in the number of steps.
[0006]
[Patent Document 1]
JP 11-21452 A (page 1-6)
[Patent Document 2]
JP-A-9-291148 (page 1-3)
[Patent Document 3]
Japanese Patent Publication No. 8-011747 (page 1-3)
[Patent Document 4]
JP 52-897 A (pages 1-7)
[Patent Document 5]
JP 62-131022 (page 1-4)
[Patent Document 6]
JP 5-148357 A (page 1-5)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned facts, and its object is to have excellent electrical properties and toughness of PPE, and improve compatibility with thermosetting resins and moldability. Another object of the present invention is to provide a method for producing a bifunctional phenylene ether oligomer having no amine adduct, which is easily dissolved in a general-purpose ketone solvent and can easily be modified with a terminal phenolic hydroxyl group.
[0008]
[Means for Solving the Problems]
As a result of intensive research on a method for producing a bifunctional phenylene ether oligomer, the present inventors have obtained a copper-based catalyst and a secondary amine having a tertiary amine or a secondary alkyl group, a tertiary alkyl group or an aryl group. Alternatively, by using a mixed system of both, by performing an oxidative polymerization reaction of the divalent phenol represented by the following structural formula (2) and the monovalent phenol represented by the following structural formula (3), It was discovered that a bifunctional phenylene ether oligomer represented by the following structural formula (1) without an amine adduct can be stably and efficiently produced, and the present invention has been completed. The present invention is described in detail below.
[0009]
[Chemical 2]
Figure 0004196164
[0010]
(In the above formula, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 and R 10 may be the same or different, and represent a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R 4 , R 5 , R 6 , R 11 and R 12 may be the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and m and n are at least one of (One indicates an integer from 0 to 25 that is not 0.)
[0011]
The divalent phenol compound of the present invention is a divalent phenol represented by the following structural formula (2).
[Chemical 3]
Figure 0004196164
[0012]
Here, the divalent phenol form of the structural formula (2), R 1 , R 2 , R 3 , R 7 , R 8 may be the same or different, a halogen atom or an alkyl group having 6 or less carbon atoms or It is a phenyl group. R 4 , R 5 , and R 6 may be the same or different, and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and R 1 , R 2 , R 3 , R 7 , R 8 Is a divalent phenol that is not a hydrogen atom, and 2,3,3 ′, 5,5′-pentamethyl- (1,1′-biphenyl) -4,4′-diol, 2,2 ′, 3,3 ′, 5,5′-hexamethyl- (1,1′-biphenyl) -4,4′-diol and the like are preferable.
[0013]
The monovalent phenol compound of the present invention is a monovalent phenol represented by the following structural formula (3).
[Formula 4]
Figure 0004196164
[0014]
In the structural formula (3), R 9 and R 10 may be the same or different, and are a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R 11 and R 12 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. In particular, those having a substituent at the 2,6 position alone or those having a substituent at the 2,3,6 position or the 2,3,5,6 position are preferably used in combination. Furthermore, 2,6-dimethylphenol is preferable alone, and 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferable in combination.
[0015]
The bifunctional phenylene ether oligomer represented by the structural formula (1) of the present invention includes a divalent phenol represented by the structural formula (2) and a monovalent phenol represented by the structural formula (3). Is obtained by oxidative polymerization. As for the oxidation method, there is a method of directly using oxygen gas or air. There is also an electrode oxidation method. Any method may be used and is not particularly limited. Air oxidation is preferable because the capital investment is inexpensive, but it is more preferable to carry out the oxidative polymerization reaction with the oxygen concentration in the reactor below the critical oxygen concentration at the explosion limit for safety. As a method for oxidative polymerization reaction at a critical oxygen concentration or less, a method of performing an oxidative polymerization reaction with air while supplying an inert gas in the gas phase, or an oxygen concentration of 3 to 15 by mixing air with an inert gas or the like. There is a method of performing an oxidative polymerization reaction with a mixed gas adjusted to%. In order to carry out the oxidative polymerization reaction, the pressure is usually selected from atmospheric pressure to 20 kg / cm 2 .
[0016]
As the catalyst for carrying out the oxidative polymerization reaction, one or more of copper salts such as CuCl, CuBr, Cu 2 SO 4 , CuCl 2 , CuBr 2 , CuSO 4 , CuI, etc. are used. It is not limited. In addition to the above catalysts, diisopropylamine, di-sec-butylamine, di-t-butylamine, di-t-amylamine, dicyclopentylamine, dicyclohexylamine, diphenylamine, p, p'-ditolylamine, m, m'-ditolylamine, Ethyl-t-butylamine, N, N'-di-t-butylethylenediamine, methylcyclohexylamine, methylphenylamine, triethylamine, methyldiethylamine, n-butyldimethylamine, benzyldimethylamine, phenyldimethylamine, N, N-dimethyl One or more of -p-toluidine, triphenylamine, N, N'-dimethylpiperazine, 2,6-dimethylpyridine and the like are used in combination. A secondary amine having a tertiary amine and a secondary alkyl group, tertiary alkyl group or aryl group is not particularly limited thereto. By using the above amine, a bifunctional phenylene ether oligomer without an amine adduct can be obtained. This bifunctional phenylene ether oligomer without an amine adduct is capable of easily and efficiently converting a phenolic hydroxyl group to another functional group because the added amine does not inhibit the functional group conversion. .
[0017]
In the present invention, the divalent phenol compound represented by the structural formula (2) and the monovalent phenol compound represented by the structural formula (3) are supplied at a constant molar ratio to cause a reaction. A bifunctional phenylene ether oligomer represented by the structural formula (1) having a number average molecular weight can be efficiently produced. For example, 2,2 ', 3,3', 5,5'-hexamethyl- (1,1'-biphenyl) -4,4'-diol as divalent phenol, 2,6-dimethyl as monovalent phenol When phenol is selected and the molar ratio is 1: 3, the number average molecular weight is 600 to 700, and when the molar ratio is 1: 5, the number average molecular weight is 850 to 950 and the molar ratio is 1:10. In this case, bifunctional phenylene ether oligomers having a number average molecular weight of 1,450 to 1,550 can be obtained.
[0018]
In the present invention, the oxidative polymerization reaction can be continued while the unreacted phenol remains even after the supply of the raw material phenol. However, it is not economical to continue the oxidative polymerization reaction even after all the raw material phenols have reacted, because the reaction time becomes longer.
[0019]
Next, the solvent used in the present invention will be described. In the present invention, a ketone solvent and an alcohol solvent, which are considered to be poor solvents in oxidative polymerization and are limited in use in conventional oxidative polymerization of PPE, can be used in the present invention. Conventionally, since this kind of reaction produces a polymer that is hardly soluble in an organic solvent, ketone or alcohol cannot be used as a reaction solvent. However, the product of the present invention is easily dissolved in ketone and alcohol, The range of solvents that can be used has greatly expanded. They can be used alone or in combination with conventional solvents such as aromatic hydrocarbon solvents such as toluene, benzene and xylene, halogenated hydrocarbon solvents such as methylene chloride and chloroform. Examples of ketone solvents include acetone, methyl ethyl ketone, diethyl ketone, methyl butyl ketone, and methyl isobutyl ketone. Examples of alcohol solvents include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, and propylene glycol. However, it is not limited to these.
[0020]
The reaction temperature in the production method of the present invention is not particularly limited as long as it does not fall within the explosion limit of the solvent to be used, but is preferably 30 to 50 ° C. Since oxidative polymerization is an exothermic reaction, temperature control becomes difficult at 50 ° C. or higher, and molecular weight control becomes difficult. Below 30 ° C, depending on the solvent used, it is within the explosion limit range, and safe production is not possible.
[0021]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not specifically limited by a following example. The number average molecular weight and the weight average molecular weight were determined by gel permeation chromatography (GPC) method. Data processing was performed from the GPC curve and molecular weight calibration curve of the sample. The molecular weight calibration curve was obtained by approximating the relationship between the molecular weight of standard polystyrene and the elution time to the following equation.
LogM = A 0 X 3 + A 1 X 2 + A 2 X + A 3 + A 4 / X 2
Here, M: molecular weight, X: elution time -19 (min), A: coefficient. The hydroxyl group equivalent was determined from the absorption intensity of 3,600 cm −1 by performing IR analysis (liquid cell method; cell length = 1 mm) using 2,6-dimethylphenol as a standard substance.
[0022]
(Example 1) CuBr 2 2.77 g (12.5 mmol), N, N′-di-t-butylethylenediamine 0.54 g (3.1) in a 12-liter vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate mmol), 20.03 g (198.3 mmol) of n-butyldimethylamine, 2,600 g of toluene, stirred at a reaction temperature of 40 ° C., and 2,2 ′, 3,3 ′, dissolved in 2,300 g of methanol in advance. 5,5'-hexamethyl- (1,1'-biphenyl) -4,4'-diol (hereinafter referred to as HMBP) 129.32 g (0.48 mol), 2,6-dimethylphenol 175.31 g (1.44 mol), N, A mixed solution of N'-di-t-butylethylenediamine 0.36 g (2.1 mmol) and n-butyldimethylamine 7.79 g (77.1 mmol) (the divalent phenol compound represented by the structural formula (2) and the structural formula ( While mixing a mixture of nitrogen and air to adjust the oxygen concentration to 8% by mixing the molar ratio of monohydric phenol represented by 3) with a flow rate of 5.2 L / min for 230 minutes. The mixture was added dropwise and stirred. After completion of the dropwise addition, 1,500 g of water in which 14.20 g (37.4 mmol) of ethylenediaminetetraacetic acid tetrasodium was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with 1.0N hydrochloric acid aqueous solution and then with pure water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 295.6 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 650, a weight average molecular weight of 1,040, and a hydroxyl group equivalent of 325. When 1 H-NMR was measured, no peak corresponding to the amine was detected, confirming that no amine adduct was formed.
[0023]
(Example 2) CuBr 2 3.88 g (17.4 mmol), N, N′-di-t-butylethylenediamine 0.75 g (4.4 g) in a 12 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate mmol), 28.04 g (277.6 mmol) of n-butyldimethylamine, 2,600 g of toluene, stirred at a reaction temperature of 40 ° C., and 129.32 g (0.48 mol) of HMBP previously dissolved in 2,300 g of methanol, 2, A mixed solution of 292.19 g (2.40 mol) of 6-dimethylphenol, 0.51 g (2.9 mmol) of N, N′-di-t-butylethylenediamine and 10.90 g (108.0 mmol) of n-butyldimethylamine (in the structural formula (2) A mixed gas in which the molar ratio of the divalent phenol compound represented by the structural formula (3) and the monovalent phenol compound represented by the structural formula (3) is adjusted to an oxygen concentration of 8% by mixing nitrogen and air. While bubbling at a flow rate of 5.2 L / min, the solution was added dropwise over 230 minutes and stirred. After completion of the dropwise addition, 1,500 g of water in which 19.89 g (52.3 mmol) of ethylenediaminetetraacetic acid tetrasodium was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with 1.0N hydrochloric acid aqueous solution and then with pure water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 414.2 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 930, a weight average molecular weight of 1,460, and a hydroxyl group equivalent of 465. When 1 H-NMR was measured, no peak corresponding to the amine was detected, confirming that no amine adduct was formed.
[0024]
(Example 3) CuBr 2 6.64 g (29.9 mmol), N, N′-di-t-butylethylenediamine 1.29 g (7.5 kg) were added to a 12 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. mmol), 48.07 g (475.9 mmol) of n-butyldimethylamine, 2,600 g of toluene, stirred at a reaction temperature of 40 ° C., and 129.32 g (0.48 mol) of HMBP previously dissolved in 2,300 g of methanol, 2, A mixed solution of 58.38 g (4.79 mol) of 6-dimethylphenol, 0.87 g (5.1 mmol) of N, N′-di-t-butylethylenediamine and 18.69 g (185.1 mmol) of n-butyldimethylamine (in the structural formula (2) A mixed gas in which the molar ratio of the divalent phenol compound represented by the structural formula (3) and the monovalent phenol compound represented by the structural formula (3) is adjusted to an oxygen concentration of 8% by mixing nitrogen and air. While bubbling at a flow rate of 5.2 L / min, the solution was added dropwise over 230 minutes and stirred. After completion of the dropwise addition, 1,500 g of water in which 34.09 g (89.7 mmol) of ethylenediaminetetraacetic acid tetrasodium was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with 1.0N hydrochloric acid aqueous solution and then with pure water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 702.2 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 1,490, a weight average molecular weight of 2,320, and a hydroxyl group equivalent of 750. When 1 H-NMR was measured, no peak corresponding to the amine was detected, confirming that no amine adduct was formed.
[0025]
(Example 4) CuBr 2 3.88 g (17.4 mmol), N, N′-di-t-butylethylenediamine 0.75 g (4.4 g) were added to a 12 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube and a baffle plate. mmol), n-butyldimethylamine 28.04 g (277.6 mmol), methyl ethyl ketone 2,600 g, stirred at a reaction temperature of 40 ° C., HMBP 129.32 g (0.48 mol), A mixed solution of 292.19 g (2.40 mol) of 6-dimethylphenol, 0.51 g (2.9 mmol) of N, N′-di-t-butylethylenediamine and 10.90 g (108.0 mmol) of n-butyldimethylamine (in the structural formula (2) Molar ratio 1: 5) of the divalent phenol compound represented by the structural formula (3) and the monovalent phenol compound represented by the structural formula (3) was added dropwise over 95 minutes while bubbling 3.5 L / min of air, and stirred. Went. At this time, 3.5 L / min of nitrogen gas was circulated in the gas phase. After completion of the dropwise addition, 1,500 g of water in which 19.89 g (52.3 mmol) of ethylenediaminetetraacetic acid tetrasodium was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with 1.0N hydrochloric acid aqueous solution and then with pure water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 413.1 g of a phenylene ether oligomer. This had a number average molecular weight of 920, a weight average molecular weight of 1,440, and a hydroxyl group equivalent of 460. When 1 H-NMR was measured, no peak corresponding to the amine was detected, confirming that no amine adduct was formed.
[0026]
(Comparative Example 1) CuBr 2 3.88 g (17.4 mmol), N, N′-di-t-butylethylenediamine 0.85 g (4.9 g) in a 12 L vertical reactor equipped with a stirrer, thermometer, air introduction tube, baffle plate mmol), 10.40 g (102.8 mmol) of n-butyldimethylamine, 8.21 g (63.5 mmol) of di-n-butylamine and 2,600 g of toluene, stirred at a reaction temperature of 40 ° C., and dissolved in 2,300 g of methanol in advance. HMBP 129.32 g (0.48 mol), 2,6-dimethylphenol 292.19 g (2.40 mol), N, N′-di-t-butylethylenediamine 1.70 g (9.9 mmol), n-butyldimethylamine 20.80 g (205.6 mmol), a mixed solution of 16.43 g (127.1 mmol) of di-n-butylamine (molar ratio of the divalent phenol compound represented by the structural formula (2) and the monovalent phenol compound represented by the structural formula (3) 1: 5) was added dropwise over 230 minutes while bubbling at a flow rate of 5.2 L / min with a mixed gas adjusted to an oxygen concentration of 8% by mixing nitrogen and air and stirred. After completion of the dropwise addition, 1,500 g of water in which 19.84 g (52.2 mmol) of ethylenediaminetetraacetic acid tetrasodium was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with 1.0N hydrochloric acid aqueous solution and then with pure water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 408.4 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 930, a weight average molecular weight of 1,370, and a hydroxyl group equivalent of 470. When H 1 -NMR was measured, a peak corresponding to di-n-butylamine was detected, and it was confirmed that 22% of the amine adduct was present from the integration ratio of the peak of the methyl group (0.89 ppm). .
[0027]
(Comparative example 2) CuBr 2 10.85 g (48.8 mmol), di-n-butylamine 286.83 g (2.22 mol), toluene 2,600 g in a 12 L vertical reactor equipped with a stirrer, thermometer, air inlet tube and baffle plate Was stirred at a reaction temperature of 40 ° C., and a mixed solution of 129.32 g (0.48 mol) HMBP and 292.19 g (2.40 mol) 2,6-dimethylphenol previously dissolved in 2,300 g methanol (structural formula (2 The molar ratio of the divalent phenolic compound represented by the formula (3) and the monovalent phenolic compound represented by the structural formula (3) 1: 5) was mixed with nitrogen and air to adjust the oxygen concentration to 8%. Gas was added dropwise over 230 minutes while bubbling at a flow rate of 5.2 L / min, and stirring was performed. After completion of the dropwise addition, 1,500 g of water in which 55.68 g (146.5 mmol) of ethylenediaminetetraacetic acid tetrasodium was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with 1.0N hydrochloric acid aqueous solution and then with pure water. The obtained solution was concentrated with an evaporator and further dried under reduced pressure to obtain 404.6 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 910, a weight average molecular weight of 1,310, and a hydroxyl group equivalent of 455. When H 1 -NMR was measured, a peak corresponding to di-n-butylamine was detected, and it was confirmed that 15% of the amine adduct was present from the integration ratio of the peak of the methyl group (0.89 ppm). .
[0028]
[Table 1]
Figure 0004196164
[0029]
【The invention's effect】
The production method of the present invention makes it possible to efficiently produce an oligomer of a bifunctional phenylene ether having a desired molecular weight and having no amine adduct. Since the oligomer of the bifunctional phenylene ether obtained in the present invention has no added amine, the terminal phenolic hydroxyl group can be easily derived to another functional group. Furthermore, since the basic skeleton has a polyphenylene ether structure, it has excellent heat resistance and dielectric properties, and can be applied to electrical and electronic materials.

Claims (7)

銅系触媒および、トリエチルアミン、メチルジエチルアミン、 n- ブチルジメチルアミン、ベンジルジメチルアミン、 N,N - ジメチルピペラジン、 2,6- ジメチルピリジンから選ばれる 1 種または 2 種以上の3級アミンおよびジイソプロピルアミン、ジ -sec- ブチルアミン、ジ - - ブチルアミン、ジ - - アミルアミン、ジシクロペンチルアミン、ジシクロヘキシルアミン、エチル -t- ブチルアミン、 N,N - -t- ブチルエチレンジアミン、メチルシクロヘキシルアミンから選ばれる 1 種または 2 種以上の2級アミンからなる混合系を用いた、下記構造式(2)で表される2価のフェノール体と下記構造式(3)で表される1価のフェノール体との酸化重合反応による、アミン付加体のない下記構造式(1)で表される2官能性フェニレンエーテルオリゴマー体の製造法。
Figure 0004196164
(上記式中、R1、R2、R3、R7、R8、R9、R10は、同一炭素数6以下のアルキル基を示す。R4、R5、R6、R11、R12は、同一または異なってもよく、水素原子または炭素数6以下のアルキル基を示す。m、nは、少なくともいずれか一方が0でない0〜25の整数を示す。)
Copper-based catalyst and triethylamine, methyl diethylamine, n- butyl dimethylamine, benzyldimethylamine, N, N '- dimethylpiperazine, one or more tertiary amines and diisopropylamine selected from 2,6-dimethylpyridine , di -sec- butylamine, di - selected di -t- butyl ethylenediamine, methyl cyclohexylamine - t - butylamine, di - t - amylamine, di cyclopentylamine, dicyclohexylamine, ethyl -t- butylamine, N, N ' using a mixed system consisting of one or more secondary amine, a monovalent phenol compound represented by the following structural formula bivalent phenol compound and the following structural formula represented by (2) (3) A process for producing a bifunctional phenylene ether oligomer represented by the following structural formula (1) without an amine adduct by an oxidative polymerization reaction.
Figure 0004196164
(In the above formula, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 , R 10 are the same and have an alkyl group having 6 or less carbon atoms. R 4 , R 5 , R 6 , R 11 , R 12 are the same or different, .m hydrogen atoms frame other represents an alkyl group having 6 or less carbon atoms, n is an integer of 0 to 25 at least one is not 0.)
上記構造式(3)で表される1価のフェノールが、2,6-ジメチルフェノール単独である請求項1記載の2官能性フェニレンエーテルオリゴマー体の製造法。Monovalent phenol, the preparation of a bifunctional phenylene ether oligomer of claim 1, wherein is 2,6-dimethylphenol alone represented by the structural formula (3). 上記構造式(Above structural formula ( 22 )で表される) 22 価のフェノール体がValent phenolic body 2,22,2 ,3,3, 3,3 ,5,5, 5,5 -- ヘキサメチルHexamethyl -(1,1-(1,1 -- ビフェニルBiphenyl )-4,4) -4,4 -- ジオールである、請求項1記載のThe diol according to claim 1, which is a diol. 22 官能性フェニレンエーテルオリゴマー体の製造法。A method for producing a functional phenylene ether oligomer. 上記構造式(2)で表される2価のフェノール体と上記構造式(3)で表される1価のフェノール体とのモル比率が1:1〜1:15である請求項1記載の2官能性フェニレンエーテルオリゴマー体の製造法。The molar ratio of the divalent phenol compound represented by the structural formula (2) and the monovalent phenol compound represented by the structural formula (3) is 1: 1 to 1:15. Production method of bifunctional phenylene ether oligomer. 上記the above 22 級アミンがSecondary amine N,NN, N -- The -t--t- ブチルエチレンジアミンである、請求項1〜4のいずれかに記載のThe butylethylenediamine according to any one of claims 1 to 4, which is butylethylenediamine. 22 官能性フェニレンエーテルオリゴマー体の製造法。A method for producing a functional phenylene ether oligomer. 上記the above 3Three 級アミンがトリエチルアミン、メチルジエチルアミン、The primary amine is triethylamine, methyldiethylamine, n-n- ブチルジメチルアミン、Butyldimethylamine, N,NN, N -- ジメチルピペラジンから選ばれるSelected from dimethylpiperazine 11 種またはSeed or 22 種以上である、請求項1〜4のいずれかに記載のThe species according to any one of claims 1 to 4, which is a species or more. 22 官能性フェニレンエーテルオリゴマー体の製造法。A method for producing a functional phenylene ether oligomer. 上記the above 3Three 級アミンがnN is a secondary amine -- ブチルジメチルアミンである、請求項6記載のThe butyldimethylamine according to claim 6, which is butyldimethylamine. 22 官能性フェニレンエーテルオリゴマー体の製造法。A method for producing a functional phenylene ether oligomer.
JP2002279389A 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer Expired - Lifetime JP4196164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279389A JP4196164B2 (en) 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279389A JP4196164B2 (en) 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer

Publications (2)

Publication Number Publication Date
JP2004115619A JP2004115619A (en) 2004-04-15
JP4196164B2 true JP4196164B2 (en) 2008-12-17

Family

ID=32274413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279389A Expired - Lifetime JP4196164B2 (en) 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer

Country Status (1)

Country Link
JP (1) JP4196164B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471073B2 (en) * 2003-07-02 2010-06-02 三菱瓦斯化学株式会社 Method for producing bifunctional phenylene ether oligomer
JP4591665B2 (en) * 2004-07-20 2010-12-01 三菱瓦斯化学株式会社 Production method of vinyl compounds
EP2061836A1 (en) * 2006-09-15 2009-05-27 Sabic Innovative Plastics IP B.V. Poly(arylene ether) composition, method, and article
JP2008127497A (en) * 2006-11-22 2008-06-05 Mitsubishi Gas Chem Co Inc Process for producing phenylene ether oligomer mixture
EP2006318B1 (en) 2007-06-18 2014-04-30 Mitsubishi Gas Chemical Company, Inc. Process for the production of vinyl compound
WO2023166948A1 (en) * 2022-03-02 2023-09-07 本州化学工業株式会社 (meth)acrylate-terminated polyphenylene ether oligomer, and resin composition, varnish, prepreg, and cured product containing same

Also Published As

Publication number Publication date
JP2004115619A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
KR101069771B1 (en) Process for Production of Bifunctional Phenylene Ether Oligomers
JP4736254B2 (en) Bifunctional phenylene ether oligomer and its production method
JP5268959B2 (en) Production method of poly (arylene ether) and poly (arylene ether) produced by the method
US6472499B1 (en) Preparation of high intrinsic viscosity poly(arylene ether) resins
JPH01304121A (en) Method for capping polyphenylene ether
KR100914020B1 (en) Bifunctional biphenyl and process for producing bifunctional phenylene ether oligomer compound using the same
KR20000064906A (en) Rearrangement method of polyphenylene ether and polyphenylene ether having novel structure
JPS6120575B2 (en)
JPS59168029A (en) Manufacture of bifunctional polyphenylene oxide
JP4196164B2 (en) Method for producing bifunctional phenylene ether oligomer
EP1526148B1 (en) Process for the production of vinyl compound
JP5759087B2 (en) Poly (phenylene ether) copolymer and production method
JPS6120576B2 (en)
JP4048362B2 (en) Method for producing bifunctional phenylene ether oligomer
US4503214A (en) Continuous process for preparing polyphenylene oxides
JP4591665B2 (en) Production method of vinyl compounds
US20120309927A1 (en) Polyarylene Ether and Method for Preparing the Same
JPH05331280A (en) Method for capping polyphenylene ether, polyphenylene resin obtained therewith, and composition containing it
JP3744902B2 (en) Process for producing poly (oxyphenylene) s having substituted phenyl ether in the side chain
JP4799015B2 (en) Method for increasing molecular weight of polyphenylene ether
JP2024507517A (en) Method for producing polyphenylene oxide
JP2008127497A (en) Process for producing phenylene ether oligomer mixture
JP2022182500A (en) Method for producing methacry-modified polyphenylene ether
JP2023088477A (en) Curable resin composition
JPH0585977A (en) Production of substituted phenol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4196164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

EXPY Cancellation because of completion of term