JP2004115619A - Method for producing bifunctional phenylene ether oligomer - Google Patents

Method for producing bifunctional phenylene ether oligomer Download PDF

Info

Publication number
JP2004115619A
JP2004115619A JP2002279389A JP2002279389A JP2004115619A JP 2004115619 A JP2004115619 A JP 2004115619A JP 2002279389 A JP2002279389 A JP 2002279389A JP 2002279389 A JP2002279389 A JP 2002279389A JP 2004115619 A JP2004115619 A JP 2004115619A
Authority
JP
Japan
Prior art keywords
structural formula
phenylene ether
ether oligomer
bifunctional phenylene
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002279389A
Other languages
Japanese (ja)
Other versions
JP4196164B2 (en
Inventor
Kenji Ishii
石井 賢治
Yasumasa Norisue
則末 泰正
Katsuhiko Yanagida
柳田 克彦
Makoto Miyamoto
宮本 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002279389A priority Critical patent/JP4196164B2/en
Publication of JP2004115619A publication Critical patent/JP2004115619A/en
Application granted granted Critical
Publication of JP4196164B2 publication Critical patent/JP4196164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a bifunctional phenylene ether oligomer which is soluble in a ketone-based solvent and has a desired average molecular weight and no amine adduct. <P>SOLUTION: The method for producing the bifunctional phenylene ether oligomer having the desired molecular weight and no amine adduct comprises subjecting a dihydric phenol and a monohydric phenol in a specific molar ratio to an oxidative polymerization reaction using a copper-based catalyst and a tertiary amine or a secondary alkyl group-, tertiary alkyl group- or aryl group-containing secondary amine or a mixed system of both the amines. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、両末端にフェノール性水酸基を有する2官能性フェニレンエーテルオリゴマー体の製造法に関するもので、アミン付加体のない2官能性フェニレンエーテルオリゴマー体を製造する方法に関するものである。
【0002】
【従来の技術】
電気・電子用途の材料には、高度情報化社会での大量データを高速で処理するための低誘電特性、熱衝撃等でマイクロクラックが発生しないための強靭性が必要とされている。これに対し、ポリフェニレンエーテル(PPE)などのエンジニアリングプラスチックスの利用が提案されている。
【0003】
しかし、PPEは優れた高周波特性を有する反面、エポキシ樹脂やシアネート樹脂等の熱硬化性樹脂との相溶性が悪いこと、溶融粘度が高く成形加工性が悪いこと、溶解する溶媒がトルエン、ベンゼン、キシレン等の芳香族炭化水素系あるいはメチレンクロライド、クロロホルム等のハロゲン化炭化水素系に限定され作業性が悪いこと等の問題点をもつことが知られている。
【0004】
相溶性改善のためには、相溶化剤として他の樹脂とのブレンドにより改善する方法やPPEとシアネート樹脂の擬似IPN構造化の検討(例えば、特許文献1参照。)等がなされているが、成形加工性・耐熱性までは解決されていない。また、成形性改善のためには、高分子PPEを低分子にする方法等の検討がなされている。例えば、高分子PPEと2価のフェノールをラジカル触媒下で再分配させる方法(例えば、特許文献2参照。)、あるいは2価のフェノールと1価のフェノールを酸化重合する方法(例えば、特許文献3参照。)等が知られている。しかしながら、いずれの方法でも高分子体が存在し、所望する分子量を有する2官能性フェニレンエーテルオリゴマー体を効率良く得ることができなかった。
【0005】
またフェノール類の酸化重合で得られるポリフェニレンエーテル樹脂は、酸化重合反応の際に使用される脂肪族2級アミンが末端フェノールのオルト位のベンジル位に付加することが広く知られている(例えば、特許文献4参照。)。ポリフェニレンエーテル樹脂の末端フェノール性水酸基を他の官能基に誘導する際、この付加したアミンが反応を阻害したり、官能基の安定性を低下させたりする問題があった。アミン付加体の生成量を減らす方法として、特定のアミンを使用する方法が提案されている(例えば、特許文献5参照。)が、その効果は不十分であった。更に、ポリフェニレンエーテル樹脂に付加したアミンをアルコール類で置換する方法が提案(例えば、特許文献6参照。)されているが、工程が増える等の問題点があった。
【0006】
【特許文献1】特開平11−21452号公報(第1−6頁)
【特許文献2】特開平9−291148号公報(第1−3頁)
【特許文献3】特公平8−011747号公報(第1−3頁)
【特許文献4】特開昭52−897号公報(第1−7頁)
【特許文献5】特開昭62−131022号公報(第1−4頁)
【特許文献6】特開平5−148357号公報(第1−5頁)
【0007】
【発明が解決しようとする課題】
本発明は、上述の事実に鑑みてなされたもので、その目的とするところは、PPEの優れた電気特性・強靭性を有し、熱硬化性樹脂との相溶性、成形加工性を改善し、更には汎用ケトン系溶媒に溶解し、末端フェノール性水酸基の修飾が容易であるアミン付加体のない2官能性フェニレンエーテルオリゴマー体を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、2官能性フェニレンエーテルオリゴマー体の製造法について鋭意研究を重ねた結果、銅系触媒および、3級アミンまたは2級アルキル基、3級アルキル基あるいはアリール基を有する2級アミンまたは両者の混合系を用いて、下記構造式(2)で表される2価のフェノール体と下記構造式(3)で表される1価のフェノール体との酸化重合反応を行うことで、アミン付加体のない下記構造式(1)で表される2官能性フェニレンエーテルオリゴマー体を安定的に効率よく製造できる事を発見し、本発明を完成するに至った。以下に、本発明を詳細に説明する。
【0009】
【化2】

Figure 2004115619
【0010】
(上記式中、R、R、R、R、R、R、R10は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基を示す。R、R、R、R11、R12は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基を示す。m、nは、少なくともいずれか一方が0でない0〜25の整数を示す。)
【0011】
本発明の2価のフェノール体とは、下記構造式(2)で表される2価のフェノールである。
【化3】
Figure 2004115619
【0012】
ここで、構造式(2)の2価のフェノール体とは、R、R、R、R、Rは同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R、R、Rは、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基であり、R、R、R、R、Rが水素原子でないことが必須の2価のフェノールであり、2,3,3’,5,5’−ペンタメチル−(1,1’−ビフェニル)−4,4’−ジオール、2,2’,3,3’,5,5’−ヘキサメチル−(1,1’−ビフェニル)−4,4’−ジオールなどが好ましい。
【0013】
本発明の1価のフェノール体とは、下記構造式(3)で表される1価のフェノールである。
【化4】
Figure 2004115619
【0014】
構造式(3)において、R、R10は同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R11、R12は同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。特に、2,6位に置換基を有するもの単独、またはこれと2,3,6位あるいは2,3,5,6位に置換基を有するものが併用されることが好ましい。更には、単独では2,6−ジメチルフェノールが好ましく、併用では2,6−ジメチルフェノールと2,3,6−トリメチルフェノールが好ましい。
【0015】
本発明の構造式(1)で示される2官能性フェニレンエーテルオリゴマー体は、構造式(2)で表される2価のフェノール体と、構造式(3)で表される1価のフェノール体とを酸化重合することによって得られる。酸化の方法については直接酸素ガス、空気を使用する方法がある。また電極酸化の方法もある。いずれの方法でも良く、特には限定されない。設備投資が安価である事から空気酸化が好ましいが、安全性から反応器中の酸素濃度を爆発限界の限界酸素濃度以下で酸化重合反応を実施することが更に好ましい。限界酸素濃度以下での酸化重合反応方法としては、気相中に不活性ガスを供給しながら空気で酸化重合反応を行う方法、または不活性ガス等と空気を混合して酸素濃度を3〜15%に調整した混合ガスで酸化重合反応を行う方法がある。酸化重合反応を実施するには、圧力は通常大気圧から20kg/cmまでの圧力が選ばれる。
【0016】
酸化重合反応を実施する場合の触媒としては、CuCl、CuBr、CuSO、CuCl、CuBr、CuSO、CuI等の銅塩等の一種または二種以上が用いられるが、特にこれらに限定されるものではない。上記触媒に加えて、ジイソプロピルアミン、ジ−sec−ブチルアミン、ジ−t−ブチルアミン、ジ−t−アミルアミン、ジシクロペンチルアミン、ジシクロヘキシルアミン、ジフェニルアミン、p,p’−ジトリルアミン、m,m’−ジトリルアミン、エチル−t−ブチルアミン、N,N’−ジ−t−ブチルエチレンジアミン、メチルシクロヘキシルアミン、メチルフェニルアミン、トリエチルアミン、メチルジエチルアミン、n−ブチルジメチルアミン、ベンジルジメチルアミン、フェニルジメチルアミン、N,N−ジメチル−p−トルイジン、トリフェニルアミン、N,N’−ジメチルピペラジン、2,6−ジメチルピリジン等から一種または二種以上が併用される。3級アミン及び2級アルキル基、3級アルキル基あるいはアリール基を有する2級アミンであれば、特にこれらに限定されるものではない。上記のアミンを使用することで、アミン付加体のない2官能性フェニレンエーテルオリゴマー体を得ることができる。このアミン付加体のない2官能性フェニレンエーテルオリゴマー体は、付加したアミンに官能基変換を阻害されることがないので、フェノール性水酸基を他の官能基へ容易かつ効率的に変換することができる。
【0017】
本発明では、構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体とを一定のモル比で供給して反応させることで、所望する数平均分子量を有する構造式(1)で表される2官能性フェニレンエーテルオリゴマー体を効率的に製造することが出来る。例えば、2価のフェノールとして2,2’,3,3’,5,5’−ヘキサメチル−(1,1’−ビフェニル)−4,4’−ジオール、1価のフェノールとして2,6−ジメチルフェノールを選び、1:3のモル比とした場合には数平均分子量が600〜700、1:5のモル比とした場合には数平均分子量が850〜950、1:10のモル比とした場合には数平均分子量が1,450〜1,550の2官能性フェニレンエーテルオリゴマー体をそれぞれ得ることができる。
【0018】
本発明では、原料フェノールの供給終了後も未反応のフェノールが残存している間は、酸化重合反応を継続することは可能である。但し、原料フェノールが全て反応した後も酸化重合反応を継続することは、反応時間が長くなり経済的でない。
【0019】
次に、本発明に使用される溶媒について説明する。酸化重合において貧溶媒と考えられていて、従来のPPEの酸化重合において使用が限られていたケトン系溶媒及びアルコール系溶媒を本発明では用いることができる。従来この種の反応は、有機溶媒に溶け難いポリマーが生成するため、反応溶媒としてケトンやアルコールを用いることができなかったが、本発明の生成物は、ケトン及びアルコールにも容易に溶解し、使用できる溶媒の範囲が大きく広がった。それらを単独、あるいは従来の溶媒であるトルエン、ベンゼン、キシレン等の芳香族炭化水素系溶剤、メチレンクロライド、クロロホルム等のハロゲン化炭化水素系溶剤等と併用することができる。ケトン系溶剤としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルブチルケトン、メチルイソブチルケトン等が挙げられ、アルコール系溶剤としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等が挙げられるが、これらに限定されるものではない。
【0020】
本発明の製造法における反応温度については、用いる溶媒の爆発限界に入らなければ、特には限定されないが、30〜50℃が好ましい。酸化重合が発熱反応のため、50℃以上では温度制御が難しくなり、分子量制御が困難となる。30℃以下では使用する溶媒によっては爆発限界の範囲に入り、安全な製造ができない。
【0021】
【実施例】
次に、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。なお、数平均分子量及び重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)法により求めた。試料のGPC曲線と分子量校正曲線よりデータ処理を行った。分子量校正曲線は、標準ポリスチレンの分子量と溶出時間の関係を次の式に近似して分子量校正曲線を得た。
LogM = A+ A + AX + A + A/X
ここで、M:分子量、X:溶出時間−19(分)、A:係数である。また、水酸基当量は2,6−ジメチルフェノールを標準物質としてIR分析(液セル法;セル長=1mm)を行い、3,600cm−1の吸収強度より求めた。
【0022】
(実施例1) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr 2.77g(12.5mmol)、N,N’−ジ−t−ブチルエチレンジアミン0.54g(3.1mmol)、n−ブチルジメチルアミン20.03g(198.3mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させた2,2’,3,3’,5,5’−ヘキサメチル−(1,1’−ビフェニル)−4,4’−ジオール(以下HMBPと記す) 129.32g(0.48mol)、2,6−ジメチルフェノール175.31g(1.44mol)、N,N’−ジ−t−ブチルエチレンジアミン0.36g(2.1mmol)、n−ブチルジメチルアミン7.79g(77.1mmol)、の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノールのモル比率1:3)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム14.20g(37.4mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体295.6gを得た。このものの数平均分子量は650、重量平均分子量は1,040、水酸基当量が325であった。尚、H−NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0023】
(実施例2) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr 3.88g(17.4mmol)、N,N’−ジ−t−ブチルエチレンジアミン0.75g(4.4mmol)、n−ブチルジメチルアミン28.04g(277.6mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP129.32g(0.48mol)、2,6−ジメチルフェノール292.19g(2.40mol)、N,N’−ジ−t−ブチルエチレンジアミン0.51g(2.9mmol)、n−ブチルジメチルアミン10.90g(108.0mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.89g(52.3mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体414.2gを得た。このものの数平均分子量は930、重量平均分子量は1,460、水酸基当量が465であった。尚、H−NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0024】
(実施例3) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr 6.64g(29.9mmol)、N,N’−ジ−t−ブチルエチレンジアミン1.29g(7.5mmol)、n−ブチルジメチルアミン48.07g(475.9mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP129.32g(0.48mol)、2,6−ジメチルフェノール584.38g(4.79mol)、N,N’−ジ−t−ブチルエチレンジアミン0.87g(5.1mmol)、n−ブチルジメチルアミン18.69g(185.1mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:10)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム34.09g(89.7mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体702.2gを得た。このものの数平均分子量は1,490、重量平均分子量は2,320、水酸基当量が750であった。尚、H−NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0025】
(実施例4) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr 3.88g(17.4mmol)、N,N’−ジ−t−ブチルエチレンジアミン0.75g(4.4mmol)、n−ブチルジメチルアミン28.04g(277.6mmol)、メチルエチルケトン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメチルエチルケトンに溶解させたHMBP 129.32g(0.48mol)、2,6−ジメチルフェノール292.19g(2.40mol)、N,N’−ジ−t−ブチルエチレンジアミン0.51g(2.9mmol)、n−ブチルジメチルアミン10.90g(108.0mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を3.5 L/minの空気のバブリングを行いながら95分かけて滴下し、攪拌を行った。この際、気相中に3.5L/minの窒素ガスを流通させた。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.89g(52.3mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、フェニレンエーテルオリゴマー体413.1gを得た。このものの数平均分子量は920、重量平均分子量は1,440、水酸基当量が460であった。尚、H−NMRを測定したところ、アミンに相当するピークは検出されず、アミン付加体は生成していないことが確認された。
【0026】
(比較例1) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr 3.88g(17.4mmol)、N,N’−ジ−t−ブチルエチレンジアミン0.85g(4.9mmol)、n−ブチルジメチルアミン10.40g(102.8mmol)、ジ−n−ブチルアミン8.21g(63.5mmol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP 129.32g(0.48mol)、2,6−ジメチルフェノール292.19g(2.40mol)、N,N’−ジ−t−ブチルエチレンジアミン1.70g(9.9mmol)、n−ブチルジメチルアミン20.80g(205.6mmol)、ジ−n−ブチルアミン16.43g(127.1mmol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム19.84g(52.2mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体408.4gを得た。このものの数平均分子量は930、重量平均分子量は1,370、水酸基当量が470であった。尚、H−NMRを測定したところ、ジ−n−ブチルアミンに相当するピークが検出され、そのメチル基のピーク(0.89ppm)の積分比からアミン付加体が22%存在することが確認された。
【0027】
(比較例2) 攪拌装置、温度計、空気導入管、じゃま板のついた12Lの縦長反応器にCuBr 10.85g(48.8mmol)、ジ−n−ブチルアミン286.83g(2.22mol)、トルエン 2,600gを仕込み、反応温度40℃にて攪拌を行い、あらかじめ2,300gのメタノールに溶解させたHMBP 129.32g(0.48mol)、2,6−ジメチルフェノール292.19g(2.40mol)の混合溶液(構造式(2)で表される2価のフェノール体と構造式(3)で表される1価のフェノール体のモル比率1:5)を、窒素と空気とを混合して酸素濃度8%に調整した混合ガスを5.2 L/minの流速でバブリングを行いながら230分かけて滴下し、攪拌を行った。滴下終了後、エチレンジアミン四酢酸四ナトリウム55.68g(146.5mmol)を溶解した水1,500gを加え、反応を停止した。水層と有機層を分液し、有機層を1.0Nの塩酸水溶液、次いで純水で洗浄した。得られた溶液をエバポレーターで濃縮し、さらに減圧乾燥を行い、2官能性フェニレンエーテルオリゴマー体404.6gを得た。このものの数平均分子量は910、重量平均分子量は1,310、水酸基当量が455であった。尚、H−NMRを測定したところ、ジ−n−ブチルアミンに相当するピークが検出され、そのメチル基のピーク(0.89ppm)の積分比からアミン付加体が15%存在することが確認された。
【0028】
【表1】
Figure 2004115619
【0029】
【発明の効果】
本発明の製造法により、所望する分子量を有し、アミン付加体のない2官能性フェニレンエーテルのオリゴマー体を効率的に製造することが可能となる。本発明で得られる2官能性フェニレンエーテルのオリゴマー体は、アミンが付加していないので、末端フェノール性水酸基を容易に他の官能基に誘導できる。更に基本骨格がポリフェニレンエーテル構造であるので、耐熱性、誘電特性等に優れ、電気・電子材料に応用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a bifunctional phenylene ether oligomer having phenolic hydroxyl groups at both ends, and more particularly to a method for producing a bifunctional phenylene ether oligomer having no amine adduct.
[0002]
[Prior art]
Materials for electric and electronic applications are required to have low dielectric properties for processing large amounts of data at high speed in the advanced information society and toughness for preventing microcracks due to thermal shock and the like. On the other hand, utilization of engineering plastics such as polyphenylene ether (PPE) has been proposed.
[0003]
However, while PPE has excellent high-frequency characteristics, it has poor compatibility with thermosetting resins such as epoxy resins and cyanate resins, high melt viscosity and poor moldability, and the solvent to be dissolved is toluene, benzene, It is known that it is limited to aromatic hydrocarbons such as xylene or halogenated hydrocarbons such as methylene chloride and chloroform and has problems such as poor workability.
[0004]
In order to improve the compatibility, methods of improving the compatibility by blending with another resin as a compatibilizing agent, and studying the formation of a pseudo IPN between PPE and a cyanate resin (for example, see Patent Document 1) have been proposed. The moldability and heat resistance have not been solved. Further, in order to improve the moldability, a method of reducing the molecular weight of the polymer PPE has been studied. For example, a method of redistributing polymer PPE and divalent phenol under a radical catalyst (for example, see Patent Document 2), or a method of oxidatively polymerizing divalent phenol and monovalent phenol (for example, Patent Document 3) See, for example). However, in any method, a polymer was present, and a bifunctional phenylene ether oligomer having a desired molecular weight could not be efficiently obtained.
[0005]
It is widely known that, in polyphenylene ether resins obtained by oxidative polymerization of phenols, an aliphatic secondary amine used in the oxidative polymerization reaction is added to an ortho-benzyl position of a terminal phenol (for example, See Patent Document 4.). When the terminal phenolic hydroxyl group of the polyphenylene ether resin is introduced into another functional group, there is a problem that the added amine inhibits the reaction or lowers the stability of the functional group. As a method for reducing the amount of amine adducts produced, a method using a specific amine has been proposed (for example, see Patent Document 5), but its effect was insufficient. Further, a method has been proposed in which an amine added to the polyphenylene ether resin is replaced with alcohols (for example, see Patent Document 6), but there is a problem that the number of steps is increased.
[0006]
[Patent Document 1] JP-A-11-21452 (pages 1-6)
[Patent Document 2] JP-A-9-291148 (pages 1-3)
[Patent Document 3] Japanese Patent Publication No. H8-011747 (pages 1-3)
[Patent Document 4] JP-A-52-897 (pages 1-7)
[Patent Document 5] JP-A-62-131022 (pages 1-4)
[Patent Document 6] JP-A-5-148357 (pages 1 to 5)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described facts, and has as its object the purpose of having excellent electrical properties and toughness of PPE, improving compatibility with a thermosetting resin, and improving moldability. It is still another object of the present invention to provide a method for producing a bifunctional phenylene ether oligomer having no amine adduct, which is dissolved in a general-purpose ketone-based solvent and can easily modify a terminal phenolic hydroxyl group.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for producing a bifunctional phenylene ether oligomer, and have found that a copper-based catalyst and a secondary amine having a tertiary amine or a secondary alkyl group, a tertiary alkyl group or an aryl group are obtained. Alternatively, an oxidative polymerization reaction of a divalent phenol compound represented by the following structural formula (2) and a monovalent phenol compound represented by the following structural formula (3) by using a mixed system of both, The inventors have found that a bifunctional phenylene ether oligomer represented by the following structural formula (1) without an amine adduct can be stably and efficiently produced, and have completed the present invention. Hereinafter, the present invention will be described in detail.
[0009]
Embedded image
Figure 2004115619
[0010]
(In the above formula, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 , and R 10 may be the same or different and represent a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R 4 , R 5 , R 6 , R 11 , and R 12 may be the same or different and represent a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, and m and n are at least one of m and n. One is an integer of 0 to 25 other than 0.)
[0011]
The dihydric phenol compound of the present invention is a dihydric phenol represented by the following structural formula (2).
Embedded image
Figure 2004115619
[0012]
Here, R 1 , R 2 , R 3 , R 7 and R 8 may be the same or different from the divalent phenol compound of the structural formula (2), and may be a halogen atom or an alkyl group having 6 or less carbon atoms or It is a phenyl group. R 4 , R 5 , and R 6 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, and R 1 , R 2 , R 3 , R 7 , and R 8 Is a divalent phenol which is essential to be not a hydrogen atom, and 2,3,3 ′, 5,5′-pentamethyl- (1,1′-biphenyl) -4,4′-diol, 2,2 ′, 3,3 ', 5,5'-Hexamethyl- (1,1'-biphenyl) -4,4'-diol is preferred.
[0013]
The monovalent phenol compound of the present invention is a monovalent phenol represented by the following structural formula (3).
Embedded image
Figure 2004115619
[0014]
In the structural formula (3), R 9 and R 10 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R 11 and R 12 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. In particular, those having a substituent at the 2,6-position alone, or those having a substituent at the 2,3,6-position or 2,3,5,6-position are preferably used in combination. Further, 2,6-dimethylphenol is preferred alone, and 2,6-dimethylphenol and 2,3,6-trimethylphenol are preferred in combination.
[0015]
The bifunctional phenylene ether oligomer represented by the structural formula (1) of the present invention includes a divalent phenol represented by the structural formula (2) and a monovalent phenol represented by the structural formula (3) By oxidative polymerization of Regarding the oxidation method, there is a method of directly using oxygen gas and air. There is also a method of electrode oxidation. Either method may be used, and there is no particular limitation. Air oxidation is preferred because of low capital investment, but it is more preferred to carry out the oxidative polymerization reaction with the oxygen concentration in the reactor below the explosion limit oxygen concentration for safety. As the oxidation polymerization reaction method at the oxygen concentration below the limit, a method of performing an oxidation polymerization reaction with air while supplying an inert gas into the gas phase, or mixing an inert gas or the like with air to reduce the oxygen concentration to 3 to 15 %, There is a method in which an oxidative polymerization reaction is carried out using a mixed gas adjusted to%. In order to carry out the oxidative polymerization reaction, the pressure is usually selected from atmospheric pressure to 20 kg / cm 2 .
[0016]
As the catalyst for carrying out the oxidative polymerization reaction, one or two or more of copper salts such as CuCl, CuBr, Cu 2 SO 4 , CuCl 2 , CuBr 2 , CuSO 4 , and CuI are used. It is not limited. In addition to the above catalyst, diisopropylamine, di-sec-butylamine, di-t-butylamine, di-t-amylamine, dicyclopentylamine, dicyclohexylamine, diphenylamine, p, p′-ditolylamine, m, m′-ditolylamine, Ethyl-t-butylamine, N, N'-di-t-butylethylenediamine, methylcyclohexylamine, methylphenylamine, triethylamine, methyldiethylamine, n-butyldimethylamine, benzyldimethylamine, phenyldimethylamine, N, N-dimethyl One or two or more of -p-toluidine, triphenylamine, N, N'-dimethylpiperazine, 2,6-dimethylpyridine and the like are used in combination. The tertiary amine and the secondary amine having a secondary alkyl group, a tertiary alkyl group or an aryl group are not particularly limited to these. By using the above amine, a bifunctional phenylene ether oligomer having no amine adduct can be obtained. The bifunctional phenylene ether oligomer having no amine adduct can easily and efficiently convert a phenolic hydroxyl group to another functional group because the functional group conversion is not hindered by the added amine. .
[0017]
In the present invention, it is desirable that the divalent phenol compound represented by the structural formula (2) and the monovalent phenol compound represented by the structural formula (3) are supplied and reacted at a fixed molar ratio. A bifunctional phenylene ether oligomer represented by the structural formula (1) having a number average molecular weight can be efficiently produced. For example, 2,2 ′, 3,3 ′, 5,5′-hexamethyl- (1,1′-biphenyl) -4,4′-diol as a divalent phenol and 2,6-dimethyl as a monovalent phenol When phenol was selected and the molar ratio was 1: 3, the number average molecular weight was 600 to 700, and when the molar ratio was 1: 5, the number average molecular weight was 850 to 950, and the molar ratio was 1:10. In this case, a bifunctional phenylene ether oligomer having a number average molecular weight of 1,450 to 1,550 can be obtained.
[0018]
In the present invention, the oxidative polymerization reaction can be continued while unreacted phenol remains even after the supply of the raw material phenol is completed. However, it is not economical to continue the oxidative polymerization reaction even after all of the starting phenols have reacted, because the reaction time becomes long.
[0019]
Next, the solvent used in the present invention will be described. Ketone-based solvents and alcohol-based solvents, which are considered poor solvents in oxidative polymerization and whose use is limited in conventional oxidative polymerization of PPE, can be used in the present invention. Conventionally, in this type of reaction, ketones and alcohols cannot be used as a reaction solvent because a polymer that is hardly soluble in an organic solvent is generated, but the product of the present invention is easily dissolved in ketones and alcohols, The range of solvents that can be used has been greatly expanded. These can be used alone or in combination with conventional solvents such as aromatic hydrocarbon solvents such as toluene, benzene and xylene, and halogenated hydrocarbon solvents such as methylene chloride and chloroform. Ketone solvents include acetone, methyl ethyl ketone, diethyl ketone, methyl butyl ketone, methyl isobutyl ketone, and the like, and alcohol solvents include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, and the like. However, the present invention is not limited to these.
[0020]
The reaction temperature in the production method of the present invention is not particularly limited as long as it does not fall below the explosion limit of the solvent used, but is preferably 30 to 50 ° C. Since oxidative polymerization is an exothermic reaction, temperature control becomes difficult at 50 ° C. or higher, and molecular weight control becomes difficult. If the temperature is lower than 30 ° C., depending on the solvent used, the explosion limit is reached and safe production cannot be performed.
[0021]
【Example】
Next, the present invention will be specifically described based on examples and comparative examples, but the present invention is not particularly limited by the following examples. In addition, the number average molecular weight and the weight average molecular weight were determined by gel permeation chromatography (GPC). Data processing was performed based on the GPC curve and the molecular weight calibration curve of the sample. The molecular weight calibration curve was obtained by approximating the relationship between the molecular weight of standard polystyrene and the elution time by the following equation.
LogM = A 0 X 3 + A 1 X 2 + A 2 X + A 3 + A 4 / X 2
Here, M: molecular weight, X: elution time −19 (min), A: coefficient. The hydroxyl equivalent was determined by IR analysis (liquid cell method; cell length = 1 mm) using 2,6-dimethylphenol as a standard substance, and was determined from the absorption intensity at 3,600 cm −1 .
[0022]
(Example 1) 2.77 g (12.5 mmol) of CuBr 2 and N, N'-di-t-butylethylenediamine were placed in a 12 L vertically long reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. 54 g (3.1 mmol), 20.03 g (198.3 mmol) of n-butyldimethylamine and 2,600 g of toluene were charged, and the mixture was stirred at a reaction temperature of 40 ° C. and dissolved in 2,300 g of methanol in advance. 129.32 g (0.48 mol) of 2 ', 3,3', 5,5'-hexamethyl- (1,1'-biphenyl) -4,4'-diol (hereinafter referred to as HMBP), 2,6-dimethyl Phenol 175.31 g (1.44 mol), N, N'-di-tert-butylethylenediamine 0.36 g (2.1 mmol), n-butyldimethylamine 7.79 g (77. (mole ratio of the divalent phenol represented by the structural formula (2) to the monovalent phenol represented by the structural formula (3) is 1: 3), and nitrogen and air are mixed. The mixed gas adjusted to an oxygen concentration of 8% was added dropwise over 230 minutes while bubbling at a flow rate of 5.2 L / min, followed by stirring. After completion of the dropwise addition, 1500 g of water in which 14.20 g (37.4 mmol) of tetrasodium ethylenediaminetetraacetate was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with a 1.0 N aqueous hydrochloric acid solution and then with pure water. The obtained solution was concentrated by an evaporator, and further dried under reduced pressure to obtain 295.6 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 650, a weight average molecular weight of 1,040 and a hydroxyl equivalent of 325. When 1 H-NMR was measured, no peak corresponding to the amine was detected, and it was confirmed that no amine adduct was generated.
[0023]
(Example 2) stirrer, a thermometer, an air-introducing tube, CuBr 2 3.88 g longitudinally long reactor 12L equipped with a baffle plate (17.4 mmol), N, N'-di -t- butyl ethylenediamine 0. 75 g (4.4 mmol), 28.04 g (277.6 mmol) of n-butyldimethylamine and 2,600 g of toluene were charged and stirred at a reaction temperature of 40 ° C., and HMBP129. Was previously dissolved in 2,300 g of methanol. 32 g (0.48 mol), 292.19 g (2.40 mol) of 2,6-dimethylphenol, 0.51 g (2.9 mmol) of N, N'-di-t-butylethylenediamine, 10.90 g of n-butyldimethylamine (108.0 mmol) of a mixed solution (a divalent phenol represented by the structural formula (2) and a monovalent phenol represented by the structural formula (3)) A phenolic compound (molar ratio of 1: 5) was added dropwise over 230 minutes while performing bubbling at a flow rate of 5.2 L / min with a mixed gas prepared by mixing nitrogen and air to an oxygen concentration of 8%, followed by stirring. Was done. After completion of the dropwise addition, 1500 g of water in which 19.89 g (52.3 mmol) of tetrasodium ethylenediaminetetraacetate was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with a 1.0 N aqueous hydrochloric acid solution and then with pure water. The obtained solution was concentrated by an evaporator, and further dried under reduced pressure to obtain 414.2 g of a bifunctional phenylene ether oligomer. The number average molecular weight was 930, the weight average molecular weight was 1,460, and the hydroxyl equivalent was 465. When 1 H-NMR was measured, no peak corresponding to the amine was detected, and it was confirmed that no amine adduct was generated.
[0024]
(Example 3) stirrer, a thermometer, an air-introducing tube, CuBr 2 6.64 g longitudinally long reactor 12L equipped with a baffle plate (29.9 mmol), N, N'-di -t- butyl diamine 1. 29 g (7.5 mmol), n-butyldimethylamine (48.07 g (475.9 mmol)) and toluene (2,600 g) were charged, and the mixture was stirred at a reaction temperature of 40 ° C., and was previously dissolved in 2,300 g of methanol. 32 g (0.48 mol), 584.38 g (4.79 mol) of 2,6-dimethylphenol, 0.87 g (5.1 mmol) of N, N'-di-t-butylethylenediamine, 18.69 g of n-butyldimethylamine (185.1 mmol) mixed solution (a divalent phenol represented by the structural formula (2) and a monovalent phenol represented by the structural formula (3)) A mixture of phenolic compounds at a molar ratio of 1:10) mixed with nitrogen and air to an oxygen concentration of 8% was added dropwise over 230 minutes while bubbling at a flow rate of 5.2 L / min, followed by stirring. Was done. After completion of the dropwise addition, 1500 g of water in which 34.09 g (89.7 mmol) of tetrasodium ethylenediaminetetraacetate was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with a 1.0 N aqueous hydrochloric acid solution and then with pure water. The obtained solution was concentrated by an evaporator and further dried under reduced pressure to obtain 702.2 g of a bifunctional phenylene ether oligomer. The number average molecular weight was 1,490, the weight average molecular weight was 2,320, and the hydroxyl equivalent was 750. When 1 H-NMR was measured, no peak corresponding to the amine was detected, and it was confirmed that no amine adduct was generated.
[0025]
(Example 4) stirrer, a thermometer, an air-introducing tube, CuBr 2 3.88 g longitudinally long reactor 12L equipped with a baffle plate (17.4 mmol), N, N'-di -t- butyl ethylenediamine 0. 75 g (4.4 mmol), 28.04 g (277.6 mmol) of n-butyldimethylamine, and 2,600 g of methyl ethyl ketone were charged and stirred at a reaction temperature of 40 ° C., and HMBP 129 previously dissolved in 2,300 g of methyl ethyl ketone was charged. 0.32 g (0.48 mol), 292.19 g (2.40 mol) of 2,6-dimethylphenol, 0.51 g (2.9 mmol) of N, N'-di-t-butylethylenediamine, n-butyldimethylamine 90 g (108.0 mmol) of a mixed solution (a divalent phenol compound represented by the structural formula (2) and a structural formula ( The molar ratio of the monovalent phenol compound represented by 3) (1: 5) was added dropwise over 95 minutes while bubbling air at 3.5 L / min, followed by stirring. At this time, 3.5 L / min of nitrogen gas was passed through the gas phase. After completion of the dropwise addition, 1500 g of water in which 19.89 g (52.3 mmol) of tetrasodium ethylenediaminetetraacetate was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with a 1.0 N aqueous hydrochloric acid solution and then with pure water. The obtained solution was concentrated by an evaporator, and further dried under reduced pressure to obtain 413.1 g of a phenylene ether oligomer. The number average molecular weight was 920, the weight average molecular weight was 1,440, and the hydroxyl equivalent was 460. When 1 H-NMR was measured, no peak corresponding to the amine was detected, and it was confirmed that no amine adduct was generated.
[0026]
(Comparative Example 1) stirrer, a thermometer, an air-introducing tube, CuBr 2 3.88 g longitudinally long reactor 12L equipped with a baffle plate (17.4 mmol), N, N'-di -t- butyl ethylenediamine 0. 85 g (4.9 mmol), 10.40 g (102.8 mmol) of n-butyldimethylamine, 8.21 g (63.5 mmol) of di-n-butylamine, and 2,600 g of toluene were charged, and the mixture was stirred at a reaction temperature of 40 ° C. 129.32 g (0.48 mol) of HMBP, 292.19 g (2.40 mol) of 2,6-dimethylphenol previously dissolved in 2,300 g of methanol, N, N'-di-t-butylethylenediamine. 70 g (9.9 mmol), n-butyldimethylamine 20.80 g (205.6 mmol), di-n-butylamine 16. 43 g (127.1 mmol) of a mixed solution (molar ratio of a divalent phenol represented by the structural formula (2) to a monovalent phenol represented by the structural formula (3) of 1: 5) was mixed with nitrogen. A mixed gas adjusted to an oxygen concentration of 8% by mixing with air was dropped over 230 minutes while performing bubbling at a flow rate of 5.2 L / min, followed by stirring. After the completion of the dropwise addition, 1500 g of water in which 19.84 g (52.2 mmol) of tetrasodium ethylenediaminetetraacetate was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with a 1.0 N aqueous hydrochloric acid solution and then with pure water. The obtained solution was concentrated by an evaporator and further dried under reduced pressure to obtain 408.4 g of a bifunctional phenylene ether oligomer. This had a number average molecular weight of 930, a weight average molecular weight of 1,370, and a hydroxyl equivalent of 470. When H 1 -NMR was measured, a peak corresponding to di-n-butylamine was detected, and the integration ratio of the methyl group peak (0.89 ppm) confirmed that 22% of the amine adduct was present. Was.
[0027]
(Comparative Example 2) stirrer, a thermometer, an air-introducing tube, CuBr longitudinally long reactor 12L equipped with a baffle plate 2 10.85 g (48.8 mmol), di -n- butylamine 286.83G (2.22 mol) And 2,600 g of toluene, stirred at a reaction temperature of 40 ° C., and 129.32 g (0.48 mol) of HMBP and 292.19 g of 2,6-dimethylphenol (2.19 g) previously dissolved in 2,300 g of methanol. 40 mol) of a mixed solution (molar ratio of the divalent phenol represented by the structural formula (2) to the monovalent phenol represented by the structural formula (3) of 1: 5) is mixed with nitrogen and air. The mixed gas adjusted to an oxygen concentration of 8% was added dropwise over 230 minutes while bubbling at a flow rate of 5.2 L / min, followed by stirring. After completion of the dropwise addition, 1,500 g of water in which 55.68 g (146.5 mmol) of tetrasodium ethylenediaminetetraacetate was dissolved was added to stop the reaction. The aqueous layer and the organic layer were separated, and the organic layer was washed with a 1.0 N aqueous hydrochloric acid solution and then with pure water. The obtained solution was concentrated by an evaporator and further dried under reduced pressure to obtain 404.6 g of a bifunctional phenylene ether oligomer. It had a number average molecular weight of 910, a weight average molecular weight of 1,310, and a hydroxyl equivalent of 455. When H 1 -NMR was measured, a peak corresponding to di-n-butylamine was detected, and it was confirmed from the integration ratio of the methyl group peak (0.89 ppm) that 15% of the amine adduct was present. Was.
[0028]
[Table 1]
Figure 2004115619
[0029]
【The invention's effect】
According to the production method of the present invention, it is possible to efficiently produce an oligomer of a bifunctional phenylene ether having a desired molecular weight and no amine adduct. Since the amine of the bifunctional phenylene ether oligomer obtained in the present invention is not added, the terminal phenolic hydroxyl group can be easily derived to another functional group. Further, since the basic skeleton is a polyphenylene ether structure, it has excellent heat resistance, dielectric properties, and the like, and can be applied to electric and electronic materials.

Claims (3)

銅系触媒および、3級アミンまたは2級アルキル基、3級アルキル基あるいはアリール基を有する2級アミンまたは両者の混合系を用いた、下記構造式(2)で表される2価のフェノール体と下記構造式(3)で表される1価のフェノール体との酸化重合反応による、アミン付加体のない下記構造式(1)で表される2官能性フェニレンエーテルオリゴマー体の製造法。
Figure 2004115619
(上記式中、R、R、R、R、R、R、R10は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基を示す。R、R、R、R11、R12は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基を示す。m、nは、少なくともいずれか一方が0でない0〜25の整数を示す。)
A divalent phenol represented by the following structural formula (2) using a copper-based catalyst and a tertiary amine or a secondary alkyl group, a secondary amine having a tertiary alkyl group or an aryl group or a mixed system of both. A method for producing a bifunctional phenylene ether oligomer represented by the following structural formula (1) without an amine adduct by an oxidative polymerization reaction of a bifunctional phenylene ether oligomer represented by the following structural formula (3) with a monovalent phenol represented by the following structural formula (3).
Figure 2004115619
(In the above formula, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 , and R 10 may be the same or different and represent a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R 4 , R 5 , R 6 , R 11 , and R 12 may be the same or different and represent a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group, and m and n are at least one of One is an integer of 0 to 25 other than 0.)
上記構造式(3)で表される1価のフェノールが、2,6−ジメチルフェノール単独、または2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの混合系で用いられる請求項1記載の2官能性フェニレンエーテルオリゴマー体の製造法。The monohydric phenol represented by the structural formula (3) is used in 2,6-dimethylphenol alone or in a mixed system of 2,6-dimethylphenol and 2,3,6-trimethylphenol. A method for producing the bifunctional phenylene ether oligomer according to the above. 上記構造式(2)で表される2価のフェノール体と上記構造式(3)で表される1価のフェノール体とのモル比率が1:1〜1:15である請求項1記載の2官能性フェニレンエーテルオリゴマー体の製造法。The molar ratio of the divalent phenol represented by the structural formula (2) to the monovalent phenol represented by the structural formula (3) is from 1: 1 to 1:15. A method for producing a bifunctional phenylene ether oligomer.
JP2002279389A 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer Expired - Lifetime JP4196164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279389A JP4196164B2 (en) 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279389A JP4196164B2 (en) 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer

Publications (2)

Publication Number Publication Date
JP2004115619A true JP2004115619A (en) 2004-04-15
JP4196164B2 JP4196164B2 (en) 2008-12-17

Family

ID=32274413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279389A Expired - Lifetime JP4196164B2 (en) 2002-09-25 2002-09-25 Method for producing bifunctional phenylene ether oligomer

Country Status (1)

Country Link
JP (1) JP4196164B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003211A1 (en) * 2003-07-02 2005-01-13 Mitsubishi Gas Chemical Company, Inc. Process for production of bifunctional phenylene ether oligomers
JP2006028111A (en) * 2004-07-20 2006-02-02 Mitsubishi Gas Chem Co Inc Method for producing vinyl compound
JP2008127497A (en) * 2006-11-22 2008-06-05 Mitsubishi Gas Chem Co Inc Process for producing phenylene ether oligomer mixture
EP2006318A1 (en) 2007-06-18 2008-12-24 Mitsubishi Gas Chemical Company, Inc. Process for the production of vinyl compound
JP2010503753A (en) * 2006-09-15 2010-02-04 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) compositions, methods, and articles
WO2023166948A1 (en) * 2022-03-02 2023-09-07 本州化学工業株式会社 (meth)acrylate-terminated polyphenylene ether oligomer, and resin composition, varnish, prepreg, and cured product containing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003211A1 (en) * 2003-07-02 2005-01-13 Mitsubishi Gas Chemical Company, Inc. Process for production of bifunctional phenylene ether oligomers
JP2006028111A (en) * 2004-07-20 2006-02-02 Mitsubishi Gas Chem Co Inc Method for producing vinyl compound
JP4591665B2 (en) * 2004-07-20 2010-12-01 三菱瓦斯化学株式会社 Production method of vinyl compounds
JP2010503753A (en) * 2006-09-15 2010-02-04 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) compositions, methods, and articles
JP2008127497A (en) * 2006-11-22 2008-06-05 Mitsubishi Gas Chem Co Inc Process for producing phenylene ether oligomer mixture
EP2006318A1 (en) 2007-06-18 2008-12-24 Mitsubishi Gas Chemical Company, Inc. Process for the production of vinyl compound
WO2023166948A1 (en) * 2022-03-02 2023-09-07 本州化学工業株式会社 (meth)acrylate-terminated polyphenylene ether oligomer, and resin composition, varnish, prepreg, and cured product containing same

Also Published As

Publication number Publication date
JP4196164B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
EP1642918B1 (en) Process for production of bifunctional phenylene ether oligomers
EP2311898B1 (en) High molecular weight poly(2,6-dimethyl-1,4-phenylene ether) and process therefor
US6472499B1 (en) Preparation of high intrinsic viscosity poly(arylene ether) resins
JP4736254B2 (en) Bifunctional phenylene ether oligomer and its production method
JPH01304121A (en) Method for capping polyphenylene ether
JP2009518521A (en) Poly (arylene ether) copolymer
KR100914020B1 (en) Bifunctional biphenyl and process for producing bifunctional phenylene ether oligomer compound using the same
JP5759087B2 (en) Poly (phenylene ether) copolymer and production method
JPH08253578A (en) Solventless production of polyarylene ether
EP1526148B1 (en) Process for the production of vinyl compound
JP2004115619A (en) Method for producing bifunctional phenylene ether oligomer
JPS5853012B2 (en) polyphenylene oxide
KR20040030940A (en) Process and apparatus for preparing a poly(arylene ether)
JPS6120576B2 (en)
JP2004059642A (en) Method for producing difunctional phenylene ether oligomer
US8404798B2 (en) Polyarylene ether and method for preparing the same
JP4591665B2 (en) Production method of vinyl compounds
JP2004315418A (en) Method for producing vinyl compound
JP2004002830A (en) 3, 3&#39;, 5, 5&#39;-tetra methyl-4, 4&#39;-biphenol, its preparation process, and preparation process of epoxy resin composition
JP2008127497A (en) Process for producing phenylene ether oligomer mixture
JP2024507517A (en) Method for producing polyphenylene oxide
US4587327A (en) Method for preparing polyphenylene oxide with copper (I) complex catalysts
JP3555312B2 (en) Polyphosphate and method for producing the same
JPH0625392A (en) Phenolic aralkyl resin and its production
JPH0585977A (en) Production of substituted phenol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4196164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

EXPY Cancellation because of completion of term